mirror of
https://github.com/wiidev/usbloadergx.git
synced 2024-11-13 23:15:09 +01:00
384 lines
11 KiB
C
384 lines
11 KiB
C
|
/*
|
||
|
file_allocation_table.c
|
||
|
Reading, writing and manipulation of the FAT structure on
|
||
|
a FAT partition
|
||
|
|
||
|
Copyright (c) 2006 Michael "Chishm" Chisholm
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without modification,
|
||
|
are permitted provided that the following conditions are met:
|
||
|
|
||
|
1. Redistributions of source code must retain the above copyright notice,
|
||
|
this list of conditions and the following disclaimer.
|
||
|
2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
this list of conditions and the following disclaimer in the documentation and/or
|
||
|
other materials provided with the distribution.
|
||
|
3. The name of the author may not be used to endorse or promote products derived
|
||
|
from this software without specific prior written permission.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
||
|
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
|
||
|
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
|
||
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||
|
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include "file_allocation_table.h"
|
||
|
#include "partition.h"
|
||
|
#include <string.h>
|
||
|
|
||
|
/*
|
||
|
Gets the cluster linked from input cluster
|
||
|
*/
|
||
|
uint32_t _FAT_fat_nextCluster(PARTITION* partition, uint32_t cluster)
|
||
|
{
|
||
|
uint32_t nextCluster = CLUSTER_FREE;
|
||
|
sec_t sector;
|
||
|
int offset;
|
||
|
|
||
|
if (cluster == CLUSTER_FREE) {
|
||
|
return CLUSTER_FREE;
|
||
|
}
|
||
|
|
||
|
switch (partition->filesysType)
|
||
|
{
|
||
|
case FS_UNKNOWN:
|
||
|
return CLUSTER_ERROR;
|
||
|
break;
|
||
|
|
||
|
case FS_FAT12:
|
||
|
{
|
||
|
u32 nextCluster_h;
|
||
|
sector = partition->fat.fatStart + (((cluster * 3) / 2) / BYTES_PER_READ);
|
||
|
offset = ((cluster * 3) / 2) % BYTES_PER_READ;
|
||
|
|
||
|
|
||
|
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster, sector, offset, sizeof(u8));
|
||
|
|
||
|
offset++;
|
||
|
|
||
|
if (offset >= BYTES_PER_READ) {
|
||
|
offset = 0;
|
||
|
sector++;
|
||
|
}
|
||
|
nextCluster_h = 0;
|
||
|
|
||
|
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster_h, sector, offset, sizeof(u8));
|
||
|
nextCluster |= (nextCluster_h << 8);
|
||
|
|
||
|
if (cluster & 0x01) {
|
||
|
nextCluster = nextCluster >> 4;
|
||
|
} else {
|
||
|
nextCluster &= 0x0FFF;
|
||
|
}
|
||
|
|
||
|
if (nextCluster >= 0x0FF7)
|
||
|
{
|
||
|
nextCluster = CLUSTER_EOF;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
case FS_FAT16:
|
||
|
sector = partition->fat.fatStart + ((cluster << 1) / BYTES_PER_READ);
|
||
|
offset = (cluster % (BYTES_PER_READ >> 1)) << 1;
|
||
|
|
||
|
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster, sector, offset, sizeof(u16));
|
||
|
|
||
|
if (nextCluster >= 0xFFF7) {
|
||
|
nextCluster = CLUSTER_EOF;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case FS_FAT32:
|
||
|
sector = partition->fat.fatStart + ((cluster << 2) / BYTES_PER_READ);
|
||
|
offset = (cluster % (BYTES_PER_READ >> 2)) << 2;
|
||
|
|
||
|
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster, sector, offset, sizeof(u32));
|
||
|
|
||
|
if (nextCluster >= 0x0FFFFFF7) {
|
||
|
nextCluster = CLUSTER_EOF;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return CLUSTER_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return nextCluster;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
writes value into the correct offset within a partition's FAT, based
|
||
|
on the cluster number.
