snes9xgx/source/snes9x/dsp1.cpp
dborth fb27030208 [Whats Was New 002 - July 21, 2008]
- added: classic and nunchuk support
- added: all controllers can now be configured
- added: GC version (untested)
- changed: mappings are no longer stored in SRAM, but in config file. 
           This means no per-game configurations, but one global 
           config per controller.
- one makefile to make all versions. (thanks to snes9x143 SVN)
2008-10-16 01:49:58 +00:00

1037 lines
30 KiB
C++

/**********************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2002 - 2004 Matthew Kendora
(c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org)
(c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/)
(c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2006 Brad Jorsch (anomie@users.sourceforge.net),
funkyass (funkyass@spam.shaw.ca),
Kris Bleakley (codeviolation@hotmail.com),
Nach (n-a-c-h@users.sourceforge.net), and
zones (kasumitokoduck@yahoo.com)
BS-X C emulator code
(c) Copyright 2005 - 2006 Dreamer Nom,
zones
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com),
Nach,
zsKnight (zsknight@zsnes.com)
C4 C++ code
(c) Copyright 2003 - 2006 Brad Jorsch,
Nach
DSP-1 emulator code
(c) Copyright 1998 - 2006 _Demo_,
Andreas Naive (andreasnaive@gmail.com)
Gary Henderson,
Ivar (ivar@snes9x.com),
John Weidman,
Kris Bleakley,
Matthew Kendora,
Nach,
neviksti (neviksti@hotmail.com)
DSP-2 emulator code
(c) Copyright 2003 John Weidman,
Kris Bleakley,
Lord Nightmare (lord_nightmare@users.sourceforge.net),
Matthew Kendora,
neviksti
DSP-3 emulator code
(c) Copyright 2003 - 2006 John Weidman,
Kris Bleakley,
Lancer,
z80 gaiden
DSP-4 emulator code
(c) Copyright 2004 - 2006 Dreamer Nom,
John Weidman,
Kris Bleakley,
Nach,
z80 gaiden
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight,
pagefault (pagefault@zsnes.com),
Kris Bleakley,
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code
(c) Copyright 2002 Matthew Kendora with research by
zsKnight,
John Weidman,
Dark Force
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive,
John Weidman
S-RTC C emulator code
(c) Copyright 2001-2006 byuu,
John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather,
John Weidman,
Kris Bleakley,
Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 _Demo_,
pagefault,
zsKnight,
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar,
Gary Henderson,
John Weidman
Sound DSP emulator code is derived from SNEeSe and OpenSPC:
(c) Copyright 1998 - 2003 Brad Martin
(c) Copyright 1998 - 2006 Charles Bilyue'
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
2xSaI filter
(c) Copyright 1999 - 2001 Derek Liauw Kie Fa
HQ2x filter
(c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com)
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com
Permission to use, copy, modify and/or distribute Snes9x in both binary
and source form, for non-commercial purposes, is hereby granted without
fee, providing that this license information and copyright notice appear
