vbagx/source/vba/thumb.h

2475 lines
63 KiB
C
Raw Normal View History

2008-09-14 20:40:26 +00:00
// -*- C++ -*-
// VisualBoyAdvance - Nintendo Gameboy/GameboyAdvance (TM) emulator.
// Copyright (C) 1999-2003 Forgotten
// Copyright (C) 2004 Forgotten and the VBA development team
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or(at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#ifdef C_CORE
#define NEG(i) ((i) >> 31)
#define POS(i) ((~(i)) >> 31)
#define ADDCARRY(a, b, c) \
C_FLAG = ((NEG(a) & NEG(b)) |\
(NEG(a) & POS(c)) |\
(NEG(b) & POS(c))) ? true : false;
#define ADDOVERFLOW(a, b, c) \
V_FLAG = ((NEG(a) & NEG(b) & POS(c)) |\
(POS(a) & POS(b) & NEG(c))) ? true : false;
#define SUBCARRY(a, b, c) \
C_FLAG = ((NEG(a) & POS(b)) |\
(NEG(a) & POS(c)) |\
(POS(b) & POS(c))) ? true : false;
#define SUBOVERFLOW(a, b, c)\
V_FLAG = ((NEG(a) & POS(b) & POS(c)) |\
(POS(a) & NEG(b) & NEG(c))) ? true : false;
#define ADD_RD_RS_RN \
{\
u32 lhs = reg[source].I;\
u32 rhs = value;\
u32 res = lhs + rhs;\
reg[dest].I = res;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
ADDCARRY(lhs, rhs, res);\
ADDOVERFLOW(lhs, rhs, res);\
}
#define ADD_RD_RS_O3 \
{\
u32 lhs = reg[source].I;\
u32 rhs = value;\
u32 res = lhs + rhs;\
reg[dest].I = res;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
ADDCARRY(lhs, rhs, res);\
ADDOVERFLOW(lhs, rhs, res);\
}
#define ADD_RN_O8(d) \
{\
u32 lhs = reg[(d)].I;\
u32 rhs = (opcode & 255);\
u32 res = lhs + rhs;\
reg[(d)].I = res;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
ADDCARRY(lhs, rhs, res);\
ADDOVERFLOW(lhs, rhs, res);\
}
#define CMN_RD_RS \
{\
u32 lhs = reg[dest].I;\
u32 rhs = value;\
u32 res = lhs + rhs;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
ADDCARRY(lhs, rhs, res);\
ADDOVERFLOW(lhs, rhs, res);\
}
#define ADC_RD_RS \
{\
u32 lhs = reg[dest].I;\
u32 rhs = value;\
u32 res = lhs + rhs + (u32)C_FLAG;\
reg[dest].I = res;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
ADDCARRY(lhs, rhs, res);\
ADDOVERFLOW(lhs, rhs, res);\
}
#define SUB_RD_RS_RN \
{\
u32 lhs = reg[source].I;\
u32 rhs = value;\
u32 res = lhs - rhs;\
reg[dest].I = res;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
SUBCARRY(lhs, rhs, res);\
SUBOVERFLOW(lhs, rhs, res);\
}
#define SUB_RD_RS_O3 \
{\
u32 lhs = reg[source].I;\
u32 rhs = value;\
u32 res = lhs - rhs;\
reg[dest].I = res;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
SUBCARRY(lhs, rhs, res);\
SUBOVERFLOW(lhs, rhs, res);\
}
#define SUB_RN_O8(d) \
{\
u32 lhs = reg[(d)].I;\
u32 rhs = (opcode & 255);\
u32 res = lhs - rhs;\
reg[(d)].I = res;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
SUBCARRY(lhs, rhs, res);\
SUBOVERFLOW(lhs, rhs, res);\
}
#define CMP_RN_O8(d) \
{\
u32 lhs = reg[(d)].I;\
u32 rhs = (opcode & 255);\
u32 res = lhs - rhs;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
SUBCARRY(lhs, rhs, res);\
SUBOVERFLOW(lhs, rhs, res);\
}
#define SBC_RD_RS \
{\
u32 lhs = reg[dest].I;\
u32 rhs = value;\
u32 res = lhs - rhs - !((u32)C_FLAG);\
reg[dest].I = res;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
SUBCARRY(lhs, rhs, res);\
SUBOVERFLOW(lhs, rhs, res);\
}
#define LSL_RD_RM_I5 \
{\
C_FLAG = (reg[source].I >> (32 - shift)) & 1 ? true : false;\
value = reg[source].I << shift;\
}
#define LSL_RD_RS \
{\
C_FLAG = (reg[dest].I >> (32 - value)) & 1 ? true : false;\
value = reg[dest].I << value;\
}
#define LSR_RD_RM_I5 \
{\
C_FLAG = (reg[source].I >> (shift - 1)) & 1 ? true : false;\
value = reg[source].I >> shift;\
}
#define LSR_RD_RS \
{\
C_FLAG = (reg[dest].I >> (value - 1)) & 1 ? true : false;\
value = reg[dest].I >> value;\
}
#define ASR_RD_RM_I5 \
{\
C_FLAG = ((s32)reg[source].I >> (int)(shift - 1)) & 1 ? true : false;\
value = (s32)reg[source].I >> (int)shift;\
}
#define ASR_RD_RS \
{\
C_FLAG = ((s32)reg[dest].I >> (int)(value - 1)) & 1 ? true : false;\
value = (s32)reg[dest].I >> (int)value;\
}
#define ROR_RD_RS \
{\
C_FLAG = (reg[dest].I >> (value - 1)) & 1 ? true : false;\
value = ((reg[dest].I << (32 - value)) |\
(reg[dest].I >> value));\
}
#define NEG_RD_RS \
{\
u32 lhs = reg[source].I;\
u32 rhs = 0;\
u32 res = rhs - lhs;\
reg[dest].I = res;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
SUBCARRY(rhs, lhs, res);\
SUBOVERFLOW(rhs, lhs, res);\
}
#define CMP_RD_RS \
{\
u32 lhs = reg[dest].I;\
u32 rhs = value;\
u32 res = lhs - rhs;\
Z_FLAG = (res == 0) ? true : false;\
N_FLAG = NEG(res) ? true : false;\
SUBCARRY(lhs, rhs, res);\
SUBOVERFLOW(lhs, rhs, res);\
}
#else
#ifdef __GNUC__
#ifdef __POWERPC__
#define ADD_RD_RS_RN \
{ \
register int Flags; \
register int Result; \
asm volatile("addco. %0, %2, %3\n" \
"mcrxr cr1\n" \
"mfcr %1\n" \
: "=r" (Result), \
"=r" (Flags) \
: "r" (reg[source].I), \
"r" (value) \
); \
reg[dest].I = Result; \
Z_FLAG = (Flags >> 29) & 1; \
N_FLAG = (Flags >> 31) & 1; \
C_FLAG = (Flags >> 25) & 1; \
V_FLAG = (Flags >> 26) & 1; \
}
