mirror of
https://github.com/wiidev/usbloadergx.git
synced 2024-11-05 02:55:07 +01:00
9e79c9d99b
* code cleanup
408 lines
11 KiB
C
408 lines
11 KiB
C
/* Rijndael Block Cipher - rijndael.c
|
|
|
|
Written by Mike Scott 21st April 1999
|
|
mike@compapp.dcu.ie
|
|
|
|
Permission for free direct or derivative use is granted subject
|
|
to compliance with any conditions that the originators of the
|
|
algorithm place on its exploitation.
|
|
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#define u8 unsigned char /* 8 bits */
|
|
#define u32 unsigned long /* 32 bits */
|
|
#define u64 unsigned long long
|
|
|
|
/* rotates x one bit to the left */
|
|
|
|
#define ROTL(x) (((x)>>7)|((x)<<1))
|
|
|
|
/* Rotates 32-bit word left by 1, 2 or 3 byte */
|
|
|
|
#define ROTL8(x) (((x)<<8)|((x)>>24))
|
|
#define ROTL16(x) (((x)<<16)|((x)>>16))
|
|
#define ROTL24(x) (((x)<<24)|((x)>>8))
|
|
|
|
/* Fixed Data */
|
|
|
|
static u8 InCo[4] = {0xB, 0xD, 0x9, 0xE}; /* Inverse Coefficients */
|
|
|
|
static u8 fbsub[256];
|
|
static u8 rbsub[256];
|
|
static u8 ptab[256], ltab[256];
|
|
static u32 ftable[256];
|
|
static u32 rtable[256];
|
|
static u32 rco[30];
|
|
|
|
/* Parameter-dependent data */
|
|
|
|
int Nk, Nb, Nr;
|
|
u8 fi[24], ri[24];
|
|
u32 fkey[120];
|
|
u32 rkey[120];
|
|
|
|
static u32 pack( u8 *b )
|
|
{ /* pack bytes into a 32-bit Word */
|
|
return ( ( u32 )b[3] << 24 ) | ( ( u32 )b[2] << 16 ) | ( ( u32 )b[1] << 8 ) | ( u32 )b[0];
|
|
}
|
|
|
|
static void unpack( u32 a, u8 *b )
|
|
{ /* unpack bytes from a word */
|
|
b[0] = ( u8 )a;
|
|
b[1] = ( u8 )( a >> 8 );
|
|
b[2] = ( u8 )( a >> 16 );
|
|
b[3] = ( u8 )( a >> 24 );
|
|
}
|
|
|
|
static u8 xtime( u8 a )
|
|
{
|
|
u8 b;
|
|
if ( a&0x80 ) b = 0x1B;
|
|
else b = 0;
|
|
a <<= 1;
|
|
a ^= b;
|
|
return a;
|
|
}
|
|
|
|
static u8 bmul( u8 x, u8 y )
|
|
{ /* x.y= AntiLog(Log(x) + Log(y)) */
|
|
if ( x && y ) return ptab[( ltab[x] + ltab[y] ) % 255];
|
|
else return 0;
|
|
}
|
|
|
|
static u32 SubByte( u32 a )
|
|
{
|
|
u8 b[4];
|
|
unpack( a, b );
|
|
b[0] = fbsub[b[0]];
|
|
b[1] = fbsub[b[1]];
|
|
b[2] = fbsub[b[2]];
|
|
b[3] = fbsub[b[3]];
|
|
return pack( b );
|
|
}
|
|
|
|
static u8 product( u32 x, u32 y )
|
|
{ /* dot product of two 4-byte arrays */
|
|
u8 xb[4], yb[4];
|
|
unpack( x, xb );
|
|
unpack( y, yb );
|
|
return bmul( xb[0], yb[0] ) ^ bmul( xb[1], yb[1] ) ^ bmul( xb[2], yb[2] ) ^ bmul( xb[3], yb[3] );
|
|
}
|
|
|
|
static u32 InvMixCol( u32 x )
|
|
{ /* matrix Multiplication */
|
|
u32 y, m;
|
|
u8 b[4];
|
|
|
|
m = pack( InCo );
|
|
b[3] = product( m, x );
|
|
m = ROTL24( m );
|
|
b[2] = product( m, x );
|
|
m = ROTL24( m );
|
|
b[1] = product( m, x );
|
|
m = ROTL24( m );
|
|
b[0] = product( m, x );
|
|