with all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software or it's derivatives.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes,
but is not limited to, charging money for Snes9x or software derived from
Snes9x, including Snes9x or derivatives in commercial game bundles, and/or
using Snes9x as a promotion for your commercial product.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
**********************************************************************************/
#include "snes9x.h"
#include "dsp1.h"
#include "missing.h"
#include "memmap.h"
#include <math.h>
#include "dsp1emu.c.inc"
#include "dsp2emu.c.inc"
#include "dsp3emu.c.inc"
#include "dsp4emu.c.inc"
void (*SetDSP)(uint8, uint16)=&DSP1SetByte;
uint8 (*GetDSP)(uint16)=&DSP1GetByte;
void S9xInitDSP1 ()
{
static bool8 init = FALSE;
if (!init)
{
InitDSP ();
init = TRUE;
}
}
void S9xResetDSP1 ()
{
S9xInitDSP1 ();
DSP1.waiting4command = TRUE;
DSP1.in_count = 0;
DSP1.out_count = 0;
DSP1.in_index = 0;
DSP1.out_index = 0;
DSP1.first_parameter = TRUE;
DSP4.waiting4command = TRUE;
//printf("DSP-4 Reset\n");
}
uint8 S9xGetDSP (uint16 address)
{
uint8 t;
#ifdef DEBUGGER
if (Settings.TraceDSP)
{
sprintf (String, "DSP read: 0x%04X", address);
S9xMessage (S9X_TRACE, S9X_TRACE_DSP1, String);
}
#endif
t=(*GetDSP)(address);
//DSP1GetByte(address);
return (t);
}
void S9xSetDSP (uint8 byte, uint16 address)
{
#ifdef DEBUGGER
missing.unknowndsp_write = address;
if (Settings.TraceDSP)
{
sprintf (String, "DSP write: 0x%04X=0x%02X", address, byte);
S9xMessage (S9X_TRACE, S9X_TRACE_DSP1, String);
}
#endif
(*SetDSP)(byte, address);
//DSP1SetByte(byte, address);
}
void DSP1SetByte(uint8 byte, uint16 address)
{
if( (address & 0xf000) == 0x6000 || (address & 0x7fff) < 0x4000 )
{
// if ((address & 1) == 0)
// {
if((DSP1.command==0x0A||DSP1.command==0x1A)&&DSP1.out_count!=0)
{
DSP1.out_count--;
DSP1.out_index++;
return;
}
else if (DSP1.waiting4command)
{
DSP1.command = byte;
DSP1.in_index = 0;
DSP1.waiting4command = FALSE;
DSP1.first_parameter = TRUE;
// printf("Op%02X\n",byte);
// Mario Kart uses 0x00, 0x02, 0x06, 0x0c, 0x28, 0x0a
switch (byte)
{
case 0x00: DSP1.in_count = 2; break;
case 0x30:
case 0x10: DSP1.in_count = 2; break;
case 0x20: DSP1.in_count = 2; break;
case 0x24:
case 0x04: DSP1.in_count = 2; break;
case 0x08: DSP1.in_count = 3; break;
case 0x18: DSP1.in_count = 4; break;
case 0x28: DSP1.in_count = 3; break;
case 0x38: DSP1.in_count = 4; break;
case 0x2c:
case 0x0c: DSP1.in_count = 3; break;
case 0x3c:
case 0x1c: DSP1.in_count = 6; break;
case 0x32:
case 0x22:
case 0x12:
case 0x02: DSP1.in_count = 7; break;
case 0x0a: DSP1.in_count = 1; break;
case 0x3a:
case 0x2a:
case 0x1a:
DSP1. command =0x1a;
DSP1.in_count = 1; break;
case 0x16:
case 0x26:
case 0x36:
case 0x06: DSP1.in_count = 3; break;
case 0x1e:
case 0x2e:
case 0x3e:
case 0x0e: DSP1.in_count = 2; break;
case 0x05:
case 0x35:
case 0x31:
case 0x01: DSP1.in_count = 4; break;
case 0x15:
case 0x11: DSP1.in_count = 4; break;
case 0x25:
case 0x21: DSP1.in_count = 4; break;
case 0x09:
case 0x39:
case 0x3d:
case 0x0d: DSP1.in_count = 3; break;
case 0x19:
case 0x1d: DSP1.in_count = 3; break;
case 0x29:
case 0x2d: DSP1.in_count = 3; break;
case 0x33:
case 0x03: DSP1.in_count = 3; break;
case 0x13: DSP1.in_count = 3; break;
case 0x23: DSP1.in_count = 3; break;
case 0x3b:
case 0x0b: DSP1.in_count = 3; break;
case 0x1b: DSP1.in_count = 3; break;
case 0x2b: DSP1.in_count = 3; break;
case 0x34:
case 0x14: DSP1.in_count = 6; break;
case 0x07:
case 0x0f: DSP1.in_count = 1; break;
case 0x27:
case 0x2F: DSP1.in_count=1; break;
case 0x17:
case 0x37:
case 0x3F:
DSP1.command=0x1f;
case 0x1f: DSP1.in_count = 1; break;
// case 0x80: DSP1.in_count = 2; break;
default:
//printf("Op%02X\n",byte);
case 0x80:
DSP1.in_count = 0;
DSP1.waiting4command = TRUE;
DSP1.first_parameter = TRUE;
break;
}
DSP1.in_count<<=1;
}
else
{
DSP1.parameters [DSP1.in_index] = byte;
DSP1.first_parameter = FALSE;
DSP1.in_index++;
}
if (DSP1.waiting4command ||
(DSP1.first_parameter && byte == 0x80))
{
DSP1.waiting4command = TRUE;
DSP1.first_parameter = FALSE;
}
else if(DSP1.first_parameter && (DSP1.in_count != 0 || (DSP1.in_count==0&&DSP1.in_index==0)))
{
}
// else if (DSP1.first_parameter)
// {
// }
else
{
if (DSP1.in_count)
{
//DSP1.parameters [DSP1.in_index] |= (byte << 8);
if (--DSP1.in_count == 0)
{
// Actually execute the command
DSP1.waiting4command = TRUE;
DSP1.out_index = 0;
switch (DSP1.command)
{
case 0x1f:
DSP1.out_count=2048;
break;
case 0x00: // Multiple
Op00Multiplicand = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op00Multiplier = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
DSPOp00 ();
DSP1.out_count = 2;
DSP1.output [0] = Op00Result&0xFF;
DSP1.output [1] = (Op00Result>>8)&0xFF;
break;
case 0x20: // Multiple
Op20Multiplicand = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op20Multiplier = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
DSPOp20 ();
DSP1.out_count = 2;
DSP1.output [0] = Op20Result&0xFF;
DSP1.output [1] = (Op20Result>>8)&0xFF;
break;
case 0x30:
case 0x10: // Inverse
Op10Coefficient = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op10Exponent = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
DSPOp10 ();
DSP1.out_count = 4;
DSP1.output [0] = (uint8) (((int16) Op10CoefficientR)&0xFF);
DSP1.output [1] = (uint8) ((((int16) Op10CoefficientR)>>8)&0xFF);
DSP1.output [2] = (uint8) (((int16) Op10ExponentR)&0xff);
DSP1.output [3] = (uint8) ((((int16) Op10ExponentR)>>8)&0xff);
break;
case 0x24:
case 0x04: // Sin and Cos of angle
Op04Angle = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op04Radius = (uint16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
DSPOp04 ();
DSP1.out_count = 4;
DSP1.output [0] = (uint8) (Op04Sin&0xFF);
DSP1.output [1] = (uint8) ((Op04Sin>>8)&0xFF);
DSP1.output [2] = (uint8) (Op04Cos&0xFF);
DSP1.output [3] = (uint8) ((Op04Cos>>8)&0xFF);
break;
case 0x08: // Radius
Op08X = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op08Y = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op08Z = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp08 ();
