usbloadergx/source/libs/libwolfssl/wolfcrypt/sp_int.h
2021-08-01 18:00:22 +01:00

1003 lines
33 KiB
C

/* sp_int.h
*
* Copyright (C) 2006-2021 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
/*
DESCRIPTION
This library provides single precision (SP) integer math functions.
*/
#ifndef WOLF_CRYPT_SP_INT_H
#define WOLF_CRYPT_SP_INT_H
#ifndef WOLFSSL_LINUXKM
#include <limits.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Find smallest type for smallest bits. */
#if UCHAR_MAX == 255
#define SP_UCHAR_BITS 8
typedef unsigned char sp_uint8;
typedef char sp_int8;
#elif UCHAR_MAX == 127
#define SP_UCHAR_BITS 7
typedef unsigned char sp_uint7;
typedef char sp_int7;
#else
#error "Size of unsigned short not detected"
#endif
#if USHRT_MAX == 65535
#define SP_USHORT_BITS 16
typedef unsigned short sp_uint16;
typedef short sp_int16;
#elif USHRT_MAX == 255
#define SP_USHORT_BITS 8
#if USHRT_MAX > UCHAR_MAX
typedef unsigned short sp_uint8;
typedef short sp_int8;
#endif
#else
#error "Size of unsigned short not detected"
#endif
#if UINT_MAX == 4294967295UL
#define SP_UINT_BITS 32
typedef unsigned int sp_uint32;
typedef int sp_int32;
#elif UINT_MAX == 65535
#define SP_UINT_BITS 16
#if UINT_MAX > USHRT_MAX
typedef unsigned int sp_uint16;
typedef int sp_int16;
#endif
#elif UINT_MAX == 255
#define SP_UINT_BITS 8
#if UINT_MAX > USHRT_MAX
typedef unsigned int sp_uint8;
typedef int sp_int8;
#endif
#else
#error "Size of unsigned int not detected"
#endif
#if ULONG_MAX == 18446744073709551615UL
#define SP_ULONG_BITS 64
typedef unsigned long sp_uint64;
typedef long sp_int64;
#elif ULONG_MAX == 4294967295UL
#define SP_ULONG_BITS 32
#if ULONG_MAX > UINT_MAX
typedef unsigned long sp_uint32;
typedef long sp_int32;
#endif
#elif ULONG_MAX == 65535
#define SP_ULONG_BITS 16
#if ULONG_MAX > UINT_MAX
typedef unsigned long sp_uint16;
typedef long sp_int16;
#endif
#else
#error "Size of unsigned long not detected"
#endif
#ifdef ULLONG_MAX
#if ULLONG_MAX == 18446744073709551615ULL
#define SP_ULLONG_BITS 64
#if SP_ULLONG_BITS > SP_ULONG_BITS
typedef unsigned long long sp_uint64;
typedef long long sp_int64;
#endif
#elif ULLONG_MAX == 4294967295UL
#define SP_ULLONG_BITS 32
#if SP_ULLONG_BITS > SP_ULONG_BITS
typedef unsigned long long sp_uint32;
typedef long long sp_int32;
#endif
#elif ULLONG_MAX == 65535
#define SP_ULLONG_BITS 16
#if SP_ULLONG_BITS > SP_ULONG_BITS
typedef unsigned long long sp_uint16;
typedef long long sp_int16;
#endif
#else
#error "Size of unsigned long long not detected"
#endif
#else
#define SP_ULLONG_BITS 0
#endif
#ifdef WOLFSSL_SP_DIV_32
#define WOLFSSL_SP_DIV_WORD_HALF
#endif
/* Make sure WOLFSSL_SP_ASM build option defined when requested */
#if !defined(WOLFSSL_SP_ASM) && ( \
defined(WOLFSSL_SP_X86_64_ASM) || defined(WOLFSSL_SP_ARM32_ASM) || \
defined(WOLFSSL_SP_ARM64_ASM) || defined(WOLFSSL_SP_ARM_THUMB_ASM) || \
defined(WOLFSSL_SP_ARM_CORTEX_M_ASM))
#define WOLFSSL_SP_ASM
#endif
/* Determine the number of bits to use in each word. */
#ifdef SP_WORD_SIZE
#elif defined(WOLFSSL_DSP_BUILD)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_X86_64) && !defined(WOLFSSL_SP_X86_64_ASM) && \
!defined(HAVE___UINT128_T)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_X86_64_ASM) || defined(WOLFSSL_SP_X86_64)
#if SP_ULONG_BITS == 64 || SP_ULLONG_BITS == 64
#define SP_WORD_SIZE 64
#define HAVE_INTEL_AVX1
#ifndef NO_AVX2_SUPPORT
#define HAVE_INTEL_AVX2
#endif