#define ADD_RD_RS_O3 ADD_RD_RS_RN
#define ADD_RN_O8(d) \
{\
register int Flags; \
register int Result; \
asm volatile("addco. %0, %2, %3\n" \
"mcrxr cr1\n" \
"mfcr %1\n" \
: "=r" (Result), \
"=r" (Flags) \
: "r" (reg[(d)].I), \
"r" (opcode & 255) \
); \
reg[(d)].I = Result; \
Z_FLAG = (Flags >> 29) & 1; \
N_FLAG = (Flags >> 31) & 1; \
C_FLAG = (Flags >> 25) & 1; \
V_FLAG = (Flags >> 26) & 1; \
}
#define CMN_RD_RS \
{\
register int Flags; \
register int Result; \
asm volatile("addco. %0, %2, %3\n" \
"mcrxr cr1\n" \
"mfcr %1\n" \
: "=r" (Result), \
"=r" (Flags) \
: "r" (reg[dest].I), \
"r" (value) \
); \
Z_FLAG = (Flags >> 29) & 1; \
N_FLAG = (Flags >> 31) & 1; \
C_FLAG = (Flags >> 25) & 1; \
V_FLAG = (Flags >> 26) & 1; \
}
#define ADC_RD_RS \
{\
register int Flags; \
register int Result; \
asm volatile("mtspr xer, %4\n" \
"addeo. %0, %2, %3\n" \
"mcrxr cr1\n" \
"mfcr %1\n" \
: "=r" (Result), \
"=r" (Flags) \
: "r" (reg[dest].I), \
"r" (value), \
"r" (C_FLAG << 29) \
); \
reg[dest].I = Result; \
Z_FLAG = (Flags >> 29) & 1; \
N_FLAG = (Flags >> 31) & 1; \
C_FLAG = (Flags >> 25) & 1; \
V_FLAG = (Flags >> 26) & 1; \
}
#define SUB_RD_RS_RN \
{\
register int Flags; \
register int Result; \
asm volatile("subco. %0, %2, %3\n" \
"mcrxr cr1\n" \
"mfcr %1\n" \
: "=r" (Result), \
"=r" (Flags) \
: "r" (reg[source].I), \
"r" (value) \
); \
reg[dest].I = Result; \
Z_FLAG = (Flags >> 29) & 1; \
N_FLAG = (Flags >> 31) & 1; \
C_FLAG = (Flags >> 25) & 1; \
V_FLAG = (Flags >> 26) & 1; \
}
#define SUB_RD_RS_O3 SUB_RD_RS_RN
#define SUB_RN_O8(d) \
{\
register int Flags; \
register int Result; \
asm volatile("subco. %0, %2, %3\n" \
"mcrxr cr1\n" \
"mfcr %1\n" \
: "=r" (Result), \
"=r" (Flags) \
: "r" (reg[(d)].I), \
"r" (opcode & 255) \
); \
reg[(d)].I = Result; \
Z_FLAG = (Flags >> 29) & 1; \
N_FLAG = (Flags >> 31) & 1; \
C_FLAG = (Flags >> 25) & 1; \
V_FLAG = (Flags >> 26) & 1; \
}
#define CMP_RN_O8(d) \
{\
register int Flags; \
register int Result; \
asm volatile("subco. %0, %2, %3\n" \
"mcrxr cr1\n" \
"mfcr %1\n" \
: "=r" (Result), \
"=r" (Flags) \
: "r" (reg[(d)].I), \
"r" (opcode & 255) \
); \
Z_FLAG = (Flags >> 29) & 1; \
N_FLAG = (Flags >> 31) & 1; \
C_FLAG = (Flags >> 25) & 1; \
V_FLAG = (Flags >> 26) & 1; \
}
#define SBC_RD_RS \
{\
register int Flags; \
register int Result; \
asm volatile("mtspr xer, %4\n" \
"subfeo. %0, %3, %2\n" \
"mcrxr cr1\n" \
"mfcr %1\n" \
: "=r" (Result), \
"=r" (Flags) \
: "r" (reg[dest].I), \
"r" (value), \
"r" (C_FLAG << 29) \
); \
reg[dest].I = Result; \
Z_FLAG = (Flags >> 29) & 1; \
N_FLAG = (Flags >> 31) & 1; \
C_FLAG = (Flags >> 25) & 1; \
V_FLAG = (Flags >> 26) & 1; \
}
#define LSL_RD_RM_I5 \
{\
C_FLAG = (reg[source].I >> (32 - shift)) & 1 ? true : false;\
value = reg[source].I << shift;\
}
#define LSL_RD_RS \
{\
C_FLAG = (reg[dest].I >> (32 - value)) & 1 ? true : false;\
value = reg[dest].I << value;\
}
#define LSR_RD_RM_I5 \
{\
C_FLAG = (reg[source].I >> (shift - 1)) & 1 ? true : false;\
value = reg[source].I >> shift;\
}
#define LSR_RD_RS \
{\
C_FLAG = (reg[dest].I >> (value - 1)) & 1 ? true : false;\
value = reg[dest].I >> value;\
}
#define ASR_RD_RM_I5 \
{\
C_FLAG = ((s32)reg[source].I >> (int)(shift - 1)) & 1 ? true : false;\
value = (s32)reg[source].I >> (int)shift;\
}
#define ASR_RD_RS \
{\
C_FLAG = ((s32)reg[dest].I >> (int)(value - 1)) & 1 ? true : false;\
value = (s32)reg[dest].I >> (int)value;\
}
#define ROR_RD_RS \
{\
C_FLAG = (reg[dest].I >> (value - 1)) & 1 ? true : false;\
value = ((reg[dest].I << (32 - value)) |\
(reg[dest].I >> value));\
}
#define NEG_RD_RS \
{\
register int Flags; \
register int Result; \
asm volatile("subfco. %0, %2, %3\n" \
"mcrxr cr1\n" \
"mfcr %1\n" \
: "=r" (Result), \
"=r" (Flags) \
: "r" (reg[source].I), \
"r" (0) \
); \
reg[dest].I = Result; \
Z_FLAG = (Flags >> 29) & 1; \
N_FLAG = (Flags >> 31) & 1; \
C_FLAG = (Flags >> 25) & 1; \
V_FLAG = (Flags >> 26) & 1; \
}
#define CMP_RD_RS \
{\
register int Flags; \
register int Result; \
asm volatile("subco. %0, %2, %3\n" \
"mcrxr cr1\n" \
"mfcr %1\n" \
: "=r" (Result), \
"=r" (Flags) \
: "r" (reg[dest].I), \
"r" (value) \
); \
Z_FLAG = (Flags >> 29) & 1; \
N_FLAG = (Flags >> 31) & 1; \
C_FLAG = (Flags >> 25) & 1; \
V_FLAG = (Flags >> 26) & 1; \
}
#else
#define ADD_RD_RS_RN \
asm ("add %1, %%ebx;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setcb C_FLAG;"\
"setob V_FLAG;"\
: "=b" (reg[dest].I)\
: "r" (value), "b" (reg[source].I));
#define ADD_RD_RS_O3 \
asm ("add %1, %%ebx;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setcb C_FLAG;"\
"setob V_FLAG;"\
: "=b" (reg[dest].I)\
: "r" (value), "b" (reg[source].I));
#define ADD_RN_O8(d) \
asm ("add %1, %%ebx;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setcb C_FLAG;"\
"setob V_FLAG;"\
: "=b" (reg[(d)].I)\
: "r" (opcode & 255), "b" (reg[(d)].I));
#define CMN_RD_RS \
asm ("add %0, %1;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setcb C_FLAG;"\