DSP1.out_count = 4;
DSP1.output [0] = (uint8) (((int16) Op08Ll)&0xFF);
DSP1.output [1] = (uint8) ((((int16) Op08Ll)>>8)&0xFF);
DSP1.output [2] = (uint8) (((int16) Op08Lh)&0xFF);
DSP1.output [3] = (uint8) ((((int16) Op08Lh)>>8)&0xFF);
break;
case 0x18: // Range
Op18X = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op18Y = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op18Z = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
Op18R = (int16) (DSP1.parameters [6]|(DSP1.parameters[7]<<8));
DSPOp18 ();
DSP1.out_count = 2;
DSP1.output [0] = (uint8) (Op18D&0xFF);
DSP1.output [1] = (uint8) ((Op18D>>8)&0xFF);
break;
case 0x38: // Range
Op38X = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op38Y = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op38Z = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
Op38R = (int16) (DSP1.parameters [6]|(DSP1.parameters[7]<<8));
DSPOp38 ();
DSP1.out_count = 2;
DSP1.output [0] = (uint8) (Op38D&0xFF);
DSP1.output [1] = (uint8) ((Op38D>>8)&0xFF);
break;
case 0x28: // Distance (vector length)
Op28X = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op28Y = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op28Z = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp28 ();
DSP1.out_count = 2;
DSP1.output [0] = (uint8) (Op28R&0xFF);
DSP1.output [1] = (uint8) ((Op28R>>8)&0xFF);
break;
case 0x2c:
case 0x0c: // Rotate (2D rotate)
Op0CA = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op0CX1 = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op0CY1 = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp0C ();
DSP1.out_count = 4;
DSP1.output [0] = (uint8) (Op0CX2&0xFF);
DSP1.output [1] = (uint8) ((Op0CX2>>8)&0xFF);
DSP1.output [2] = (uint8) (Op0CY2&0xFF);
DSP1.output [3] = (uint8) ((Op0CY2>>8)&0xFF);
break;
case 0x3c:
case 0x1c: // Polar (3D rotate)
Op1CZ = (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
//MK: reversed X and Y on neviksti and John's advice.
Op1CY = (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op1CX = (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
Op1CXBR = (DSP1.parameters [6]|(DSP1.parameters[7]<<8));
Op1CYBR = (DSP1.parameters [8]|(DSP1.parameters[9]<<8));
Op1CZBR = (DSP1.parameters [10]|(DSP1.parameters[11]<<8));
DSPOp1C ();
DSP1.out_count = 6;
DSP1.output [0] = (uint8) (Op1CXAR&0xFF);
DSP1.output [1] = (uint8) ((Op1CXAR>>8)&0xFF);
DSP1.output [2] = (uint8) (Op1CYAR&0xFF);
DSP1.output [3] = (uint8) ((Op1CYAR>>8)&0xFF);
DSP1.output [4] = (uint8) (Op1CZAR&0xFF);
DSP1.output [5] = (uint8) ((Op1CZAR>>8)&0xFF);
break;
case 0x32:
case 0x22:
case 0x12:
case 0x02: // Parameter (Projection)
Op02FX = (short)(DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op02FY = (short)(DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op02FZ = (short)(DSP1.parameters [4]|(DSP1.parameters[5]<<8));
Op02LFE = (short)(DSP1.parameters [6]|(DSP1.parameters[7]<<8));
Op02LES = (short)(DSP1.parameters [8]|(DSP1.parameters[9]<<8));
Op02AAS = (unsigned short)(DSP1.parameters [10]|(DSP1.parameters[11]<<8));