#elif SP_ULONG_BITS == 32
#define SP_WORD_SIZE 32
#undef WOLFSSL_SP_ASM
#elif SP_ULONG_BITS == 16
#define SP_WORD_SIZE 16
#undef WOLFSSL_SP_ASM
#endif
#elif defined(WOLFSSL_SP_X86)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_ARM64_ASM) || defined(WOLFSSL_SP_ARM64)
#define SP_WORD_SIZE 64
#elif defined(WOLFSSL_SP_ARM32_ASM) || defined(WOLFSSL_SP_ARM32)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_ARM_THUMB_ASM) || defined(WOLFSSL_SP_ARM_THUMB)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_PPC)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_PPC64)
#define SP_WORD_SIZE 64
#elif defined(WOLFSSL_SP_MIPS)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_MIPS64)
#define SP_WORD_SIZE 64
#elif defined(WOLFSSL_SP_RISCV32)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_RISCV64)
#define SP_WORD_SIZE 64
#elif defined(WOLFSSL_SP_S390X)
#define SP_WORD_SIZE 64
#endif
/* If no predefined or assembly required size then use maximum available
* with compiler.
*/
#ifndef SP_WORD_SIZE
#if defined(NO_64BIT) || !defined(HAVE___UINT128_T)
#define SP_WORD_SIZE 32
#else
#define SP_WORD_SIZE 64
#endif
#endif
/* Number of bytes in each word. */
#define SP_WORD_SIZEOF (SP_WORD_SIZE / 8)
/* Define the types used. */
#ifdef HAVE___UINT128_T
#ifdef __SIZEOF_INT128__
typedef __uint128_t sp_uint128;
typedef __int128_t sp_int128;
#else
typedef unsigned long sp_uint128 __attribute__ ((mode(TI)));
typedef long sp_int128 __attribute__ ((mode(TI)));
#endif
#ifndef WOLFSSL_UINT128_T_DEFINED
#ifdef __SIZEOF_INT128__
typedef __uint128_t uint128_t;
typedef __int128_t int128_t;
#else
typedef unsigned long uint128_t __attribute__ ((mode(TI)));
typedef long int128_t __attribute__ ((mode(TI)));
#endif
#define WOLFSSL_UINT128_T_DEFINED
#endif
#endif
#if SP_WORD_SIZE == 8
typedef sp_uint8 sp_int_digit;
typedef sp_int8 sp_sint_digit;
typedef sp_uint16 sp_int_word;
typedef sp_int16 sp_int_sword;
#define SP_MASK 0xffU
#elif SP_WORD_SIZE == 16
typedef sp_uint16 sp_int_digit;
typedef sp_int16 sp_sint_digit;
typedef sp_uint32 sp_int_word;
typedef sp_int32 sp_int_sword;
#define SP_MASK 0xffffU
#elif SP_WORD_SIZE == 32
typedef sp_uint32 sp_int_digit;
typedef sp_int32 sp_sint_digit;
typedef sp_uint64 sp_int_word;
typedef sp_int64 sp_int_sword;
#define SP_MASK 0xffffffffU
#elif SP_WORD_SIZE == 64
typedef sp_uint64 sp_int_digit;
typedef sp_int64 sp_sint_digit;
#if defined(WOLFSSL_SP_MATH) || defined(WOLFSSL_SP_MATH_ALL)
typedef sp_uint128 sp_int_word;
typedef sp_int128 sp_int_sword;
#endif
#define SP_MASK 0xffffffffffffffffUL
#else
#error Word size not defined
#endif
/* Define an SP digit. */
#ifndef WOLFSSL_SP_ASM
/* SP C code uses n/m bits and therefore needs a signed type. */
#if SP_WORD_SIZE == 8
typedef sp_int8 sp_digit;
#elif SP_WORD_SIZE == 16
typedef sp_int16 sp_digit;
#elif SP_WORD_SIZE == 32
typedef sp_int32 sp_digit;
#elif SP_WORD_SIZE == 64
typedef sp_int64 sp_digit;
#endif
#else
/* SP ASM code uses full size and needs an unsigned type. */
#if SP_WORD_SIZE == 8
typedef sp_uint8 sp_digit;
#elif SP_WORD_SIZE == 16
typedef sp_uint16 sp_digit;
#elif SP_WORD_SIZE == 32
typedef sp_uint32 sp_digit;
#elif SP_WORD_SIZE == 64
typedef sp_uint64 sp_digit;
#endif
#endif
/** Number of bits in a half a word. */
#define SP_HALF_SIZE (SP_WORD_SIZE / 2)
/** Maximum value that can be held in a half a word. */
#define SP_HALF_MAX (((sp_digit)1 << SP_HALF_SIZE) - 1)