"setob V_FLAG;"\
: \
: "r" (value), "r" (reg[dest].I):"1");
#define ADC_RD_RS \
asm ("bt $0, C_FLAG;"\
"adc %1, %%ebx;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setcb C_FLAG;"\
"setob V_FLAG;"\
: "=b" (reg[dest].I)\
: "r" (value), "b" (reg[dest].I));
#define SUB_RD_RS_RN \
asm ("sub %1, %%ebx;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setncb C_FLAG;"\
"setob V_FLAG;"\
: "=b" (reg[dest].I)\
: "r" (value), "b" (reg[source].I));
#define SUB_RD_RS_O3 \
asm ("sub %1, %%ebx;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setncb C_FLAG;"\
"setob V_FLAG;"\
: "=b" (reg[dest].I)\
: "r" (value), "b" (reg[source].I));
#define SUB_RN_O8(d) \
asm ("sub %1, %%ebx;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setncb C_FLAG;"\
"setob V_FLAG;"\
: "=b" (reg[(d)].I)\
: "r" (opcode & 255), "b" (reg[(d)].I));
#define CMP_RN_O8(d) \
asm ("sub %0, %1;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setncb C_FLAG;"\
"setob V_FLAG;"\
: \
: "r" (opcode & 255), "r" (reg[(d)].I) : "1");
#define SBC_RD_RS \
asm volatile ("bt $0, C_FLAG;"\
"cmc;"\
"sbb %1, %%ebx;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setncb C_FLAG;"\
"setob V_FLAG;"\
: "=b" (reg[dest].I)\
: "r" (value), "b" (reg[dest].I) : "cc", "memory");
#define LSL_RD_RM_I5 \
asm ("shl %%cl, %%eax;"\
"setcb C_FLAG;"\
: "=a" (value)\
: "a" (reg[source].I), "c" (shift));
#define LSL_RD_RS \
asm ("shl %%cl, %%eax;"\
"setcb C_FLAG;"\
: "=a" (value)\
: "a" (reg[dest].I), "c" (value));
#define LSR_RD_RM_I5 \
asm ("shr %%cl, %%eax;"\
"setcb C_FLAG;"\
: "=a" (value)\
: "a" (reg[source].I), "c" (shift));
#define LSR_RD_RS \
asm ("shr %%cl, %%eax;"\
"setcb C_FLAG;"\
: "=a" (value)\
: "a" (reg[dest].I), "c" (value));
#define ASR_RD_RM_I5 \
asm ("sar %%cl, %%eax;"\
"setcb C_FLAG;"\
: "=a" (value)\
: "a" (reg[source].I), "c" (shift));
#define ASR_RD_RS \
asm ("sar %%cl, %%eax;"\
"setcb C_FLAG;"\
: "=a" (value)\
: "a" (reg[dest].I), "c" (value));
#define ROR_RD_RS \
asm ("ror %%cl, %%eax;"\
"setcb C_FLAG;"\
: "=a" (value)\
: "a" (reg[dest].I), "c" (value));
#define NEG_RD_RS \
asm ("neg %%ebx;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setncb C_FLAG;"\
"setob V_FLAG;"\
: "=b" (reg[dest].I)\
: "b" (reg[source].I));
#define CMP_RD_RS \
asm ("sub %0, %1;"\
"setsb N_FLAG;"\
"setzb Z_FLAG;"\
"setncb C_FLAG;"\
"setob V_FLAG;"\
: \
: "r" (value), "r" (reg[dest].I):"1");
#endif
#else
#define ADD_RD_RS_RN \
{\
__asm mov eax, source\
__asm mov ebx, dword ptr [OFFSET reg+4*eax]\
__asm add ebx, value\
__asm mov eax, dest\
__asm mov dword ptr [OFFSET reg+4*eax], ebx\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#define ADD_RD_RS_O3 \
{\
__asm mov eax, source\
__asm mov ebx, dword ptr [OFFSET reg+4*eax]\
__asm add ebx, value\
__asm mov eax, dest\
__asm mov dword ptr [OFFSET reg+4*eax], ebx\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#define ADD_RN_O8(d) \
{\
__asm mov ebx, opcode\
__asm and ebx, 255\
__asm add dword ptr [OFFSET reg+4*(d)], ebx\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#define CMN_RD_RS \
{\
__asm mov eax, dest\
__asm mov ebx, dword ptr [OFFSET reg+4*eax]\
__asm add ebx, value\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#define ADC_RD_RS \
{\
__asm mov ebx, dest\
__asm mov ebx, dword ptr [OFFSET reg+4*ebx]\
__asm bt word ptr C_FLAG, 0\
__asm adc ebx, value\
__asm mov eax, dest\
__asm mov dword ptr [OFFSET reg+4*eax], ebx\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#define SUB_RD_RS_RN \
{\
__asm mov eax, source\
__asm mov ebx, dword ptr [OFFSET reg+4*eax]\
__asm sub ebx, value\
__asm mov eax, dest\
__asm mov dword ptr [OFFSET reg+4*eax], ebx\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setnc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#define SUB_RD_RS_O3 \
{\
__asm mov eax, source\
__asm mov ebx, dword ptr [OFFSET reg+4*eax]\
__asm sub ebx, value\
__asm mov eax, dest\
__asm mov dword ptr [OFFSET reg+4*eax], ebx\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setnc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#define SUB_RN_O8(d) \
{\
__asm mov ebx, opcode\
__asm and ebx, 255\
__asm sub dword ptr [OFFSET reg + 4*(d)], ebx\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setnc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#define CMP_RN_O8(d) \
{\
__asm mov eax, dword ptr [OFFSET reg+4*(d)]\
__asm mov ebx, opcode\
__asm and ebx, 255\
__asm sub eax, ebx\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setnc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#define SBC_RD_RS \
{\
__asm mov ebx, dest\
__asm mov ebx, dword ptr [OFFSET reg + 4*ebx]\
__asm mov eax, value\
__asm bt word ptr C_FLAG, 0\
__asm cmc\
__asm sbb ebx, eax\
__asm mov eax, dest\
__asm mov dword ptr [OFFSET reg + 4*eax], ebx\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setnc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#define LSL_RD_RM_I5 \
{\