Op02AZS = (unsigned short)(DSP1.parameters [12]|(DSP1.parameters[13]<<8));
DSPOp02 ();
DSP1.out_count = 8;
DSP1.output [0] = (uint8) (Op02VOF&0xFF);
DSP1.output [1] = (uint8) ((Op02VOF>>8)&0xFF);
DSP1.output [2] = (uint8) (Op02VVA&0xFF);
DSP1.output [3] = (uint8) ((Op02VVA>>8)&0xFF);
DSP1.output [4] = (uint8) (Op02CX&0xFF);
DSP1.output [5] = (uint8) ((Op02CX>>8)&0xFF);
DSP1.output [6] = (uint8) (Op02CY&0xFF);
DSP1.output [7] = (uint8) ((Op02CY>>8)&0xFF);
break;
case 0x3a: //1a Mirror
case 0x2a: //1a Mirror
case 0x1a: // Raster mode 7 matrix data
case 0x0a:
Op0AVS = (short)(DSP1.parameters [0]|(DSP1.parameters[1]<<8));
DSPOp0A ();
DSP1.out_count = 8;
DSP1.output [0] = (uint8) (Op0AA&0xFF);
DSP1.output [2] = (uint8) (Op0AB&0xFF);
DSP1.output [4] = (uint8) (Op0AC&0xFF);
DSP1.output [6] = (uint8) (Op0AD&0xFF);
DSP1.output [1] = (uint8) ((Op0AA>>8)&0xFF);
DSP1.output [3] = (uint8) ((Op0AB>>8)&0xFF);
DSP1.output [5] = (uint8) ((Op0AC>>8)&0xFF);
DSP1.output [7] = (uint8) ((Op0AD>>8)&0xFF);
DSP1.in_index=0;
break;
case 0x16:
case 0x26:
case 0x36:
case 0x06: // Project object
Op06X = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op06Y = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op06Z = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp06 ();
DSP1.out_count = 6;
DSP1.output [0] = (uint8) (Op06H&0xff);
DSP1.output [1] = (uint8) ((Op06H>>8)&0xFF);
DSP1.output [2] = (uint8) (Op06V&0xFF);
DSP1.output [3] = (uint8) ((Op06V>>8)&0xFF);
DSP1.output [4] = (uint8) (Op06M&0xFF);
DSP1.output [5] = (uint8) ((Op06M>>8)&0xFF);
break;
case 0x1e:
case 0x2e:
case 0x3e:
case 0x0e: // Target
Op0EH = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op0EV = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
DSPOp0E ();
DSP1.out_count = 4;
DSP1.output [0] = (uint8) (Op0EX&0xFF);
DSP1.output [1] = (uint8) ((Op0EX>>8)&0xFF);
DSP1.output [2] = (uint8) (Op0EY&0xFF);
DSP1.output [3] = (uint8) ((Op0EY>>8)&0xFF);
break;
// Extra commands used by Pilot Wings
case 0x05:
case 0x35:
case 0x31:
case 0x01: // Set attitude matrix A
Op01m = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op01Zr = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op01Yr = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
Op01Xr = (int16) (DSP1.parameters [6]|(DSP1.parameters[7]<<8));
DSPOp01 ();
break;
case 0x15:
case 0x11: // Set attitude matrix B
Op11m = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op11Zr = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op11Yr = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
Op11Xr = (int16) (DSP1.parameters [7]|(DSP1.parameters[7]<<8));
DSPOp11 ();
break;
case 0x25:
case 0x21: // Set attitude matrix C
Op21m = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op21Zr = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op21Yr = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
Op21Xr = (int16) (DSP1.parameters [6]|(DSP1.parameters[7]<<8));
DSPOp21 ();
break;
case 0x09:
case 0x39:
case 0x3d:
case 0x0d: // Objective matrix A