|
||
|
*/
|
||
|
static bool _FAT_fat_writeFatEntry (PARTITION* partition, uint32_t cluster, uint32_t value) {
|
||
|
sec_t sector;
|
||
|
int offset;
|
||
|
uint32_t oldValue;
|
||
|
|
||
|
if ((cluster < CLUSTER_FIRST) || (cluster > partition->fat.lastCluster /* This will catch CLUSTER_ERROR */))
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
switch (partition->filesysType)
|
||
|
{
|
||
|
case FS_UNKNOWN:
|
||
|
return false;
|
||
|
break;
|
||
|
|
||
|
case FS_FAT12:
|
||
|
sector = partition->fat.fatStart + (((cluster * 3) / 2) / BYTES_PER_READ);
|
||
|
offset = ((cluster * 3) / 2) % BYTES_PER_READ;
|
||
|
|
||
|
if (cluster & 0x01) {
|
||
|
|
||
|
_FAT_cache_readLittleEndianValue (partition->cache, &oldValue, sector, offset, sizeof(u8));
|
||
|
|
||
|
value = (value << 4) | (oldValue & 0x0F);
|
||
|
|
||
|
_FAT_cache_writeLittleEndianValue (partition->cache, value & 0xFF, sector, offset, sizeof(u8));
|
||
|
|
||
|
offset++;
|
||
|
if (offset >= BYTES_PER_READ) {
|
||
|
offset = 0;
|
||
|
sector++;
|
||
|
}
|
||
|
|
||
|
_FAT_cache_writeLittleEndianValue (partition->cache, (value >> 8) & 0xFF, sector, offset, sizeof(u8));
|
||
|
|
||
|
} else {
|
||
|
|
||
|
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u8));
|
||
|
|
||
|
offset++;
|
||
|
if (offset >= BYTES_PER_READ) {
|
||
|
offset = 0;
|
||
|
sector++;
|
||
|
}
|
||
|
|
||
|
_FAT_cache_readLittleEndianValue (partition->cache, &oldValue, sector, offset, sizeof(u8));
|
||
|
|
||
|
value = ((value >> 8) & 0x0F) | (oldValue & 0xF0);
|
||
|
|
||
|
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u8));
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
case FS_FAT16:
|
||
|
sector = partition->fat.fatStart + ((cluster << 1) / BYTES_PER_READ);
|
||
|
offset = (cluster % (BYTES_PER_READ >> 1)) << 1;
|
||
|
|
||
|
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u16));
|
||
|
|
||
|
break;
|
||
|
|
||
|
case FS_FAT32:
|
||
|
sector = partition->fat.fatStart + ((cluster << 2) / BYTES_PER_READ);
|
||
|
offset = (cluster % (BYTES_PER_READ >> 2)) << 2;
|
||
|
|
||
|
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u32));
|
||
|
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return false;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*-----------------------------------------------------------------
|
||
|
gets the first available free cluster, sets it
|
||
|
to end of file, links the input cluster to it then returns the
|
||
|
cluster number
|
||
|
If an error occurs, return CLUSTER_ERROR
|
||
|
-----------------------------------------------------------------*/
|
||
|
uint32_t _FAT_fat_linkFreeCluster(PARTITION* partition, uint32_t cluster) {
|
||
|
uint32_t firstFree;
|
||
|
uint32_t curLink;
|
||
|
uint32_t lastCluster;
|
||
|
bool loopedAroundFAT = false;
|
||
|
|
||
|
lastCluster = partition->fat.lastCluster;
|
||
|
|
||
|
if (cluster > lastCluster) {
|
||
|
return CLUSTER_ERROR;
|
||
|
}
|
||
|
|
||
|
// Check if the cluster already has a link, and return it if so
|
||
|
curLink = _FAT_fat_nextCluster(partition, cluster);
|
||
|
if ((curLink >= CLUSTER_FIRST) && (curLink <= lastCluster)) {
|
||
|
return curLink; // Return the current link - don't allocate a new one
|
||
|
}
|
||
|
|
||
|
// Get a free cluster
|
||
|
firstFree = partition->fat.firstFree;
|
||
|
// Start at first valid cluster
|
||
|
if (firstFree < CLUSTER_FIRST) {
|
||
|
firstFree = CLUSTER_FIRST;