__asm mov eax, source\
__asm mov eax, dword ptr [OFFSET reg + 4 * eax]\
__asm mov cl, byte ptr shift\
__asm shl eax, cl\
__asm mov value, eax\
__asm setc byte ptr C_FLAG\
}
#define LSL_RD_RS \
{\
__asm mov eax, dest\
__asm mov eax, dword ptr [OFFSET reg + 4 * eax]\
__asm mov cl, byte ptr value\
__asm shl eax, cl\
__asm mov value, eax\
__asm setc byte ptr C_FLAG\
}
#define LSR_RD_RM_I5 \
{\
__asm mov eax, source\
__asm mov eax, dword ptr [OFFSET reg + 4 * eax]\
__asm mov cl, byte ptr shift\
__asm shr eax, cl\
__asm mov value, eax\
__asm setc byte ptr C_FLAG\
}
#define LSR_RD_RS \
{\
__asm mov eax, dest\
__asm mov eax, dword ptr [OFFSET reg + 4 * eax]\
__asm mov cl, byte ptr value\
__asm shr eax, cl\
__asm mov value, eax\
__asm setc byte ptr C_FLAG\
}
#define ASR_RD_RM_I5 \
{\
__asm mov eax, source\
__asm mov eax, dword ptr [OFFSET reg + 4*eax]\
__asm mov cl, byte ptr shift\
__asm sar eax, cl\
__asm mov value, eax\
__asm setc byte ptr C_FLAG\
}
#define ASR_RD_RS \
{\
__asm mov eax, dest\
__asm mov eax, dword ptr [OFFSET reg + 4*eax]\
__asm mov cl, byte ptr value\
__asm sar eax, cl\
__asm mov value, eax\
__asm setc byte ptr C_FLAG\
}
#define ROR_RD_RS \
{\
__asm mov eax, dest\
__asm mov eax, dword ptr [OFFSET reg + 4*eax]\
__asm mov cl, byte ptr value\
__asm ror eax, cl\
__asm mov value, eax\
__asm setc byte ptr C_FLAG\
}
#define NEG_RD_RS \
{\
__asm mov ebx, source\
__asm mov ebx, dword ptr [OFFSET reg+4*ebx]\
__asm neg ebx\
__asm mov eax, dest\
__asm mov dword ptr [OFFSET reg+4*eax],ebx\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setnc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#define CMP_RD_RS \
{\
__asm mov eax, dest\
__asm mov ebx, dword ptr [OFFSET reg+4*eax]\
__asm sub ebx, value\
__asm sets byte ptr N_FLAG\
__asm setz byte ptr Z_FLAG\
__asm setnc byte ptr C_FLAG\
__asm seto byte ptr V_FLAG\
}
#endif
#endif
u32 opcode = CPUReadHalfWordQuick(armNextPC);
clockTicks = thumbCycles[opcode >> 8] + memoryWaitFetch[(armNextPC >> 24) & 15];
#ifndef FINAL_VERSION
if(armNextPC == stop) {
armNextPC = armNextPC++;
}
#endif
armNextPC = reg[15].I;
reg[15].I += 2;
switch(opcode >> 8) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
{
// LSL Rd, Rm, #Imm 5
int dest = opcode & 0x07;
int source = (opcode >> 3) & 0x07;
int shift = (opcode >> 6) & 0x1f;
u32 value;
if(shift) {
LSL_RD_RM_I5;
} else {
value = reg[source].I;
}
reg[dest].I = value;
// C_FLAG set above
N_FLAG = (value & 0x80000000 ? true : false);
Z_FLAG = (value ? false : true);
}
break;
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0c:
case 0x0d:
case 0x0e:
case 0x0f:
{
// LSR Rd, Rm, #Imm 5
int dest = opcode & 0x07;
int source = (opcode >> 3) & 0x07;
int shift = (opcode >> 6) & 0x1f;
u32 value;
if(shift) {
LSR_RD_RM_I5;
} else {
C_FLAG = reg[source].I & 0x80000000 ? true : false;
value = 0;
}
reg[dest].I = value;
// C_FLAG set above
N_FLAG = (value & 0x80000000 ? true : false);
Z_FLAG = (value ? false : true);
}
break;
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
{
// ASR Rd, Rm, #Imm 5
int dest = opcode & 0x07;
int source = (opcode >> 3) & 0x07;
int shift = (opcode >> 6) & 0x1f;
u32 value;
if(shift) {
ASR_RD_RM_I5;
} else {
if(reg[source].I & 0x80000000) {
value = 0xFFFFFFFF;
C_FLAG = true;
} else {
value = 0;
C_FLAG = false;
}
}
reg[dest].I = value;
// C_FLAG set above
N_FLAG = (value & 0x80000000 ? true : false);
Z_FLAG = (value ? false :true);
}
break;
case 0x18:
case 0x19:
{
// ADD Rd, Rs, Rn
int dest = opcode & 0x07;
int source = (opcode >> 3) & 0x07;
u32 value = reg[(opcode>>6)& 0x07].I;
ADD_RD_RS_RN;
}
break;
case 0x1a:
case 0x1b:
{
// SUB Rd, Rs, Rn
int dest = opcode & 0x07;
int source = (opcode >> 3) & 0x07;
u32 value = reg[(opcode>>6)& 0x07].I;
SUB_RD_RS_RN;
}
break;
case 0x1c:
case 0x1d:
{
// ADD Rd, Rs, #Offset3
int dest = opcode & 0x07;
int source = (opcode >> 3) & 0x07;
u32 value = (opcode >> 6) & 7;
ADD_RD_RS_O3;
}
break;
case 0x1e:
case 0x1f:
{
// SUB Rd, Rs, #Offset3
int dest = opcode & 0x07;
int source = (opcode >> 3) & 0x07;
u32 value = (opcode >> 6) & 7;
SUB_RD_RS_O3;
}
break;
case 0x20:
// MOV R0, #Offset8
reg[0].I = opcode & 255;
N_FLAG = false;
Z_FLAG = (reg[0].I ? false : true);
break;
case 0x21:
// MOV R1, #Offset8
reg[1].I = opcode & 255;
N_FLAG = false;
Z_FLAG = (reg[1].I ? false : true);
break;
case 0x22:
// MOV R2, #Offset8
reg[2].I = opcode & 255;
N_FLAG = false;
Z_FLAG = (reg[2].I ? false : true);
break;
case 0x23:
// MOV R3, #Offset8
reg[3].I = opcode & 255;
N_FLAG = false;
Z_FLAG = (reg[3].I ? false : true);
break;
case 0x24:
// MOV R4, #Offset8
reg[4].I = opcode & 255;
N_FLAG = false;
Z_FLAG = (reg[4].I ? false : true);
break;
case 0x25:
// MOV R5, #Offset8
reg[5].I = opcode & 255;
N_FLAG = false;
Z_FLAG = (reg[5].I ? false : true);
break;
case 0x26:
// MOV R6, #Offset8
reg[6].I = opcode & 255;
N_FLAG = false;