Op0DX = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op0DY = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op0DZ = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp0D ();
DSP1.out_count = 6;
DSP1.output [0] = (uint8) (Op0DF&0xFF);
DSP1.output [1] = (uint8) ((Op0DF>>8)&0xFF);
DSP1.output [2] = (uint8) (Op0DL&0xFF);
DSP1.output [3] = (uint8) ((Op0DL>>8)&0xFF);
DSP1.output [4] = (uint8) (Op0DU&0xFF);
DSP1.output [5] = (uint8) ((Op0DU>>8)&0xFF);
break;
case 0x19:
case 0x1d: // Objective matrix B
Op1DX = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op1DY = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op1DZ = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp1D ();
DSP1.out_count = 6;
DSP1.output [0] = (uint8) (Op1DF&0xFF);
DSP1.output [1] = (uint8) ((Op1DF>>8)&0xFF);
DSP1.output [2] = (uint8) (Op1DL&0xFF);
DSP1.output [3] = (uint8) ((Op1DL>>8)&0xFF);
DSP1.output [4] = (uint8) (Op1DU&0xFF);
DSP1.output [5] = (uint8) ((Op1DU>>8)&0xFF);
break;
case 0x29:
case 0x2d: // Objective matrix C
Op2DX = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op2DY = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op2DZ = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp2D ();
DSP1.out_count = 6;
DSP1.output [0] = (uint8) (Op2DF&0xFF);
DSP1.output [1] = (uint8) ((Op2DF>>8)&0xFF);
DSP1.output [2] = (uint8) (Op2DL&0xFF);
DSP1.output [3] = (uint8) ((Op2DL>>8)&0xFF);
DSP1.output [4] = (uint8) (Op2DU&0xFF);
DSP1.output [5] = (uint8) ((Op2DU>>8)&0xFF);
break;
case 0x33:
case 0x03: // Subjective matrix A
Op03F = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op03L = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op03U = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp03 ();
DSP1.out_count = 6;
DSP1.output [0] = (uint8) (Op03X&0xFF);
DSP1.output [1] = (uint8) ((Op03X>>8)&0xFF);
DSP1.output [2] = (uint8) (Op03Y&0xFF);
DSP1.output [3] = (uint8) ((Op03Y>>8)&0xFF);
DSP1.output [4] = (uint8) (Op03Z&0xFF);
DSP1.output [5] = (uint8) ((Op03Z>>8)&0xFF);
break;
case 0x13: // Subjective matrix B
Op13F = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op13L = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op13U = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp13 ();
DSP1.out_count = 6;
DSP1.output [0] = (uint8) (Op13X&0xFF);
DSP1.output [1] = (uint8) ((Op13X>>8)&0xFF);
DSP1.output [2] = (uint8) (Op13Y&0xFF);
DSP1.output [3] = (uint8) ((Op13Y>>8)&0xFF);
DSP1.output [4] = (uint8) (Op13Z&0xFF);
DSP1.output [5] = (uint8) ((Op13Z>>8)&0xFF);
break;
case 0x23: // Subjective matrix C
Op23F = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op23L = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op23U = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp23 ();
DSP1.out_count = 6;
DSP1.output [0] = (uint8) (Op23X&0xFF);
DSP1.output [1] = (uint8) ((Op23X>>8)&0xFF);
DSP1.output [2] = (uint8) (Op23Y&0xFF);
DSP1.output [3] = (uint8) ((Op23Y>>8)&0xFF);
DSP1.output [4] = (uint8) (Op23Z&0xFF);
DSP1.output [5] = (uint8) ((Op23Z>>8)&0xFF);
break;
case 0x3b:
case 0x0b:
Op0BX = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op0BY = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op0BZ = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp0B ();
DSP1.out_count = 2;
DSP1.output [0] = (uint8) (Op0BS&0xFF);
DSP1.output [1] = (uint8) ((Op0BS>>8)&0xFF);
break;
case 0x1b:
Op1BX = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op1BY = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op1BZ = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp1B ();
DSP1.out_count = 2;
DSP1.output [0] = (uint8) (Op1BS&0xFF);
DSP1.output [1] = (uint8) ((Op1BS>>8)&0xFF);
break;
case 0x2b:
Op2BX = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op2BY = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op2BZ = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
DSPOp2B ();
DSP1.out_count = 2;
DSP1.output [0] = (uint8) (Op2BS&0xFF);
DSP1.output [1] = (uint8) ((Op2BS>>8)&0xFF);
break;
case 0x34:
case 0x14:
Op14Zr = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
Op14Xr = (int16) (DSP1.parameters [2]|(DSP1.parameters[3]<<8));
Op14Yr = (int16) (DSP1.parameters [4]|(DSP1.parameters[5]<<8));
Op14U = (int16) (DSP1.parameters [6]|(DSP1.parameters[7]<<8));
Op14F = (int16) (DSP1.parameters [8]|(DSP1.parameters[9]<<8));
Op14L = (int16) (DSP1.parameters [10]|(DSP1.parameters[11]<<8));
DSPOp14 ();
DSP1.out_count = 6;
DSP1.output [0] = (uint8) (Op14Zrr&0xFF);
DSP1.output [1] = (uint8) ((Op14Zrr>>8)&0xFF);
DSP1.output [2] = (uint8) (Op14Xrr&0xFF);
DSP1.output [3] = (uint8) ((Op14Xrr>>8)&0xFF);
DSP1.output [4] = (uint8) (Op14Yrr&0xFF);
DSP1.output [5] = (uint8) ((Op14Yrr>>8)&0xFF);
break;
case 0x27:
case 0x2F:
Op2FUnknown = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
DSPOp2F ();
DSP1.out_count = 2;
DSP1.output [0] = (uint8)(Op2FSize&0xFF);
DSP1.output [1] = (uint8)((Op2FSize>>8)&0xFF);
break;
case 0x07:
case 0x0F:
Op0FRamsize = (int16) (DSP1.parameters [0]|(DSP1.parameters[1]<<8));
DSPOp0F ();
DSP1.out_count = 2;
DSP1.output [0] = (uint8)(Op0FPass&0xFF);
DSP1.output [1] = (uint8)((Op0FPass>>8)&0xFF);
break;
default:
break;
}
}
}
}
}
}
uint8 DSP1GetByte(uint16 address)
{
uint8 t;
if ((address & 0xf000) == 0x6000 ||
// (address >= 0x8000 && address < 0xc000))
(address&0x7fff) < 0x4000)
{
if (DSP1.out_count)
{
//if ((address & 1) == 0)
t = (uint8) DSP1.output [DSP1.out_index];
//else
//{
// t = (uint8) (DSP1.output [DSP1.out_index] >> 8);
DSP1.out_index++;
if (--DSP1.out_count == 0)
{
if (DSP1.command == 0x1a || DSP1.command == 0x0a)
{
DSPOp0A ();
DSP1.out_count = 8;
DSP1.out_index = 0;
DSP1.output [0] = (Op0AA&0xFF);
DSP1.output [1] = (Op0AA>>8)&0xFF;
DSP1.output [2] = (Op0AB&0xFF);
DSP1.output [3] = (Op0AB>>8)&0xFF;
DSP1.output [4] = (Op0AC&0xFF);
DSP1.output [5] = (Op0AC>>8)&0xFF;
DSP1.output [6] = (Op0AD&0xFF);
DSP1.output [7] = (Op0AD>>8)&0xFF;
}
if(DSP1.command==0x1f)
{
if((DSP1.out_index%2)!=0)
{
t=(uint8)DSP1ROM[DSP1.out_index>>1];
}
else
{
t=DSP1ROM[DSP1.out_index>>1]>>8;
}
}
}
DSP1.waiting4command = TRUE;
//}
}
else
{
// Top Gear 3000 requires this value....