/** Maximum value that can be held in a word. */
#define SP_DIGIT_MAX SP_MASK
/* Number of bits to shift to divide by word size. */
#if SP_WORD_SIZE == 8
#define SP_WORD_SHIFT 3
#elif SP_WORD_SIZE == 16
#define SP_WORD_SHIFT 4
#elif SP_WORD_SIZE == 32
#define SP_WORD_SHIFT 5
#elif SP_WORD_SIZE == 64
#define SP_WORD_SHIFT 6
#endif
/* Mask of word size. */
#define SP_WORD_MASK (SP_WORD_SIZE - 1)
/* For debugging only - format string for different digit sizes. */
#if SP_WORD_SIZE == 64
#if SP_ULONG_BITS == 64
#define SP_PRINT_FMT "%016lx"
#else
#define SP_PRINT_FMT "%016llx"
#endif
#elif SP_WORD_SIZE == 32
#if SP_UINT_BITS == 32
#define SP_PRINT_FMT "%08x"
#else
#define SP_PRINT_FMT "%08lx"
#endif
#elif SP_WORD_SIZE == 16
#define SP_PRINT_FMT "%04x"
#elif SP_WORD_SIZE == 8
#define SP_PRINT_FMT "%02x"
#endif
#if defined(WOLFSSL_HAVE_SP_ECC) && defined(WOLFSSL_SP_NONBLOCK)
/* Non-blocking ECC operation context. */
typedef struct sp_ecc_ctx {
#ifdef WOLFSSL_SP_384
byte data[48*80]; /* stack data */
#else
byte data[32*80]; /* stack data */
#endif
} sp_ecc_ctx_t;
#endif
#if defined(WOLFSSL_SP_MATH) || defined(WOLFSSL_SP_MATH_ALL)
#include <libs/libwolfssl/wolfcrypt/random.h>
#ifdef SP_INT_BITS
/* Calculate number of digits to have in an sp_int based maximum size of
* numbers in bits that will be used.
* Double the size to hold multiplication result.
* Add one to accommodate extra digit used by sp_mul(), sp_mulmod(), sp_sqr(), and sp_sqrmod().
*/
#define SP_INT_DIGITS \
((((SP_INT_BITS + (SP_WORD_SIZE - 1)) * 2 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#endif
#ifndef SP_INT_DIGITS
/* Calculate number of digits to have in an sp_int based on features
* compiled in.
*/
#if !defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_HAVE_SP_DH) && \
!defined(WOLFSSL_HAVE_SP_ECC)
#if !defined(NO_RSA) || !defined(NO_DH) || !defined(NO_DSA)
#define SP_INT_DIGITS (((6144 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#elif defined(WOLFCRYPT_HAVE_SAKKE)
#define SP_INT_DIGITS \
(((2 * (1024 + SP_WORD_SIZE) + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#elif defined(HAVE_ECC)
#define SP_INT_DIGITS \
(((2 * ( 521 + SP_WORD_SIZE) + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#elif !defined(NO_PWDBASED) && defined(WOLFSSL_SHA512)
#define SP_INT_DIGITS ((( 512 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#else
#define SP_INT_DIGITS ((( 256 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#endif
#elif !defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_HAVE_SP_DH)
#if defined(WOLFCRYPT_HAVE_SAKKE)
#define SP_INT_DIGITS \
(((2 * (1024 + SP_WORD_SIZE) + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#elif defined(WOLFSSL_SP_MATH_ALL)
#define SP_INT_DIGITS \
(((2 * ( 521 + SP_WORD_SIZE) + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#elif defined(WOLFSSL_SP_384)
#define SP_INT_DIGITS ((( 768 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#else
#define SP_INT_DIGITS ((( 512 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#endif
#elif defined(WOLFSSL_SP_4096)
#if defined(WOLFSSL_HAVE_SP_DH)
#define SP_INT_DIGITS (((8192 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#else
#define SP_INT_DIGITS (((4096 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#endif
#elif !defined(WOLFSSL_SP_NO_3072)
#if defined(WOLFSSL_HAVE_SP_DH)
#define SP_INT_DIGITS (((6144 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#else