Z_FLAG = (reg[6].I ? false : true);
break;
case 0x27:
// MOV R7, #Offset8
reg[7].I = opcode & 255;
N_FLAG = false;
Z_FLAG = (reg[7].I ? false : true);
break;
case 0x28:
// CMP R0, #Offset8
CMP_RN_O8(0);
break;
case 0x29:
// CMP R1, #Offset8
CMP_RN_O8(1);
break;
case 0x2a:
// CMP R2, #Offset8
CMP_RN_O8(2);
break;
case 0x2b:
// CMP R3, #Offset8
CMP_RN_O8(3);
break;
case 0x2c:
// CMP R4, #Offset8
CMP_RN_O8(4);
break;
case 0x2d:
// CMP R5, #Offset8
CMP_RN_O8(5);
break;
case 0x2e:
// CMP R6, #Offset8
CMP_RN_O8(6);
break;
case 0x2f:
// CMP R7, #Offset8
CMP_RN_O8(7);
break;
case 0x30:
// ADD R0,#Offset8
ADD_RN_O8(0);
break;
case 0x31:
// ADD R1,#Offset8
ADD_RN_O8(1);
break;
case 0x32:
// ADD R2,#Offset8
ADD_RN_O8(2);
break;
case 0x33:
// ADD R3,#Offset8
ADD_RN_O8(3);
break;
case 0x34:
// ADD R4,#Offset8
ADD_RN_O8(4);
break;
case 0x35:
// ADD R5,#Offset8
ADD_RN_O8(5);
break;
case 0x36:
// ADD R6,#Offset8
ADD_RN_O8(6);
break;
case 0x37:
// ADD R7,#Offset8
ADD_RN_O8(7);
break;
case 0x38:
// SUB R0,#Offset8
SUB_RN_O8(0);
break;
case 0x39:
// SUB R1,#Offset8
SUB_RN_O8(1);
break;
case 0x3a:
// SUB R2,#Offset8
SUB_RN_O8(2);
break;
case 0x3b:
// SUB R3,#Offset8
SUB_RN_O8(3);
break;
case 0x3c:
// SUB R4,#Offset8
SUB_RN_O8(4);
break;
case 0x3d:
// SUB R5,#Offset8
SUB_RN_O8(5);
break;
case 0x3e:
// SUB R6,#Offset8
SUB_RN_O8(6);
break;
case 0x3f:
// SUB R7,#Offset8
SUB_RN_O8(7);
break;
case 0x40:
switch((opcode >> 6) & 3) {
case 0x00:
{
// AND Rd, Rs
int dest = opcode & 7;
reg[dest].I &= reg[(opcode >> 3)&7].I;
N_FLAG = reg[dest].I & 0x80000000 ? true : false;
Z_FLAG = reg[dest].I ? false : true;
#ifdef BKPT_SUPPORT
#define THUMB_CONSOLE_OUTPUT(a,b) \
if((opcode == 0x4000) && (reg[0].I == 0xC0DED00D)) {\
extern void (*dbgOutput)(char *, u32);\
dbgOutput((a), (b));\
}
#else
#define THUMB_CONSOLE_OUTPUT(a,b)
#endif
THUMB_CONSOLE_OUTPUT(NULL, reg[2].I);
}
break;
case 0x01:
// EOR Rd, Rs
{
int dest = opcode & 7;
reg[dest].I ^= reg[(opcode >> 3)&7].I;
N_FLAG = reg[dest].I & 0x80000000 ? true : false;
Z_FLAG = reg[dest].I ? false : true;
}
break;
case 0x02:
// LSL Rd, Rs
{
int dest = opcode & 7;
u32 value = reg[(opcode >> 3)&7].B.B0;
if(value) {
if(value == 32) {
value = 0;
C_FLAG = (reg[dest].I & 1 ? true : false);
} else if(value < 32) {
LSL_RD_RS;
} else {
value = 0;
C_FLAG = false;
}
reg[dest].I = value;
}
N_FLAG = reg[dest].I & 0x80000000 ? true : false;
Z_FLAG = reg[dest].I ? false : true;
clockTicks++;
}
break;
case 0x03:
{
// LSR Rd, Rs
int dest = opcode & 7;
u32 value = reg[(opcode >> 3)&7].B.B0;
if(value) {
if(value == 32) {
value = 0;
C_FLAG = (reg[dest].I & 0x80000000 ? true : false);
} else if(value < 32) {
LSR_RD_RS;
} else {
value = 0;
C_FLAG = false;
}
reg[dest].I = value;
}
N_FLAG = reg[dest].I & 0x80000000 ? true : false;
Z_FLAG = reg[dest].I ? false : true;
clockTicks++;
}
break;
}
break;
case 0x41:
switch((opcode >> 6) & 3) {
case 0x00:
{
// ASR Rd, Rs
int dest = opcode & 7;
u32 value = reg[(opcode >> 3)&7].B.B0;
// ASR
if(value) {
if(value < 32) {
ASR_RD_RS;
reg[dest].I = value;
} else {
if(reg[dest].I & 0x80000000){
reg[dest].I = 0xFFFFFFFF;
C_FLAG = true;
} else {
reg[dest].I = 0x00000000;
C_FLAG = false;
}
}
}
N_FLAG = reg[dest].I & 0x80000000 ? true : false;
Z_FLAG = reg[dest].I ? false : true;
clockTicks++;
}
break;
case 0x01:
{
// ADC Rd, Rs
int dest = opcode & 0x07;
u32 value = reg[(opcode >> 3)&7].I;
// ADC
ADC_RD_RS;
}
break;
case 0x02:
{
// SBC Rd, Rs
int dest = opcode & 0x07;
u32 value = reg[(opcode >> 3)&7].I;
// SBC
SBC_RD_RS;
}
break;
case 0x03:
// ROR Rd, Rs
{
int dest = opcode & 7;
u32 value = reg[(opcode >> 3)&7].B.B0;
if(value) {
value = value & 0x1f;
if(value == 0) {
C_FLAG = (reg[dest].I & 0x80000000 ? true : false);
} else {
ROR_RD_RS;
reg[dest].I = value;
}
}
clockTicks++;
N_FLAG = reg[dest].I & 0x80000000 ? true : false;
Z_FLAG = reg[dest].I ? false : true;
}
break;
}
break;
case 0x42:
switch((opcode >> 6) & 3) {
case 0x00:
{
// TST Rd, Rs
u32 value = reg[opcode & 7].I & reg[(opcode >> 3) & 7].I;
N_FLAG = value & 0x80000000 ? true : false;
Z_FLAG = value ? false : true;
}
break;
case 0x01:
{
// NEG Rd, Rs
int dest = opcode & 7;
int source = (opcode >> 3) & 7;
NEG_RD_RS;
}
break;
case 0x02:
{
// CMP Rd, Rs
int dest = opcode & 7;
u32 value = reg[(opcode >> 3)&7].I;
CMP_RD_RS;
}
break;
case 0x03:
{
// CMN Rd, Rs
int dest = opcode & 7;
u32 value = reg[(opcode >> 3)&7].I;
// CMN
CMN_RD_RS;
}
break;
}
break;
case 0x43:
switch((opcode >> 6) & 3) {
case 0x00:
{
// ORR Rd, Rs
int dest = opcode & 7;
reg[dest].I |= reg[(opcode >> 3) & 7].I;
Z_FLAG = reg[dest].I ? false : true;
N_FLAG = reg[dest].I & 0x80000000 ? true : false;
}
break;
case 0x01:
{
// MUL Rd, Rs
int dest = opcode & 7;
u32 rm = reg[(opcode >> 3) & 7].I;
reg[dest].I = reg[dest].I * rm;
if (((s32)rm) < 0)
rm = ~rm;
if ((rm & 0xFFFFFF00) == 0)
clockTicks += 1;
else if ((rm & 0xFFFF0000) == 0)
clockTicks += 2;