y = pack( b );
|
|
return y;
|
|
}
|
|
|
|
u8 ByteSub( u8 x )
|
|
{
|
|
u8 y = ptab[255-ltab[x]]; /* multiplicative inverse */
|
|
x = y; x = ROTL( x );
|
|
y ^= x; x = ROTL( x );
|
|
y ^= x; x = ROTL( x );
|
|
y ^= x; x = ROTL( x );
|
|
y ^= x; y ^= 0x63;
|
|
return y;
|
|
}
|
|
|
|
void gentables( void )
|
|
{ /* generate tables */
|
|
int i;
|
|
u8 y, b[4];
|
|
|
|
/* use 3 as primitive root to generate power and log tables */
|
|
|
|
ltab[0] = 0;
|
|
ptab[0] = 1; ltab[1] = 0;
|
|
ptab[1] = 3; ltab[3] = 1;
|
|
for ( i = 2; i < 256; i++ )
|
|
{
|
|
ptab[i] = ptab[i-1] ^ xtime( ptab[i-1] );
|
|
ltab[ptab[i]] = i;
|
|
}
|
|
|
|
/* affine transformation:- each bit is xored with itself shifted one bit */
|
|
|
|
fbsub[0] = 0x63;
|
|
rbsub[0x63] = 0;
|
|
for ( i = 1; i < 256; i++ )
|
|
{
|
|
y = ByteSub( ( u8 )i );
|
|
fbsub[i] = y; rbsub[y] = i;
|
|
}
|
|
|
|
for ( i = 0, y = 1; i < 30; i++ )
|
|
{
|
|
rco[i] = y;
|
|
y = xtime( y );
|
|
}
|
|
|
|
/* calculate forward and reverse tables */
|
|
for ( i = 0; i < 256; i++ )
|
|
{
|
|
y = fbsub[i];
|
|
b[3] = y ^ xtime( y ); b[2] = y;
|
|
b[1] = y; b[0] = xtime( y );
|
|
ftable[i] = pack( b );
|
|
|
|
y = rbsub[i];
|
|
b[3] = bmul( InCo[0], y ); b[2] = bmul( InCo[1], y );
|
|
b[1] = bmul( InCo[2], y ); b[0] = bmul( InCo[3], y );
|
|
rtable[i] = pack( b );
|
|
}
|
|
}
|
|
|
|
void gkey( int nb, int nk, char *key )
|
|
{ /* blocksize=32*nb bits. Key=32*nk bits */
|
|
/* currently nb,bk = 4, 6 or 8 */
|
|
/* key comes as 4*Nk bytes */
|
|
/* Key Scheduler. Create expanded encryption key */
|
|
int i, j, k, m, N;
|
|
int C1, C2, C3;
|
|
u32 CipherKey[8];
|
|
|
|
Nb = nb; Nk = nk;
|
|
|
|
/* Nr is number of rounds */
|
|
if ( Nb >= Nk ) Nr = 6 + Nb;
|
|
else Nr = 6 + Nk;
|
|
|
|
C1 = 1;
|
|
if ( Nb < 8 ) { C2 = 2; C3 = 3; }
|
|
else { C2 = 3; C3 = 4; }
|
|
|
|
/* pre-calculate forward and reverse increments */
|
|
for ( m = j = 0; j < nb; j++, m += 3 )
|
|
{
|
|
fi[m] = ( j + C1 ) % nb;
|
|
fi[m+1] = ( j + C2 ) % nb;
|
|
fi[m+2] = ( j + C3 ) % nb;
|
|
ri[m] = ( nb + j - C1 ) % nb;
|
|
ri[m+1] = ( nb + j - C2 ) % nb;
|
|
ri[m+2] = ( nb + j - C3 ) % nb;
|
|
}
|
|
|
|
N = Nb * ( Nr + 1 );
|
|
|
|
for ( i = j = 0; i < Nk; i++, j += 4 )
|
|
{
|
|
CipherKey[i] = pack( ( u8 * ) & key[j] );
|
|
}
|
|
for ( i = 0; i < Nk; i++ ) fkey[i] = CipherKey[i];
|
|
for ( j = Nk, k = 0; j < N; j += Nk, k++ )
|
|
{
|
|
fkey[j] = fkey[j-Nk] ^ SubByte( ROTL24( fkey[j-1] ) ) ^ rco[k];
|
|
if ( Nk <= 6 )
|
|
{
|
|
for ( i = 1; i < Nk && ( i + j ) < N; i++ )
|
|
fkey[i+j] = fkey[i+j-Nk] ^ fkey[i+j-1];
|
|
}
|
|
else
|
|
{
|
|
for ( i = 1; i < 4 && ( i + j ) < N; i++ )
|
|
fkey[i+j] = fkey[i+j-Nk] ^ fkey[i+j-1];
|
|
if ( ( j + 4 ) < N ) fkey[j+4] = fkey[j+4-Nk] ^ SubByte( fkey[j+3] );