#define SP_INT_DIGITS (((3072 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#endif
#else
#if defined(WOLFSSL_HAVE_SP_DH) || \
(defined(WOLFSSL_HAVE_SP_RSA) && defined(WOLFSSL_KEY_GEN))
#define SP_INT_DIGITS (((4096 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#else
#define SP_INT_DIGITS (((2048 + SP_WORD_SIZE) / SP_WORD_SIZE) + 1)
#endif
#endif
#endif
#ifndef SP_INT_MAX_BITS
/* Convert number digits to number of bits. */
#define SP_INT_MAX_BITS (SP_INT_DIGITS * SP_WORD_SIZE)
#endif
#if SP_WORD_SIZE < 32
/* Maximum number of digits in a number to mul or sqr. */
#define SP_MUL_SQR_DIGITS (SP_INT_MAX_BITS / 2 / SP_WORD_SIZE)
/* Maximum value of partial in mul/sqr. */
#define SP_MUL_SQR_MAX_PARTIAL \
(SP_MUL_SQR_DIGITS * ((1 << SP_WORD_SIZE) - 1))
/* Maximim value in an sp_int_word. */
#define SP_INT_WORD_MAX ((1 << (SP_WORD_SIZE * 2)) - 1)
#if SP_MUL_SQR_MAX_PARTIAL > SP_INT_WORD_MAX
/* The sum of the partials in the multiplicaiton/square can exceed the
* size of a word. This will overflow the word and loose data.
* Use an implementation that handles carry after every add and uses an
* extra temporary word for overflowing high word.
*/
#define SP_WORD_OVERFLOW
#endif
#endif
#ifndef NO_FILESYSTEM
/* Output is formatted to be used with script that checks calculations. */
/* Print out a number in big endian. */
#ifndef WOLFSSL_SP_INT_NEGATIVE
/* Print out a positive multi-precision number.
*
* @param [in] a SP integer to print.
* @param [in] s String that describes the use of the number.
*/
#define sp_print(a, s) \
do { \
int ii; \
fprintf(stderr, "%s=0x0", s); \
for (ii = (a)->used-1; ii >= 0; ii--) { \
fprintf(stderr, SP_PRINT_FMT, (a)->dp[ii]); \
} \
fprintf(stderr, "\n"); \
} \
while (0)
#else
/* Print out a multi-precision number.
*
* @param [in] a SP integer to print.
* @param [in] s String that describes the use of the number.
*/
#define sp_print(a, s) \
do { \
int ii; \
fprintf(stderr, "%s=0x", s); \
if ((a)->sign == MP_NEG) { \
fprintf(stderr, "-"); \
} \
fprintf(stderr, "0"); \
for (ii = (a)->used-1; ii >= 0; ii--) { \
fprintf(stderr, SP_PRINT_FMT, (a)->dp[ii]); \
} \
fprintf(stderr, "\n"); \
} \
while (0)
#endif
/* Print out a single multi-precision digit.
*
* @param [in] a SP integer digit to print.
* @param [in] s String that describes the use of the number.
*/
#define sp_print_digit(a, s) \
do { \
fprintf(stderr, "%s=0x0", s); \
fprintf(stderr, SP_PRINT_FMT, a); \
fprintf(stderr, "\n"); \
} \
while (0)
/* Print out an integer.
*
* @param [in] a Number to print.
* @param [in] s String that describes the use of the number.
*/
#define sp_print_int(a, s) \
do { \
fprintf(stderr, "%s=0x0%x\n", s, a); \
} \
while (0)
#else
/* No filesystem, no output
* TODO: Use logging API?
*/
#define sp_print(a, s)
#define sp_print_digit(a, s)
#define sp_print_int(a, s)
#endif /* !NO_FILESYSTEM */
/* Returns whether multi-precision number is odd
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @return 1 when odd.
* @return 0 when even.
*/
#define sp_isodd(a) (((a)->used != 0) && ((a)->dp[0] & 1))
/* Returns whether multi-precision number is even
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @return 1 when even.
* @return 0 when odd.
*/
#define sp_iseven(a) (((a)->used != 0) && (((a)->dp[0] & 1) == 0))
/* Returns whether multi-precision number has the value zero.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @return 1 when zero.