// if(4==Settings.DSPVersion)
t = 0xff;
//Ballz3d requires this one:
// else t = 0x00;
}
}
else t = 0x80;
return t;
}
void DSP2SetByte(uint8 byte, uint16 address)
{
if ((address & 0xf000) == 0x6000 ||
(address >= 0x8000 && address < 0xc000))
{
if (DSP1.waiting4command)
{
DSP1.command = byte;
DSP1.in_index = 0;
DSP1.waiting4command = FALSE;
// DSP1.first_parameter = TRUE;
// printf("Op%02X\n",byte);
switch (byte)
{
case 0x01:DSP1.in_count=32;break;
case 0x03:DSP1.in_count=1;break;
case 0x05:DSP1.in_count=1;break;
case 0x09:DSP1.in_count=4;break;
case 0x06:DSP1.in_count=1;break;
case 0x0D:DSP1.in_count=2;break;
default:
printf("Op%02X\n",byte);
case 0x0f:DSP1.in_count=0;break;
}
}
else
{
DSP1.parameters [DSP1.in_index] = byte;
// DSP1.first_parameter = FALSE;
DSP1.in_index++;
}
if (DSP1.in_count==DSP1.in_index)
{
//DSP1.parameters [DSP1.in_index] |= (byte << 8);
// Actually execute the command
DSP1.waiting4command = TRUE;
DSP1.out_index = 0;
switch (DSP1.command)
{
case 0x0D:
if(DSP2Op0DHasLen)
{
DSP2Op0DHasLen=false;
DSP1.out_count=DSP2Op0DOutLen;
//execute Op5
DSP2_Op0D();
}
else
{
DSP2Op0DInLen=DSP1.parameters[0];
DSP2Op0DOutLen=DSP1.parameters[1];
DSP1.in_index=0;
DSP1.in_count=(DSP2Op0DInLen+1)>>1;
DSP2Op0DHasLen=true;
if(byte)
DSP1.waiting4command=false;
}
break;
case 0x06:
if(DSP2Op06HasLen)
{
DSP2Op06HasLen=false;
DSP1.out_count=DSP2Op06Len;
//execute Op5
DSP2_Op06();
}
else
{
DSP2Op06Len=DSP1.parameters[0];
DSP1.in_index=0;
DSP1.in_count=DSP2Op06Len;
DSP2Op06HasLen=true;
if(byte)
DSP1.waiting4command=false;
}
break;
case 0x01:
DSP1.out_count=32;
DSP2_Op01();
break;
case 0x09:
// Multiply - don't yet know if this is signed or unsigned
DSP2Op09Word1 = DSP1.parameters[0] | (DSP1.parameters[1]<<8);
DSP2Op09Word2 = DSP1.parameters[2] | (DSP1.parameters[3]<<8);
DSP1.out_count=4;
#ifdef FAST_LSB_WORD_ACCESS
*(uint32 *)DSP1.output = DSP2Op09Word1 * DSP2Op09Word2;
#else
uint32 temp;
temp=DSP2Op09Word1 * DSP2Op09Word2;
DSP1.output[0]=temp&0xFF;
DSP1.output[1]=(temp>>8)&0xFF;
DSP1.output[2]=(temp>>16)&0xFF;
DSP1.output[3]=(temp>>24)&0xFF;
#endif
break;
case 0x05:
if(DSP2Op05HasLen)
{
DSP2Op05HasLen=false;
DSP1.out_count=DSP2Op05Len;
//execute Op5
DSP2_Op05();
}
else
{
DSP2Op05Len=DSP1.parameters[0];
DSP1.in_index=0;
DSP1.in_count=2*DSP2Op05Len;
DSP2Op05HasLen=true;
if(byte)
DSP1.waiting4command=false;
}
break;
case 0x03:
DSP2Op05Transparent= DSP1.parameters[0];
//DSP2Op03();
break;
case 0x0f:
default:
break;
}
}
}
}
uint8 DSP2GetByte(uint16 address)
{
uint8 t;
if ((address & 0xf000) == 0x6000 ||
(address >= 0x8000 && address < 0xc000))
{
if (DSP1.out_count)
{
t = (uint8) DSP1.output [DSP1.out_index];
DSP1.out_index++;
if(DSP1.out_count==DSP1.out_index)
DSP1.out_count=0;
}
else
{
t = 0xff;
}
}
else t = 0x80;
return t;
}
bool DSP4_init=FALSE;
/*
extern uint8 dsp4_byte;
extern uint16 dsp4_address;
void InitDSP4();
void DSP4_SetByte();
void DSP4_GetByte();
*/
void DSP4SetByte(uint8 byte, uint16 address)
{
if (!DSP4_init)
{
InitDSP4();
DSP4_init=TRUE;
}
if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000))
{
dsp4_byte=byte;
dsp4_address=address;
DSP4_SetByte();
}
}
uint8 DSP4GetByte(uint16 address)
{
if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000))
{
dsp4_address=address;
DSP4_GetByte();
return dsp4_byte;
}
return 0x80;
}