vbagx/source/vba/apu/Blip_Buffer.h

557 lines
18 KiB
C
Raw Normal View History

2008-10-18 06:49:04 +00:00
// Band-limited sound synthesis buffer
// Blip_Buffer 0.4.1
#ifndef BLIP_BUFFER_H
#define BLIP_BUFFER_H
// internal
#include <limits.h>
#if INT_MAX < 0x7FFFFFFF || LONG_MAX == 0x7FFFFFFF
typedef long blip_long;
typedef unsigned long blip_ulong;
#else
typedef int blip_long;
typedef unsigned blip_ulong;
#endif
// Time unit at source clock rate
typedef blip_long blip_time_t;
// Output samples are 16-bit signed, with a range of -32768 to 32767
typedef short blip_sample_t;
enum { blip_sample_max = 32767 };
struct blip_buffer_state_t;
class Blip_Buffer {
public:
typedef const char* blargg_err_t;
// Sets output sample rate and buffer length in milliseconds (1/1000 sec, defaults
// to 1/4 second) and clears buffer. If there isn't enough memory, leaves buffer
// untouched and returns "Out of memory", otherwise returns NULL.
blargg_err_t set_sample_rate( long samples_per_sec, int msec_length = 1000 / 4 );
// Sets number of source time units per second
void clock_rate( long clocks_per_sec );
// Ends current time frame of specified duration and makes its samples available
// (along with any still-unread samples) for reading with read_samples(). Begins
// a new time frame at the end of the current frame.
void end_frame( blip_time_t time );
2009-01-10 02:41:39 +00:00
// Reads at most 'max_samples' out of buffer into 'dest', removing them from
2008-10-18 06:49:04 +00:00
// the buffer. Returns number of samples actually read and removed. If stereo is
// true, increments 'dest' one extra time after writing each sample, to allow
// easy interleving of two channels into a stereo output buffer.
long read_samples( blip_sample_t* dest, long max_samples, int stereo = 0 );
// Additional features
// Removes all available samples and clear buffer to silence. If 'entire_buffer' is
// false, just clears out any samples waiting rather than the entire buffer.
void clear( int entire_buffer = 1 );
// Number of samples available for reading with read_samples()
long samples_avail() const;
// Removes 'count' samples from those waiting to be read
void remove_samples( long count );
// Sets frequency high-pass filter frequency, where higher values reduce bass more
void bass_freq( int frequency );
// Current output sample rate
long sample_rate() const;
// Length of buffer in milliseconds
int length() const;
// Number of source time units per second
long clock_rate() const;
// Experimental features
// Saves state, including high-pass filter and tails of last deltas.
// All samples must have been read from buffer before calling this.
void save_state( blip_buffer_state_t* out );
// Loads state. State must have been saved from Blip_Buffer with same
// settings during same run of program. States can NOT be stored on disk.
// Clears buffer before loading state.
void load_state( blip_buffer_state_t const& in );
// Number of samples delay from synthesis to samples read out
int output_latency() const;
// Counts number of clocks needed until 'count' samples will be available.
// If buffer can't even hold 'count' samples, returns number of clocks until
// buffer becomes full.
blip_time_t count_clocks( long count ) const;
// Number of raw samples that can be mixed within frame of specified duration.
long count_samples( blip_time_t duration ) const;
// Mixes in 'count' samples from 'buf_in'
void mix_samples( blip_sample_t const* buf_in, long count );
// Signals that sound has been added to buffer. Could be done automatically in
// Blip_Synth, but that would affect performance more, as you can arrange that
// this is called only once per time frame rather than for every delta.