* @return 0 when not zero.
*/
#define sp_iszero(a) ((a)->used == 0)
#ifndef WOLFSSL_SP_INT_NEGATIVE
/* Returns whether multi-precision number has the value one.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @return 1 when one.
* @return 0 when not one.
*/
#define sp_isone(a) (((a)->used == 1) && ((a)->dp[0] == 1))
#else
/* Returns whether multi-precision number has the value of positive one.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @return 1 when one.
* @return 0 when not one.
*/
#define sp_isone(a) \
(((a)->used == 1) && ((a)->dp[0] == 1) && ((a)->sign == MP_ZPOS))
#endif
#ifndef WOLFSSL_SP_INT_NEGATIVE
/* Returns whether multi-precision number has the value 'd'.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @param [in] d SP integer digit.
* @return 1 when one.
* @return 0 when not one.
*/
#define sp_isword(a, d) \
((((d) == 0) && sp_iszero(a)) || (((a)->used == 1) && ((a)->dp[0] == (d))))
#else
/* Returns whether multi-precision number has the value 'd'.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @param [in] d SP integer digit.
* @return 1 when one.
* @return 0 when not one.
*/
#define sp_isword(a, d) \
((((d) == 0) && sp_iszero(a)) || \
(((a)->used == 1) && ((a)->dp[0] == (d)) && ((a)->sign == MP_ZPOS)))
#endif
#ifndef WOLFSSL_SP_INT_NEGATIVE
/* Calculate the absolute value of the multi-precision number.
*
* Negative support not compiled in so just copies.
*
* @param [in] a SP integer to calculate absolute value of.
* @param [out] r SP integer to hold result.
*
* @return MP_OKAY on success.
* @return MP_VAL when a or r is NULL.
*/
#define sp_abs(a, b) sp_copy(a, b)
/* Returns whether multi-precision number is negative.
*
* Negative support not compiled in so always returns 0 (false).
*
* @param [in] a SP integer to check.
* @param [in] d SP integer digit.
* @return 0 indicating not negative always.
*/
#define sp_isneg(a) (0)
#else
/* Returns whether multi-precision number is negative.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @param [in] d SP integer digit.
* @return 1 when negative.
* @return 0 when not negative.
*/
#define sp_isneg(a) ((a)->sign == MP_NEG)
#endif
/* Updates the used count to exclude leading zeros.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to update.
*/
#define sp_clamp(a) \
do { \
int ii; \
for (ii = a->used - 1; ii >= 0 && a->dp[ii] == 0; ii--) { \
} \
a->used = ii + 1; \
} while (0)
/* Check the compiled and linked math implementation are the same.
* Use the number of bits in a digit as indication of how code was compiled.
*
* @return 1 when the number of bits are the same.
* @return 0 when the number of bits are differnt.
*/
#define CheckFastMathSettings() (SP_WORD_SIZE == CheckRunTimeFastMath())
/* The number of bytes to a sp_int with 'cnt' digits.
* Must have at least one digit.
*/
#define MP_INT_SIZEOF(cnt) \
(sizeof(sp_int) - (SP_INT_DIGITS - (((cnt) == 0) ? 1 : (cnt))) * \
sizeof(sp_int_digit))
/* The address of the next sp_int after one with 'cnt' digits. */
#define MP_INT_NEXT(t, cnt) \
(sp_int*)(((byte*)(t)) + MP_INT_SIZEOF(cnt))
/**
* A reuslt of NO.
* e.g. Is prime? NO.
*/
#define MP_NO 0
/**
* A reuslt of YES.
* e.g. Is prime? YES.
*/
#define MP_YES 1
#ifdef WOLFSSL_SP_INT_NEGATIVE
/** Number is 0/positive. */
#define MP_ZPOS 0
/** Number is negative. */
#define MP_NEG 1
#endif
/** Radix is base 10 or decimal. */
#define MP_RADIX_DEC 10
/** Radix is base 16 or hexadecimal. */
#define MP_RADIX_HEX 16
/** Result of comparison is that the first number is greater than second. */
#define MP_GT 1
/** Result of comparison is they are equal. */
#define MP_EQ 0
/** Result of comparison is that the first number is less than second. */
#define MP_LT -1
/* ERROR VALUES */
/** Error value on success. */
#define MP_OKAY 0
/** Error value when dynamic memory allocation fails. */
#define MP_MEM -2
/** Error value when value passed is not able to be used. */
#define MP_VAL -3
/** Error value when non-blocking operation is returning after partial
* completion.