else if ((rm & 0xFF000000) == 0)
clockTicks += 3;
else
clockTicks += 4;
Z_FLAG = reg[dest].I ? false : true;
N_FLAG = reg[dest].I & 0x80000000 ? true : false;
}
break;
case 0x02:
{
// BIC Rd, Rs
int dest = opcode & 7;
reg[dest].I &= (~reg[(opcode >> 3) & 7].I);
Z_FLAG = reg[dest].I ? false : true;
N_FLAG = reg[dest].I & 0x80000000 ? true : false;
}
break;
case 0x03:
{
// MVN Rd, Rs
int dest = opcode & 7;
reg[dest].I = ~reg[(opcode >> 3) & 7].I;
Z_FLAG = reg[dest].I ? false : true;
N_FLAG = reg[dest].I & 0x80000000 ? true : false;
}
break;
}
break;
case 0x44:
{
int dest = opcode & 7;
int base = (opcode >> 3) & 7;
switch((opcode >> 6)& 3) {
default:
goto unknown_thumb;
case 1:
// ADD Rd, Hs
reg[dest].I += reg[base+8].I;
break;
case 2:
// ADD Hd, Rs
reg[dest+8].I += reg[base].I;
if(dest == 7) {
reg[15].I &= 0xFFFFFFFE;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks++;
}
break;
case 3:
// ADD Hd, Hs
reg[dest+8].I += reg[base+8].I;
if(dest == 7) {
reg[15].I &= 0xFFFFFFFE;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks++;
}
break;
}
}
break;
case 0x45:
{
int dest = opcode & 7;
int base = (opcode >> 3) & 7;
u32 value;
switch((opcode >> 6) & 3) {
case 0:
// CMP Rd, Hs
value = reg[base].I;
CMP_RD_RS;
break;
case 1:
// CMP Rd, Hs
value = reg[base+8].I;
CMP_RD_RS;
break;
case 2:
// CMP Hd, Rs
value = reg[base].I;
dest += 8;
CMP_RD_RS;
break;
case 3:
// CMP Hd, Hs
value = reg[base+8].I;
dest += 8;
CMP_RD_RS;
break;
}
}
break;
case 0x46:
{
int dest = opcode & 7;
int base = (opcode >> 3) & 7;
switch((opcode >> 6) & 3) {
case 0:
// this form should not be used...
// MOV Rd, Rs
reg[dest].I = reg[base].I;
break;
case 1:
// MOV Rd, Hs
reg[dest].I = reg[base+8].I;
break;
case 2:
// MOV Hd, Rs
reg[dest+8].I = reg[base].I;
if(dest == 7) {
reg[15].I &= 0xFFFFFFFE;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks++;
}
break;
case 3:
// MOV Hd, Hs
reg[dest+8].I = reg[base+8].I;
if(dest == 7) {
reg[15].I &= 0xFFFFFFFE;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks++;
}
break;
}
}
break;
case 0x47:
{
int base = (opcode >> 3) & 7;
switch((opcode >>6) & 3) {
case 0:
// BX Rs
reg[15].I = (reg[base].I) & 0xFFFFFFFE;
if(reg[base].I & 1) {
armState = false;
armNextPC = reg[15].I;
reg[15].I += 2;
} else {
armState = true;
reg[15].I &= 0xFFFFFFFC;
armNextPC = reg[15].I;
reg[15].I += 4;
}
break;
case 1:
// BX Hs
reg[15].I = (reg[8+base].I) & 0xFFFFFFFE;
if(reg[8+base].I & 1) {
armState = false;
armNextPC = reg[15].I;
reg[15].I += 2;
} else {
armState = true;
reg[15].I &= 0xFFFFFFFC;
armNextPC = reg[15].I;
reg[15].I += 4;
}
break;
default:
goto unknown_thumb;
}
}
break;
case 0x48:
// LDR R0,[PC, #Imm]
{
u32 address = (reg[15].I & 0xFFFFFFFC) + ((opcode & 0xFF) << 2);
reg[0].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x49:
// LDR R1,[PC, #Imm]
{
u32 address = (reg[15].I & 0xFFFFFFFC) + ((opcode & 0xFF) << 2);
reg[1].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x4a:
// LDR R2,[PC, #Imm]
{
u32 address = (reg[15].I & 0xFFFFFFFC) + ((opcode & 0xFF) << 2);
reg[2].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x4b:
// LDR R3,[PC, #Imm]
{
u32 address = (reg[15].I & 0xFFFFFFFC) + ((opcode & 0xFF) << 2);
reg[3].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x4c:
// LDR R4,[PC, #Imm]
{
u32 address = (reg[15].I & 0xFFFFFFFC) + ((opcode & 0xFF) << 2);
reg[4].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x4d:
// LDR R5,[PC, #Imm]
{
u32 address = (reg[15].I & 0xFFFFFFFC) + ((opcode & 0xFF) << 2);
reg[5].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x4e:
// LDR R6,[PC, #Imm]
{
u32 address = (reg[15].I & 0xFFFFFFFC) + ((opcode & 0xFF) << 2);
reg[6].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x4f:
// LDR R7,[PC, #Imm]
{
u32 address = (reg[15].I & 0xFFFFFFFC) + ((opcode & 0xFF) << 2);
reg[7].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x50:
case 0x51:
// STR Rd, [Rs, Rn]
{
u32
address = reg[(opcode>>3)&7].I + reg[(opcode>>6)&7].I;
CPUWriteMemory(address,
reg[opcode & 7].I);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x52:
case 0x53:
// STRH Rd, [Rs, Rn]
{
u32 address = reg[(opcode>>3)&7].I + reg[(opcode>>6)&7].I;
CPUWriteHalfWord(address,
reg[opcode&7].W.W0);
clockTicks += CPUUpdateTicksAccess16(address);
}
break;
case 0x54:
case 0x55:
// STRB Rd, [Rs, Rn]
{
u32 address = reg[(opcode>>3)&7].I + reg[(opcode >>6)&7].I;
CPUWriteByte(address,
reg[opcode & 7].B.B0);
clockTicks += CPUUpdateTicksAccess16(address);
}
break;
case 0x56:
case 0x57:
// LDSB Rd, [Rs, Rn]
{
u32 address = reg[(opcode>>3)&7].I + reg[(opcode>>6)&7].I;
reg[opcode&7].I = (s8)CPUReadByte(address);
clockTicks += CPUUpdateTicksAccess16(address);
}
break;
case 0x58:
case 0x59:
// LDR Rd, [Rs, Rn]
{
u32 address = reg[(opcode>>3)&7].I + reg[(opcode>>6)&7].I;
reg[opcode&7].I = CPUReadMemory(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x5a:
case 0x5b:
// LDRH Rd, [Rs, Rn]
{
u32 address = reg[(opcode>>3)&7].I + reg[(opcode>>6)&7].I;
reg[opcode&7].I = CPUReadHalfWord(address);
clockTicks += CPUUpdateTicksAccess16(address);
}
break;
case 0x5c:
case 0x5d:
// LDRB Rd, [Rs, Rn]
{
u32 address = reg[(opcode>>3)&7].I + reg[(opcode>>6)&7].I;
reg[opcode&7].I = CPUReadByte(address);
clockTicks += CPUUpdateTicksAccess16(address);
}
break;
case 0x5e:
case 0x5f:
// LDSH Rd, [Rs, Rn]
{
u32 address = reg[(opcode>>3)&7].I + reg[(opcode>>6)&7].I;
reg[opcode&7].I = (s16)CPUReadHalfWordSigned(address);
clockTicks += CPUUpdateTicksAccess16(address);
}
break;
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
// STR Rd, [Rs, #Imm]
{
u32 address = reg[(opcode>>3)&7].I + (((opcode>>6)&31)<<2);
CPUWriteMemory(address,
reg[opcode&7].I);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x68:
case 0x69:
case 0x6a:
case 0x6b:
case 0x6c:
case 0x6d:
case 0x6e:
case 0x6f:
// LDR Rd, [Rs, #Imm]
{
u32 address = reg[(opcode>>3)&7].I + (((opcode>>6)&31)<<2);
reg[opcode&7].I = CPUReadMemory(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
// STRB Rd, [Rs, #Imm]
{
u32 address = reg[(opcode>>3)&7].I + (((opcode>>6)&31));
CPUWriteByte(address,
reg[opcode&7].B.B0);
clockTicks += CPUUpdateTicksAccess16(address);
}
break;
case 0x78:
case 0x79:
case 0x7a:
case 0x7b:
case 0x7c:
case 0x7d:
case 0x7e:
case 0x7f:
// LDRB Rd, [Rs, #Imm]
{
u32 address = reg[(opcode>>3)&7].I + (((opcode>>6)&31));
reg[opcode&7].I = CPUReadByte(address);
clockTicks += CPUUpdateTicksAccess16(address);
}
break;
case 0x80:
case 0x81:
case 0x82:
case 0x83:
case 0x84:
case 0x85:
case 0x86:
case 0x87:
// STRH Rd, [Rs, #Imm]
{
u32 address = reg[(opcode>>3)&7].I + (((opcode>>6)&31)<<1);
CPUWriteHalfWord(address,
reg[opcode&7].W.W0);
clockTicks += CPUUpdateTicksAccess16(address);
}
break;
case 0x88:
case 0x89:
case 0x8a:
case 0x8b:
case 0x8c:
case 0x8d:
case 0x8e:
case 0x8f:
// LDRH Rd, [Rs, #Imm]
{
u32 address = reg[(opcode>>3)&7].I + (((opcode>>6)&31)<<1);
reg[opcode&7].I = CPUReadHalfWord(address);
clockTicks += CPUUpdateTicksAccess16(address);
}
break;
case 0x90:
// STR R0, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
CPUWriteMemory(address, reg[0].I);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x91:
// STR R1, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
CPUWriteMemory(address, reg[1].I);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x92:
// STR R2, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
CPUWriteMemory(address, reg[2].I);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x93:
// STR R3, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
CPUWriteMemory(address, reg[3].I);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x94:
// STR R4, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
CPUWriteMemory(address, reg[4].I);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x95:
// STR R5, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
CPUWriteMemory(address, reg[5].I);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x96:
// STR R6, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
CPUWriteMemory(address, reg[6].I);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x97:
// STR R7, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
CPUWriteMemory(address, reg[7].I);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x98:
// LDR R0, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
reg[0].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x99:
// LDR R1, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
reg[1].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x9a:
// LDR R2, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
reg[2].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x9b:
// LDR R3, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
reg[3].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x9c:
// LDR R4, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
reg[4].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x9d:
// LDR R5, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
reg[5].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x9e:
// LDR R6, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
reg[6].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0x9f:
// LDR R7, [SP, #Imm]
{
u32 address = reg[13].I + ((opcode&255)<<2);
reg[7].I = CPUReadMemoryQuick(address);
clockTicks += CPUUpdateTicksAccess32(address);
}
break;
case 0xa0:
// ADD R0, PC, Imm
reg[0].I = (reg[15].I & 0xFFFFFFFC) + ((opcode&255)<<2);
break;
case 0xa1:
// ADD R1, PC, Imm
reg[1].I = (reg[15].I & 0xFFFFFFFC) + ((opcode&255)<<2);
break;
case 0xa2:
// ADD R2, PC, Imm
reg[2].I = (reg[15].I & 0xFFFFFFFC) + ((opcode&255)<<2);
break;
case 0xa3:
// ADD R3, PC, Imm
reg[3].I = (reg[15].I & 0xFFFFFFFC) + ((opcode&255)<<2);
break;
case 0xa4:
// ADD R4, PC, Imm
reg[4].I = (reg[15].I & 0xFFFFFFFC) + ((opcode&255)<<2);
break;