void set_modified() { modified_ = this; }
// not documented yet
blip_ulong unsettled() const;
Blip_Buffer* clear_modified() { Blip_Buffer* b = modified_; modified_ = 0; return b; }
void remove_silence( long count );
typedef blip_ulong blip_resampled_time_t;
blip_resampled_time_t resampled_duration( int t ) const { return t * factor_; }
blip_resampled_time_t resampled_time( blip_time_t t ) const { return t * factor_ + offset_; }
blip_resampled_time_t clock_rate_factor( long clock_rate ) const;
public:
Blip_Buffer();
~Blip_Buffer();
// Deprecated
typedef blip_resampled_time_t resampled_time_t;
blargg_err_t sample_rate( long r ) { return set_sample_rate( r ); }
blargg_err_t sample_rate( long r, int msec ) { return set_sample_rate( r, msec ); }
private:
// noncopyable
Blip_Buffer( const Blip_Buffer& );
Blip_Buffer& operator = ( const Blip_Buffer& );
public:
typedef blip_long buf_t_;
blip_ulong factor_;
blip_resampled_time_t offset_;
buf_t_* buffer_;
blip_long buffer_size_;
blip_long reader_accum_;
int bass_shift_;
private:
long sample_rate_;
long clock_rate_;
int bass_freq_;
int length_;
Blip_Buffer* modified_; // non-zero = true (more optimal than using bool, heh)
friend class Blip_Reader;
};
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
// Number of bits in resample ratio fraction. Higher values give a more accurate ratio
// but reduce maximum buffer size.
#ifndef BLIP_BUFFER_ACCURACY
#define BLIP_BUFFER_ACCURACY 16
#endif
// Number bits in phase offset. Fewer than 6 bits (64 phase offsets) results in
// noticeable broadband noise when synthesizing high frequency square waves.
// Affects size of Blip_Synth objects since they store the waveform directly.
#ifndef BLIP_PHASE_BITS
#if BLIP_BUFFER_FAST
#define BLIP_PHASE_BITS 8
#else
#define BLIP_PHASE_BITS 6
#endif
#endif
// Internal
typedef blip_ulong blip_resampled_time_t;
int const blip_widest_impulse_ = 16;
int const blip_buffer_extra_ = blip_widest_impulse_ + 2;
int const blip_res = 1 << BLIP_PHASE_BITS;
class blip_eq_t;
class Blip_Synth_Fast_ {
public:
Blip_Buffer* buf;
int last_amp;
int delta_factor;
void volume_unit( double );
Blip_Synth_Fast_();
void treble_eq( blip_eq_t const& ) { }
};
class Blip_Synth_ {
public:
Blip_Buffer* buf;
int last_amp;
int delta_factor;
void volume_unit( double );
Blip_Synth_( short* impulses, int width );
void treble_eq( blip_eq_t const& );
private:
double volume_unit_;
short* const impulses;
int const width;
blip_long kernel_unit;
int impulses_size() const { return blip_res / 2 * width + 1; }
void adjust_impulse();
};
// Quality level, better = slower. In general, use blip_good_quality.
const int blip_med_quality = 8;
const int blip_good_quality = 12;
const int blip_high_quality = 16;
// Range specifies the greatest expected change in amplitude. Calculate it
// by finding the difference between the maximum and minimum expected
// amplitudes (max - min).
template<int quality,int range>
class Blip_Synth {
public:
// Sets overall volume of waveform
void volume( double v ) { impl.volume_unit( v * (1.0 / (range < 0 ? -range : range)) ); }
// Configures low-pass filter (see blip_buffer.txt)
void treble_eq( blip_eq_t const& eq ) { impl.treble_eq( eq ); }
// Gets/sets Blip_Buffer used for output
Blip_Buffer* output() const { return impl.buf; }
void output( Blip_Buffer* b ) { impl.buf = b; impl.last_amp = 0; }
// Updates amplitude of waveform at given time. Using this requires a separate
// Blip_Synth for each waveform.
void update( blip_time_t time, int amplitude );
// Low-level interface
// Adds an amplitude transition of specified delta, optionally into specified buffer
// rather than the one set with output(). Delta can be positive or negative.