*/
#define FP_WOULDBLOCK -4
/* Unused error. Defined for backward compatability. */
#define MP_NOT_INF -5
/* Unused error. Defined for backward compatability. */
#define MP_RANGE MP_NOT_INF
/* Number of bits in each word/digit. */
#define DIGIT_BIT SP_WORD_SIZE
/* Mask of all used bits in word/digit. */
#define MP_MASK SP_MASK
#ifdef HAVE_WOLF_BIGINT
/* Raw big integer as a big-endian byte array.
*
* Useful for when using hardware - canonical format.
*/
typedef struct WC_BIGINT {
/* Dynamically allocated buffer that is big-endian byte array. */
byte* buf;
/* Length of buffer in bytes. */
word32 len;
/* Hint for heap used to allocate buffer. */
void* heap;
} WC_BIGINT;
/* Ensure WC_BIGINT defined once. */
#define WOLF_BIGINT_DEFINED
#endif
/**
* SP integer.
*
* dp at end so user can allocate a smaller amount and set size.
*/
typedef struct sp_int {
/** Number of words that contain data. */
int used;
/** Maximum number of words in data. */
int size;
#ifdef WOLFSSL_SP_INT_NEGATIVE
/** Indicates whether number is 0/positive or negative. */
int sign;
#endif
#ifdef HAVE_WOLF_BIGINT
/** Unsigned binary (big endian) representation of number. */
struct WC_BIGINT raw;
#endif
/** Data of number. */
sp_int_digit dp[SP_INT_DIGITS];
} sp_int;
/* Mulit-precision integer type is SP integer type. */
typedef sp_int mp_int;
/* Mulit-precision integer digit type is SP integer digit type.
* Type is unsigned.
*/
typedef sp_int_digit mp_digit;
/* Include the maths operations that are not implementation specific. */
#include <libs/libwolfssl/wolfcrypt/wolfmath.h>
/*
* Function prototypes.
*/
MP_API int sp_init(sp_int* a);
MP_API int sp_init_size(sp_int* a, int size);
MP_API int sp_init_multi(sp_int* n1, sp_int* n2, sp_int* n3, sp_int* n4,
sp_int* n5, sp_int* n6);
MP_API void sp_free(sp_int* a);
MP_API int sp_grow(sp_int* a, int l);
MP_API void sp_zero(sp_int* a);
MP_API void sp_clear(sp_int* a);
MP_API void sp_forcezero(sp_int* a);
MP_API int sp_init_copy (sp_int* r, sp_int* a);
MP_API int sp_copy(const sp_int* a, sp_int* r);
MP_API int sp_exch(sp_int* a, sp_int* b);
MP_API int sp_cond_swap_ct(mp_int * a, mp_int * b, int c, int m);
#ifdef WOLFSSL_SP_INT_NEGATIVE
MP_API int sp_abs(sp_int* a, sp_int* b);
#endif
#ifdef WOLFSSL_SP_MATH_ALL
MP_API int sp_cmp_mag(sp_int* a, sp_int* b);
#endif
MP_API int sp_cmp(sp_int* a, sp_int* b);
MP_API int sp_is_bit_set(sp_int* a, unsigned int b);
MP_API int sp_count_bits(const sp_int* a);
#if defined(HAVE_ECC) && defined(HAVE_COMP_KEY)
MP_API int sp_cnt_lsb(sp_int* a);
#endif
MP_API int sp_leading_bit(sp_int* a);
MP_API int sp_set_bit(sp_int* a, int i);
MP_API int sp_2expt(sp_int* a, int e);
MP_API int sp_set(sp_int* a, sp_int_digit d);
MP_API int sp_set_int(sp_int* a, unsigned long n);
MP_API int sp_cmp_d(sp_int* a, sp_int_digit d);
MP_API int sp_add_d(sp_int* a, sp_int_digit d, sp_int* r);
MP_API int sp_sub_d(sp_int* a, sp_int_digit d, sp_int* r);
MP_API int sp_mul_d(sp_int* a, sp_int_digit d, sp_int* r);
#if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY)
MP_API int sp_div_d(sp_int* a, sp_int_digit d, sp_int* r, sp_int_digit* rem);
#endif
#if defined(WOLFSSL_SP_MATH_ALL) || (defined(HAVE_ECC) && \
defined(HAVE_COMP_KEY))