|
||
|
}
|
||
|
|
||
|
// Search until a free cluster is found
|
||
|
while (_FAT_fat_nextCluster(partition, firstFree) != CLUSTER_FREE) {
|
||
|
firstFree++;
|
||
|
if (firstFree > lastCluster) {
|
||
|
if (loopedAroundFAT) {
|
||
|
// If couldn't get a free cluster then return an error
|
||
|
partition->fat.firstFree = firstFree;
|
||
|
return CLUSTER_ERROR;
|
||
|
} else {
|
||
|
// Try looping back to the beginning of the FAT
|
||
|
// This was suggested by loopy
|
||
|
firstFree = CLUSTER_FIRST;
|
||
|
loopedAroundFAT = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
partition->fat.firstFree = firstFree;
|
||
|
|
||
|
if ((cluster >= CLUSTER_FIRST) && (cluster < lastCluster))
|
||
|
{
|
||
|
// Update the linked from FAT entry
|
||
|
_FAT_fat_writeFatEntry (partition, cluster, firstFree);
|
||
|
}
|
||
|
// Create the linked to FAT entry
|
||
|
_FAT_fat_writeFatEntry (partition, firstFree, CLUSTER_EOF);
|
||
|
|
||
|
return firstFree;
|
||
|
}
|
||
|
|
||
|
/*-----------------------------------------------------------------
|
||
|
gets the first available free cluster, sets it
|
||
|
to end of file, links the input cluster to it, clears the new
|
||
|
cluster to 0 valued bytes, then returns the cluster number
|
||
|
If an error occurs, return CLUSTER_ERROR
|
||
|
-----------------------------------------------------------------*/
|
||
|
uint32_t _FAT_fat_linkFreeClusterCleared (PARTITION* partition, uint32_t cluster) {
|
||
|
uint32_t newCluster;
|
||
|
uint32_t i;
|
||
|
uint8_t emptySector[BYTES_PER_READ];
|
||
|
|
||
|
// Link the cluster
|
||
|
newCluster = _FAT_fat_linkFreeCluster(partition, cluster);
|
||
|
|
||
|
if (newCluster == CLUSTER_FREE || newCluster == CLUSTER_ERROR) {
|
||
|
return CLUSTER_ERROR;
|
||
|
}
|
||
|
|
||
|
// Clear all the sectors within the cluster
|
||
|
memset (emptySector, 0, BYTES_PER_READ);
|
||
|
for (i = 0; i < partition->sectorsPerCluster; i++) {
|
||
|
_FAT_cache_writeSectors (partition->cache,
|
||
|
_FAT_fat_clusterToSector (partition, newCluster) + i,
|
||
|
1, emptySector);
|
||
|
}
|
||
|
|
||
|
return newCluster;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*-----------------------------------------------------------------
|
||
|
_FAT_fat_clearLinks
|
||
|
frees any cluster used by a file
|
||
|
-----------------------------------------------------------------*/
|
||
|
bool _FAT_fat_clearLinks (PARTITION* partition, uint32_t cluster) {
|
||
|
uint32_t nextCluster;
|
||
|
|
||
|
if ((cluster < CLUSTER_FIRST) || (cluster > partition->fat.lastCluster /* This will catch CLUSTER_ERROR */))
|
||
|
return false;
|
||
|
|
||
|
// If this clears up more space in the FAT before the current free pointer, move it backwards
|
||
|
if (cluster < partition->fat.firstFree) {
|
||
|
partition->fat.firstFree = cluster;
|
||
|
}
|
||
|
|
||
|
while ((cluster != CLUSTER_EOF) && (cluster != CLUSTER_FREE) && (cluster != CLUSTER_ERROR)) {
|
||
|
// Store next cluster before erasing the link
|
||
|
nextCluster = _FAT_fat_nextCluster (partition, cluster);
|
||
|
|
||
|
// Erase the link
|
||
|
_FAT_fat_writeFatEntry (partition, cluster, CLUSTER_FREE);
|
||
|
|
||
|
// Move onto next cluster
|
||
|
cluster = nextCluster;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*-----------------------------------------------------------------
|
||
|
_FAT_fat_trimChain
|
||
|
Drop all clusters past the chainLength.