// The actual change in amplitude is delta * (volume / range)
void offset( blip_time_t, int delta, Blip_Buffer* ) const;
void offset( blip_time_t t, int delta ) const { offset( t, delta, impl.buf ); }
// Works directly in terms of fractional output samples. Contact author for more info.
void offset_resampled( blip_resampled_time_t, int delta, Blip_Buffer* ) const;
// Same as offset(), except code is inlined for higher performance
void offset_inline( blip_time_t t, int delta, Blip_Buffer* buf ) const {
offset_resampled( t * buf->factor_ + buf->offset_, delta, buf );
}
void offset_inline( blip_time_t t, int delta ) const {
offset_resampled( t * impl.buf->factor_ + impl.buf->offset_, delta, impl.buf );
}
private:
#if BLIP_BUFFER_FAST
Blip_Synth_Fast_ impl;
#else
Blip_Synth_ impl;
typedef short imp_t;
imp_t impulses [blip_res * (quality / 2) + 1];
public:
Blip_Synth() : impl( impulses, quality ) { }
#endif
};
// Low-pass equalization parameters
class blip_eq_t {
public:
// Logarithmic rolloff to treble dB at half sampling rate. Negative values reduce
// treble, small positive values (0 to 5.0) increase treble.
blip_eq_t( double treble_db = 0 );
// See blip_buffer.txt
blip_eq_t( double treble, long rolloff_freq, long sample_rate, long cutoff_freq = 0 );
private:
double treble;
long rolloff_freq;
long sample_rate;
long cutoff_freq;
void generate( float* out, int count ) const;
friend class Blip_Synth_;
};
int const blip_sample_bits = 30;
// Dummy Blip_Buffer to direct sound output to, for easy muting without
// having to stop sound code.
class Silent_Blip_Buffer : public Blip_Buffer {
buf_t_ buf [blip_buffer_extra_ + 1];
public:
// The following cannot be used (an assertion will fail if attempted):
blargg_err_t set_sample_rate( long samples_per_sec, int msec_length );
blip_time_t count_clocks( long count ) const;
void mix_samples( blip_sample_t const* buf, long count );
Silent_Blip_Buffer();
};
#if __GNUC__ >= 3 || _MSC_VER >= 1100
#define BLIP_RESTRICT __restrict
#else
#define BLIP_RESTRICT
#endif
// Optimized reading from Blip_Buffer, for use in custom sample output
// Begins reading from buffer. Name should be unique to the current block.
#define BLIP_READER_BEGIN( name, blip_buffer ) \
const Blip_Buffer::buf_t_* BLIP_RESTRICT name##_reader_buf = (blip_buffer).buffer_;\
blip_long name##_reader_accum = (blip_buffer).reader_accum_
// Gets value to pass to BLIP_READER_NEXT()
#define BLIP_READER_BASS( blip_buffer ) ((blip_buffer).bass_shift_)
// Constant value to use instead of BLIP_READER_BASS(), for slightly more optimal
// code at the cost of having no bass control
int const blip_reader_default_bass = 9;
// Current sample
#define BLIP_READER_READ( name ) (name##_reader_accum >> (blip_sample_bits - 16))
// Current raw sample in full internal resolution
#define BLIP_READER_READ_RAW( name ) (name##_reader_accum)
// Advances to next sample
#define BLIP_READER_NEXT( name, bass ) \
(void) (name##_reader_accum += *name##_reader_buf++ - (name##_reader_accum >> (bass)))
// Ends reading samples from buffer. The number of samples read must now be removed
// using Blip_Buffer::remove_samples().