MP_API int sp_mod_d(sp_int* a, const sp_int_digit d, sp_int_digit* r);
#endif
#if defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)
MP_API int sp_div_2_mod_ct (sp_int* a, sp_int* b, sp_int* c);
MP_API int sp_div_2(sp_int* a, sp_int* r);
#endif
MP_API int sp_add(sp_int* a, sp_int* b, sp_int* r);
MP_API int sp_sub(sp_int* a, sp_int* b, sp_int* r);
#if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
(!defined(WOLFSSL_SP_MATH) && defined(WOLFSSL_CUSTOM_CURVES)) || \
defined(WOLFCRYPT_HAVE_ECCSI) || defined(WOLFCRYPT_HAVE_SAKKE)
MP_API int sp_addmod(sp_int* a, sp_int* b, sp_int* m, sp_int* r);
#endif
#if defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)
MP_API int sp_submod(sp_int* a, sp_int* b, sp_int* m, sp_int* r);
#endif
#if defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)
MP_API int sp_submod_ct (sp_int* a, sp_int* b, sp_int* c, sp_int* d);
MP_API int sp_addmod_ct (sp_int* a, sp_int* b, sp_int* c, sp_int* d);
#endif
MP_API int sp_lshd(sp_int* a, int s);
MP_API void sp_rshd(sp_int* a, int c);
MP_API void sp_rshb(sp_int* a, int n, sp_int* r);
#ifdef WOLFSSL_SP_MATH_ALL
MP_API int sp_div(sp_int* a, sp_int* d, sp_int* r, sp_int* rem);
#endif
MP_API int sp_mod(sp_int* a, sp_int* m, sp_int* r);
MP_API int sp_mul(sp_int* a, sp_int* b, sp_int* r);
MP_API int sp_mulmod(sp_int* a, sp_int* b, sp_int* m, sp_int* r);
MP_API int sp_invmod(sp_int* a, sp_int* m, sp_int* r);
#if defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)
MP_API int sp_invmod_mont_ct(sp_int* a, sp_int* m, sp_int* r, sp_int_digit mp);
#endif
MP_API int sp_exptmod_ex(sp_int* b, sp_int* e, int digits, sp_int* m,
sp_int* r);
MP_API int sp_exptmod(sp_int* b, sp_int* e, sp_int* m, sp_int* r);
#if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_HAVE_SP_DH)
MP_API int sp_exptmod_nct(sp_int* b, sp_int* e, sp_int* m, sp_int* r);
#endif
#ifdef WOLFSSL_SP_MATH_ALL
MP_API int sp_div_2d(sp_int* a, int e, sp_int* r, sp_int* rem);
MP_API int sp_mod_2d(sp_int* a, int e, sp_int* r);
MP_API int sp_mul_2d(sp_int* a, int e, sp_int* r);
#endif
MP_API int sp_sqr(sp_int* a, sp_int* r);
MP_API int sp_sqrmod(sp_int* a, sp_int* m, sp_int* r);
MP_API int sp_mont_red(sp_int* a, sp_int* m, sp_int_digit mp);
MP_API int sp_mont_setup(sp_int* m, sp_int_digit* rho);
MP_API int sp_mont_norm(sp_int* norm, sp_int* m);
MP_API int sp_unsigned_bin_size(const sp_int* a);
MP_API int sp_read_unsigned_bin(sp_int* a, const byte* in, word32 inSz);
MP_API int sp_to_unsigned_bin(sp_int* a, byte* out);
MP_API int sp_to_unsigned_bin_len(sp_int* a, byte* out, int outSz);
#ifdef WOLFSSL_SP_MATH_ALL
MP_API int sp_to_unsigned_bin_at_pos(int o, sp_int* a, unsigned char* out);
#endif
MP_API int sp_read_radix(sp_int* a, const char* in, int radix);
MP_API int sp_tohex(sp_int* a, char* str);
MP_API int sp_todecimal(mp_int* a, char* str);
#if defined(WOLFSSL_SP_MATH_ALL) || defined(WC_MP_TO_RADIX)
MP_API int sp_toradix(mp_int* a, char* str, int radix);
MP_API int sp_radix_size(mp_int* a, int radix, int* size);
#endif
MP_API int sp_rand_prime(sp_int* r, int len, WC_RNG* rng, void* heap);
MP_API int sp_prime_is_prime(mp_int* a, int t, int* result);
MP_API int sp_prime_is_prime_ex(mp_int* a, int t, int* result, WC_RNG* rng);