|
||
|
If chainLength is 0, all clusters are dropped.
|
||
|
If chainLength is 1, the first cluster is kept and the rest are
|
||
|
dropped, and so on.
|
||
|
Return the last cluster left in the chain.
|
||
|
-----------------------------------------------------------------*/
|
||
|
uint32_t _FAT_fat_trimChain (PARTITION* partition, uint32_t startCluster, unsigned int chainLength) {
|
||
|
uint32_t nextCluster;
|
||
|
|
||
|
if (chainLength == 0) {
|
||
|
// Drop the entire chain
|
||
|
_FAT_fat_clearLinks (partition, startCluster);
|
||
|
return CLUSTER_FREE;
|
||
|
} else {
|
||
|
// Find the last cluster in the chain, and the one after it
|
||
|
chainLength--;
|
||
|
nextCluster = _FAT_fat_nextCluster (partition, startCluster);
|
||
|
while ((chainLength > 0) && (nextCluster != CLUSTER_FREE) && (nextCluster != CLUSTER_EOF)) {
|
||
|
chainLength--;
|
||
|
startCluster = nextCluster;
|
||
|
nextCluster = _FAT_fat_nextCluster (partition, startCluster);
|
||
|
}
|
||
|
|
||
|
// Drop all clusters after the last in the chain
|
||
|
if (nextCluster != CLUSTER_FREE && nextCluster != CLUSTER_EOF) {
|
||
|
_FAT_fat_clearLinks (partition, nextCluster);
|
||
|
}
|
||
|
|
||
|
// Mark the last cluster in the chain as the end of the file
|
||
|
_FAT_fat_writeFatEntry (partition, startCluster, CLUSTER_EOF);
|
||
|
|
||
|
return startCluster;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*-----------------------------------------------------------------
|
||
|
_FAT_fat_lastCluster
|
||
|
Trace the cluster links until the last one is found
|
||
|
-----------------------------------------------------------------*/
|
||
|
uint32_t _FAT_fat_lastCluster (PARTITION* partition, uint32_t cluster) {
|
||
|
while ((_FAT_fat_nextCluster(partition, cluster) != CLUSTER_FREE) && (_FAT_fat_nextCluster(partition, cluster) != CLUSTER_EOF)) {
|
||
|
cluster = _FAT_fat_nextCluster(partition, cluster);
|
||
|
}
|
||
|
return cluster;
|
||
|
}
|
||
|
|
||
|
/*-----------------------------------------------------------------
|
||
|
_FAT_fat_freeClusterCount
|
||
|
Return the number of free clusters available
|
||
|
-----------------------------------------------------------------*/
|
||
|
unsigned int _FAT_fat_freeClusterCount (PARTITION* partition) {
|
||
|
unsigned int count = 0;
|
||
|
uint32_t curCluster;
|
||
|
|
||
|
for (curCluster = CLUSTER_FIRST; curCluster <= partition->fat.lastCluster; curCluster++) {
|
||
|
if (_FAT_fat_nextCluster(partition, curCluster) == CLUSTER_FREE) {
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|