#define BLIP_READER_END( name, blip_buffer ) \
(void) ((blip_buffer).reader_accum_ = name##_reader_accum)
// experimental
#define BLIP_READER_ADJ_( name, offset ) (name##_reader_buf += offset)
blip_long const blip_reader_idx_factor = sizeof (Blip_Buffer::buf_t_);
#define BLIP_READER_NEXT_IDX_( name, bass, idx ) {\
name##_reader_accum -= name##_reader_accum >> (bass);\
name##_reader_accum += name##_reader_buf [(idx)];\
}
#define BLIP_READER_NEXT_RAW_IDX_( name, bass, idx ) {\
name##_reader_accum -= name##_reader_accum >> (bass);\
name##_reader_accum +=\
*(Blip_Buffer::buf_t_ const*) ((char const*) name##_reader_buf + (idx));\
}
// Compatibility with older version
const long blip_unscaled = 65535;
const int blip_low_quality = blip_med_quality;
const int blip_best_quality = blip_high_quality;
// Deprecated; use BLIP_READER macros as follows:
// Blip_Reader r; r.begin( buf ); -> BLIP_READER_BEGIN( r, buf );
// int bass = r.begin( buf ) -> BLIP_READER_BEGIN( r, buf ); int bass = BLIP_READER_BASS( buf );
// r.read() -> BLIP_READER_READ( r )
// r.read_raw() -> BLIP_READER_READ_RAW( r )
// r.next( bass ) -> BLIP_READER_NEXT( r, bass )
// r.next() -> BLIP_READER_NEXT( r, blip_reader_default_bass )
// r.end( buf ) -> BLIP_READER_END( r, buf )
class Blip_Reader {
public:
int begin( Blip_Buffer& );
blip_long read() const { return accum >> (blip_sample_bits - 16); }
blip_long read_raw() const { return accum; }
void next( int bass_shift = 9 ) { accum += *buf++ - (accum >> bass_shift); }
void end( Blip_Buffer& b ) { b.reader_accum_ = accum; }
private:
const Blip_Buffer::buf_t_* buf;
blip_long accum;
};
#if defined (_M_IX86) || defined (_M_IA64) || defined (__i486__) || \
defined (__x86_64__) || defined (__ia64__) || defined (__i386__)
#define BLIP_CLAMP_( in ) in < -0x8000 || 0x7FFF < in
#else
#define BLIP_CLAMP_( in ) (blip_sample_t) in != in
#endif
// Clamp sample to blip_sample_t range
#define BLIP_CLAMP( sample, out )\
{ if ( BLIP_CLAMP_( (sample) ) ) (out) = ((sample) >> 24) ^ 0x7FFF; }
struct blip_buffer_state_t
{
blip_resampled_time_t offset_;
blip_long reader_accum_;
blip_long buf [blip_buffer_extra_];
};
// End of public interface
#ifndef assert
#include <assert.h>
#endif
template<int quality,int range>
inline void Blip_Synth<quality,range>::offset_resampled( blip_resampled_time_t time,
int delta, Blip_Buffer* blip_buf ) const
{
// If this assertion fails, it means that an attempt was made to add a delta
// at a negative time or past the end of the buffer.
assert( (blip_long) (time >> BLIP_BUFFER_ACCURACY) < blip_buf->buffer_size_ );
delta *= impl.delta_factor;
blip_long* BLIP_RESTRICT buf = blip_buf->buffer_ + (time >> BLIP_BUFFER_ACCURACY);
int phase = (int) (time >> (BLIP_BUFFER_ACCURACY - BLIP_PHASE_BITS) & (blip_res - 1));
#if BLIP_BUFFER_FAST
blip_long left = buf [0] + delta;
// Kind of crappy, but doing shift after multiply results in overflow.
// Alternate way of delaying multiply by delta_factor results in worse
// sub-sample resolution.
blip_long right = (delta >> BLIP_PHASE_BITS) * phase;
left -= right;
right += buf [1];
buf [0] = left;
buf [1] = right;
#else
int const fwd = (blip_widest_impulse_ - quality) / 2;
int const rev = fwd + quality - 2;
int const mid = quality / 2 - 1;
imp_t const* BLIP_RESTRICT imp = impulses + blip_res - phase;
#if defined (_M_IX86) || defined (_M_IA64) || defined (__i486__) || \
defined (__x86_64__) || defined (__ia64__) || defined (__i386__)