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)
MP_API int sp_gcd(sp_int* a, sp_int* b, sp_int* r);
#endif
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) && !defined(WC_RSA_BLINDING)
MP_API int sp_lcm(sp_int* a, sp_int* b, sp_int* r);
#endif
WOLFSSL_API word32 CheckRunTimeFastMath(void);
/* Map mp functions to SP math versions. */
/* Different name or signature. */
#define mp_mul_2(a, r) sp_mul_2d(a, 1, r)
#define mp_div_3(a, r, rem) sp_div_d(a, 3, r, rem)
#define mp_rshb(A,x) sp_rshb(A,x,A)
#define mp_is_bit_set(a,b) sp_is_bit_set(a,(unsigned int)b)
#define mp_montgomery_reduce sp_mont_red
#define mp_montgomery_setup sp_mont_setup
#define mp_montgomery_calc_normalization sp_mont_norm
/* Macros mappings. */
#define mp_isodd sp_isodd
#define mp_iseven sp_iseven
#define mp_iszero sp_iszero
#define mp_isone sp_isone
#define mp_isword sp_isword
#define mp_abs sp_abs
#define mp_isneg sp_isneg
#define mp_clamp sp_clamp
/* One to one mappings. */
#define mp_init sp_init
#define mp_init_size sp_init_size
#define mp_init_multi sp_init_multi
#define mp_free sp_free
#define mp_grow sp_grow
#define mp_zero sp_zero
#define mp_clear sp_clear
#define mp_forcezero sp_forcezero
#define mp_copy sp_copy
#define mp_init_copy sp_init_copy
#define mp_exch sp_exch
#define mp_cond_swap_ct sp_cond_swap_ct
#define mp_cmp_mag sp_cmp_mag
#define mp_cmp sp_cmp
#define mp_count_bits sp_count_bits
#define mp_cnt_lsb sp_cnt_lsb
#define mp_leading_bit sp_leading_bit
#define mp_set_bit sp_set_bit
#define mp_2expt sp_2expt
#define mp_set sp_set
#define mp_set_int sp_set_int
#define mp_cmp_d sp_cmp_d
#define mp_add_d sp_add_d
#define mp_sub_d sp_sub_d
#define mp_mul_d sp_mul_d
#define mp_div_d sp_div_d
#define mp_mod_d sp_mod_d
#define mp_div_2_mod_ct sp_div_2_mod_ct
#define mp_div_2 sp_div_2
#define mp_add sp_add
#define mp_sub sp_sub
#define mp_addmod sp_addmod
#define mp_submod sp_submod
#define mp_addmod_ct sp_addmod_ct
#define mp_submod_ct sp_submod_ct
#define mp_lshd sp_lshd
#define mp_rshd sp_rshd
#define mp_div sp_div
#define mp_mod sp_mod
#define mp_mul sp_mul
#define mp_mulmod sp_mulmod
#define mp_invmod sp_invmod
#define mp_invmod_mont_ct sp_invmod_mont_ct
#define mp_exptmod_ex sp_exptmod_ex
#define mp_exptmod sp_exptmod
#define mp_exptmod_nct sp_exptmod_nct
#define mp_div_2d sp_div_2d
#define mp_mod_2d sp_mod_2d
#define mp_mul_2d sp_mul_2d
#define mp_sqr sp_sqr
#define mp_sqrmod sp_sqrmod
#define mp_unsigned_bin_size sp_unsigned_bin_size
#define mp_read_unsigned_bin sp_read_unsigned_bin
#define mp_to_unsigned_bin sp_to_unsigned_bin
#define mp_to_unsigned_bin_len sp_to_unsigned_bin_len
#define mp_to_unsigned_bin_at_pos sp_to_unsigned_bin_at_pos
#define mp_read_radix sp_read_radix
#define mp_tohex sp_tohex
#define mp_todecimal sp_todecimal
#define mp_toradix sp_toradix
#define mp_radix_size sp_radix_size
#define mp_rand_prime sp_rand_prime
#define mp_prime_is_prime sp_prime_is_prime
#define mp_prime_is_prime_ex sp_prime_is_prime_ex
#define mp_gcd sp_gcd
#define mp_lcm sp_lcm
#ifdef WOLFSSL_DEBUG_MATH
#define mp_dump(d, a, v) sp_print(a, d)
#endif
#endif /* WOLFSSL_SP_MATH || WOLFSSL_SP_MATH_ALL */
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* WOLF_CRYPT_SP_H */