|
|
for ( i = 5; i < Nk && ( i + j ) < N; i++ )
|
|
fkey[i+j] = fkey[i+j-Nk] ^ fkey[i+j-1];
|
|
}
|
|
|
|
}
|
|
|
|
/* now for the expanded decrypt key in reverse order */
|
|
|
|
for ( j = 0; j < Nb; j++ ) rkey[j+N-Nb] = fkey[j];
|
|
for ( i = Nb; i < N - Nb; i += Nb )
|
|
{
|
|
k = N - Nb - i;
|
|
for ( j = 0; j < Nb; j++ ) rkey[k+j] = InvMixCol( fkey[i+j] );
|
|
}
|
|
for ( j = N - Nb; j < N; j++ ) rkey[j-N+Nb] = fkey[j];
|
|
}
|
|
|
|
|
|
/* There is an obvious time/space trade-off possible here. *
|
|
* Instead of just one ftable[], I could have 4, the other *
|
|
* 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */
|
|
|
|
void encrypt( char *buff )
|
|
{
|
|
int i, j, k, m;
|
|
u32 a[8], b[8], *x, *y, *t;
|
|
|
|
for ( i = j = 0; i < Nb; i++, j += 4 )
|
|
{
|
|
a[i] = pack( ( u8 * ) & buff[j] );
|
|
a[i] ^= fkey[i];
|
|
}
|
|
k = Nb;
|
|
x = a; y = b;
|
|
|
|
/* State alternates between a and b */
|
|
for ( i = 1; i < Nr; i++ )
|
|
{ /* Nr is number of rounds. May be odd. */
|
|
|
|
/* if Nb is fixed - unroll this next
|
|
loop and hard-code in the values of fi[] */
|
|
|
|
for ( m = j = 0; j < Nb; j++, m += 3 )
|
|
{ /* deal with each 32-bit element of the State */
|
|
/* This is the time-critical bit */
|
|
y[j] = fkey[k++] ^ ftable[( u8 )x[j]] ^
|
|
ROTL8( ftable[( u8 )( x[fi[m]] >> 8 )] ) ^
|
|
ROTL16( ftable[( u8 )( x[fi[m+1]] >> 16 )] ) ^
|
|
ROTL24( ftable[x[fi[m+2]] >> 24] );
|
|
}
|
|
t = x; x = y; y = t; /* swap pointers */
|
|
}
|
|
|
|
/* Last Round - unroll if possible */
|
|
for ( m = j = 0; j < Nb; j++, m += 3 )
|
|
{
|
|
y[j] = fkey[k++] ^ ( u32 )fbsub[( u8 )x[j]] ^
|
|
ROTL8( ( u32 )fbsub[( u8 )( x[fi[m]] >> 8 )] ) ^
|
|
ROTL16( ( u32 )fbsub[( u8 )( x[fi[m+1]] >> 16 )] ) ^
|
|
ROTL24( ( u32 )fbsub[x[fi[m+2]] >> 24] );
|
|
}
|
|
for ( i = j = 0; i < Nb; i++, j += 4 )
|
|
{
|
|
unpack( y[i], ( u8 * )&buff[j] );
|
|
x[i] = y[i] = 0; /* clean up stack */
|
|
}
|
|
return;
|
|
}
|
|
|
|
void decrypt( char *buff )
|
|
{
|
|
int i, j, k, m;
|
|
u32 a[8], b[8], *x, *y, *t;
|
|
|
|
for ( i = j = 0; i < Nb; i++, j += 4 )
|
|
{
|
|
a[i] = pack( ( u8 * ) & buff[j] );
|
|
a[i] ^= rkey[i];
|
|
}
|
|
k = Nb;
|
|
x = a; y = b;
|
|
|
|
/* State alternates between a and b */
|
|
for ( i = 1; i < Nr; i++ )
|
|
{ /* Nr is number of rounds. May be odd. */
|
|
|
|
/* if Nb is fixed - unroll this next
|
|
loop and hard-code in the values of ri[] */
|
|
|
|
for ( m = j = 0; j < Nb; j++, m += 3 )
|
|
{ /* This is the time-critical bit */
|
|
y[j] = rkey[k++] ^ rtable[( u8 )x[j]] ^
|
|
ROTL8( rtable[( u8 )( x[ri[m]] >> 8 )] ) ^
|
|
ROTL16( rtable[( u8 )( x[ri[m+1]] >> 16 )] ) ^
|
|
ROTL24( rtable[x[ri[m+2]] >> 24] );
|
|
}
|
|