// this straight forward version gave in better code on GCC for x86
#define ADD_IMP( out, in ) \
buf [out] += (blip_long) imp [blip_res * (in)] * delta
#define BLIP_FWD( i ) {\
ADD_IMP( fwd + i, i );\
ADD_IMP( fwd + 1 + i, i + 1 );\
}
#define BLIP_REV( r ) {\
ADD_IMP( rev - r, r + 1 );\
ADD_IMP( rev + 1 - r, r );\
}
BLIP_FWD( 0 )
if ( quality > 8 ) BLIP_FWD( 2 )
if ( quality > 12 ) BLIP_FWD( 4 )
{
ADD_IMP( fwd + mid - 1, mid - 1 );
ADD_IMP( fwd + mid , mid );
imp = impulses + phase;
}
if ( quality > 12 ) BLIP_REV( 6 )
if ( quality > 8 ) BLIP_REV( 4 )
BLIP_REV( 2 )
ADD_IMP( rev , 1 );
ADD_IMP( rev + 1, 0 );
#undef ADD_IMP
#else
// for RISC processors, help compiler by reading ahead of writes
#define BLIP_FWD( i ) {\
blip_long t0 = i0 * delta + buf [fwd + i];\
blip_long t1 = imp [blip_res * (i + 1)] * delta + buf [fwd + 1 + i];\
i0 = imp [blip_res * (i + 2)];\
buf [fwd + i] = t0;\
buf [fwd + 1 + i] = t1;\
}
#define BLIP_REV( r ) {\
blip_long t0 = i0 * delta + buf [rev - r];\
blip_long t1 = imp [blip_res * r] * delta + buf [rev + 1 - r];\
i0 = imp [blip_res * (r - 1)];\
buf [rev - r] = t0;\
buf [rev + 1 - r] = t1;\
}
blip_long i0 = *imp;
BLIP_FWD( 0 )
if ( quality > 8 ) BLIP_FWD( 2 )
if ( quality > 12 ) BLIP_FWD( 4 )
{
blip_long t0 = i0 * delta + buf [fwd + mid - 1];
blip_long t1 = imp [blip_res * mid] * delta + buf [fwd + mid ];
imp = impulses + phase;
i0 = imp [blip_res * mid];
buf [fwd + mid - 1] = t0;
buf [fwd + mid ] = t1;
}
if ( quality > 12 ) BLIP_REV( 6 )
if ( quality > 8 ) BLIP_REV( 4 )
BLIP_REV( 2 )
blip_long t0 = i0 * delta + buf [rev ];
blip_long t1 = *imp * delta + buf [rev + 1];
buf [rev ] = t0;
buf [rev + 1] = t1;
#endif
#endif
}
#undef BLIP_FWD
#undef BLIP_REV
template<int quality,int range>
#if BLIP_BUFFER_FAST
inline
#endif
void Blip_Synth<quality,range>::offset( blip_time_t t, int delta, Blip_Buffer* buf ) const
{
offset_resampled( t * buf->factor_ + buf->offset_, delta, buf );
}
template<int quality,int range>
#if BLIP_BUFFER_FAST
inline
#endif
void Blip_Synth<quality,range>::update( blip_time_t t, int amp )
{
int delta = amp - impl.last_amp;
impl.last_amp = amp;
offset_resampled( t * impl.buf->factor_ + impl.buf->offset_, delta, impl.buf );
}
inline blip_eq_t::blip_eq_t( double t ) :
treble( t ), rolloff_freq( 0 ), sample_rate( 44100 ), cutoff_freq( 0 ) { }
inline blip_eq_t::blip_eq_t( double t, long rf, long sr, long cf ) :
treble( t ), rolloff_freq( rf ), sample_rate( sr ), cutoff_freq( cf ) { }
inline int Blip_Buffer::length() const { return length_; }
inline long Blip_Buffer::samples_avail() const { return (long) (offset_ >> BLIP_BUFFER_ACCURACY); }
inline long Blip_Buffer::sample_rate() const { return sample_rate_; }
inline int Blip_Buffer::output_latency() const { return blip_widest_impulse_ / 2; }
inline long Blip_Buffer::clock_rate() const { return clock_rate_; }
inline void Blip_Buffer::clock_rate( long cps ) { factor_ = clock_rate_factor( clock_rate_ = cps ); }
inline int Blip_Reader::begin( Blip_Buffer& blip_buf )
{
buf = blip_buf.buffer_;
accum = blip_buf.reader_accum_;
return blip_buf.bass_shift_;
}
inline void Blip_Buffer::remove_silence( long count )
{
// fails if you try to remove more samples than available
assert( count <= samples_avail() );
offset_ -= (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY;
}
inline blip_ulong Blip_Buffer::unsettled() const
{
return reader_accum_ >> (blip_sample_bits - 16);
}
int const blip_max_length = 0;
int const blip_default_length = 250; // 1/4 second
#endif