t = x; x = y; y = t; /* swap pointers */
|
|
}
|
|
|
|
/* Last Round - unroll if possible */
|
|
for ( m = j = 0; j < Nb; j++, m += 3 )
|
|
{
|
|
y[j] = rkey[k++] ^ ( u32 )rbsub[( u8 )x[j]] ^
|
|
ROTL8( ( u32 )rbsub[( u8 )( x[ri[m]] >> 8 )] ) ^
|
|
ROTL16( ( u32 )rbsub[( u8 )( x[ri[m+1]] >> 16 )] ) ^
|
|
ROTL24( ( u32 )rbsub[x[ri[m+2]] >> 24] );
|
|
}
|
|
for ( i = j = 0; i < Nb; i++, j += 4 )
|
|
{
|
|
unpack( y[i], ( u8 * )&buff[j] );
|
|
x[i] = y[i] = 0; /* clean up stack */
|
|
}
|
|
return;
|
|
}
|
|
|
|
void aes_set_key( u8 *key )
|
|
{
|
|
gentables();
|
|
gkey( 4, 4, ( char* ) key );
|
|
}
|
|
|
|
// CBC mode decryption
|
|
void aes_decrypt( u8 *iv, u8 *inbuf, u8 *outbuf, unsigned long long len )
|
|
{
|
|
u8 block[16];
|
|
unsigned int blockno = 0, i;
|
|
|
|
//printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
|
|
|
|
for ( blockno = 0; blockno <= ( len / sizeof( block ) ); blockno++ )
|
|
{
|
|
unsigned int fraction;
|
|
if ( blockno == ( len / sizeof( block ) ) ) // last block
|
|
{
|
|
fraction = len % sizeof( block );
|
|
if ( fraction == 0 ) break;
|
|
memset( block, 0, sizeof( block ) );
|
|
}
|
|
else fraction = 16;
|
|
|
|
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
|
|
memcpy( block, inbuf + blockno * sizeof( block ), fraction );
|
|
decrypt( ( char* )block );
|
|
u8 *ctext_ptr;
|
|
if ( blockno == 0 ) ctext_ptr = iv;
|
|
else ctext_ptr = inbuf + ( blockno - 1 ) * sizeof( block );
|
|
|
|
for ( i = 0; i < fraction; i++ )
|
|
outbuf[blockno * sizeof( block ) + i] =
|
|
ctext_ptr[i] ^ block[i];
|
|
// debug_printf("Block %d output: ", blockno);
|
|
// hexdump(outbuf + blockno*sizeof(block), 16);
|
|
}
|
|
}
|
|
|
|
// CBC mode encryption
|
|
void aes_encrypt( u8 *iv, u8 *inbuf, u8 *outbuf, unsigned long long len )
|
|
{
|
|
u8 block[16];
|
|
unsigned int blockno = 0, i;
|
|
|
|
// debug_printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
|
|
|
|
for ( blockno = 0; blockno <= ( len / sizeof( block ) ); blockno++ )
|
|
{
|
|
unsigned int fraction;
|
|
if ( blockno == ( len / sizeof( block ) ) ) // last block
|
|
{
|
|
fraction = len % sizeof( block );
|
|
if ( fraction == 0 ) break;
|
|
memset( block, 0, sizeof( block ) );
|
|
}
|
|
else fraction = 16;
|
|
|
|
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
|
|
memcpy( block, inbuf + blockno * sizeof( block ), fraction );
|
|
|
|
for ( i = 0; i < fraction; i++ )
|
|
block[i] = inbuf[blockno * sizeof( block ) + i] ^ iv[i];
|
|
|
|
encrypt( ( char* )block );
|
|
memcpy( iv, block, sizeof( block ) );
|
|
memcpy( outbuf + blockno * sizeof( block ), block, sizeof( block ) );
|
|
// debug_printf("Block %d output: ", blockno);
|
|
// hexdump(outbuf + blockno*sizeof(block), 16);
|
|
}
|
|
}
|
|
|