case 0xa5:
// ADD R5, PC, Imm
reg[5].I = (reg[15].I & 0xFFFFFFFC) + ((opcode&255)<<2);
break;
case 0xa6:
// ADD R6, PC, Imm
reg[6].I = (reg[15].I & 0xFFFFFFFC) + ((opcode&255)<<2);
break;
case 0xa7:
// ADD R7, PC, Imm
reg[7].I = (reg[15].I & 0xFFFFFFFC) + ((opcode&255)<<2);
break;
case 0xa8:
// ADD R0, SP, Imm
reg[0].I = reg[13].I + ((opcode&255)<<2);
break;
case 0xa9:
// ADD R1, SP, Imm
reg[1].I = reg[13].I + ((opcode&255)<<2);
break;
case 0xaa:
// ADD R2, SP, Imm
reg[2].I = reg[13].I + ((opcode&255)<<2);
break;
case 0xab:
// ADD R3, SP, Imm
reg[3].I = reg[13].I + ((opcode&255)<<2);
break;
case 0xac:
// ADD R4, SP, Imm
reg[4].I = reg[13].I + ((opcode&255)<<2);
break;
case 0xad:
// ADD R5, SP, Imm
reg[5].I = reg[13].I + ((opcode&255)<<2);
break;
case 0xae:
// ADD R6, SP, Imm
reg[6].I = reg[13].I + ((opcode&255)<<2);
break;
case 0xaf:
// ADD R7, SP, Imm
reg[7].I = reg[13].I + ((opcode&255)<<2);
break;
case 0xb0:
{
// ADD SP, Imm
int offset = (opcode & 127) << 2;
if(opcode & 0x80)
offset = -offset;
reg[13].I += offset;
}
break;
#define PUSH_REG(val, r) \
if(opcode & (val)) {\
CPUWriteMemory(address, reg[(r)].I);\
if(offset)\
clockTicks += 1 + CPUUpdateTicksAccessSeq32(address);\
else\
clockTicks += 1 + CPUUpdateTicksAccess32(address);\
offset = 1;\
address += 4;\
}
case 0xb4:
// PUSH {Rlist}
{
int offset = 0;
u32 temp = reg[13].I - 4 * cpuBitsSet[opcode & 0xff];
u32 address = temp & 0xFFFFFFFC;
PUSH_REG(1, 0);
PUSH_REG(2, 1);
PUSH_REG(4, 2);
PUSH_REG(8, 3);
PUSH_REG(16, 4);
PUSH_REG(32, 5);
PUSH_REG(64, 6);
PUSH_REG(128, 7);
reg[13].I = temp;
}
break;
case 0xb5:
// PUSH {Rlist, LR}
{
int offset = 0;
u32 temp = reg[13].I - 4 - 4 * cpuBitsSet[opcode & 0xff];
u32 address = temp & 0xFFFFFFFC;
PUSH_REG(1, 0);
PUSH_REG(2, 1);
PUSH_REG(4, 2);
PUSH_REG(8, 3);
PUSH_REG(16, 4);
PUSH_REG(32, 5);
PUSH_REG(64, 6);
PUSH_REG(128, 7);
PUSH_REG(256, 14);
reg[13].I = temp;
}
break;
#define POP_REG(val, r) \
if(opcode & (val)) {\
reg[(r)].I = CPUReadMemory(address);\
if(offset)\
clockTicks += 2 + CPUUpdateTicksAccessSeq32(address);\
else\
clockTicks += 2 + CPUUpdateTicksAccess32(address);\
offset = 1;\
address += 4;\
}
case 0xbc:
// POP {Rlist}
{
int offset = 0;
u32 address = reg[13].I & 0xFFFFFFFC;
u32 temp = reg[13].I + 4*cpuBitsSet[opcode & 0xFF];
POP_REG(1, 0);
POP_REG(2, 1);
POP_REG(4, 2);
POP_REG(8, 3);
POP_REG(16, 4);
POP_REG(32, 5);
POP_REG(64, 6);
POP_REG(128, 7);
reg[13].I = temp;
}
break;
case 0xbd:
// POP {Rlist, PC}
{
int offset = 0;
u32 address = reg[13].I & 0xFFFFFFFC;
u32 temp = reg[13].I + 4 + 4*cpuBitsSet[opcode & 0xFF];
POP_REG(1, 0);
POP_REG(2, 1);
POP_REG(4, 2);
POP_REG(8, 3);
POP_REG(16, 4);
POP_REG(32, 5);
POP_REG(64, 6);
POP_REG(128, 7);
reg[15].I = (CPUReadMemory(address) & 0xFFFFFFFE);
if(offset)
clockTicks += CPUUpdateTicksAccessSeq32(address);
else
clockTicks += CPUUpdateTicksAccess32(address);
armNextPC = reg[15].I;
reg[15].I += 2;
reg[13].I = temp;
}
break;
#define THUMB_STM_REG(val,r,b) \
if(opcode & (val)) {\
CPUWriteMemory(address, reg[(r)].I);\
if(!offset) {\
reg[(b)].I = temp;\
clockTicks += 1 + CPUUpdateTicksAccess32(address);\
} else \
clockTicks += 1 + CPUUpdateTicksAccessSeq32(address);\
offset = 1;\
address += 4;\
}
case 0xc0:
{
// STM R0!, {Rlist}
u32 address = reg[0].I & 0xFFFFFFFC;
u32 temp = reg[0].I + 4*cpuBitsSet[opcode & 0xff];
int offset = 0;
// store
THUMB_STM_REG(1, 0, 0);
THUMB_STM_REG(2, 1, 0);
THUMB_STM_REG(4, 2, 0);
THUMB_STM_REG(8, 3, 0);
THUMB_STM_REG(16, 4, 0);
THUMB_STM_REG(32, 5, 0);
THUMB_STM_REG(64, 6, 0);
THUMB_STM_REG(128, 7, 0);
}
break;
case 0xc1:
{
// STM R1!, {Rlist}
u32 address = reg[1].I & 0xFFFFFFFC;
u32 temp = reg[1].I + 4*cpuBitsSet[opcode & 0xff];
int offset = 0;
// store
THUMB_STM_REG(1, 0, 1);
THUMB_STM_REG(2, 1, 1);
THUMB_STM_REG(4, 2, 1);
THUMB_STM_REG(8, 3, 1);
THUMB_STM_REG(16, 4, 1);
THUMB_STM_REG(32, 5, 1);
THUMB_STM_REG(64, 6, 1);
THUMB_STM_REG(128, 7, 1);
}
break;
case 0xc2:
{
// STM R2!, {Rlist}
u32 address = reg[2].I & 0xFFFFFFFC;
u32 temp = reg[2].I + 4*cpuBitsSet[opcode & 0xff];
int offset = 0;
// store
THUMB_STM_REG(1, 0, 2);
THUMB_STM_REG(2, 1, 2);
THUMB_STM_REG(4, 2, 2);
THUMB_STM_REG(8, 3, 2);
THUMB_STM_REG(16, 4, 2);
THUMB_STM_REG(32, 5, 2);
THUMB_STM_REG(64, 6, 2);
THUMB_STM_REG(128, 7, 2);
}
break;
case 0xc3:
{
// STM R3!, {Rlist}
u32 address = reg[3].I & 0xFFFFFFFC;
u32 temp = reg[3].I + 4*cpuBitsSet[opcode & 0xff];
int offset = 0;
// store
THUMB_STM_REG(1, 0, 3);
THUMB_STM_REG(2, 1, 3);
THUMB_STM_REG(4, 2, 3);
THUMB_STM_REG(8, 3, 3);
THUMB_STM_REG(16, 4, 3);
THUMB_STM_REG(32, 5, 3);
THUMB_STM_REG(64, 6, 3);
THUMB_STM_REG(128, 7, 3);
}
break;
case 0xc4:
{
// STM R4!, {Rlist}
u32 address = reg[4].I & 0xFFFFFFFC;
u32 temp = reg[4].I + 4*cpuBitsSet[opcode & 0xff];
int offset = 0;
// store
THUMB_STM_REG(1, 0, 4);
THUMB_STM_REG(2, 1, 4);
THUMB_STM_REG(4, 2, 4);
THUMB_STM_REG(8, 3, 4);
THUMB_STM_REG(16, 4, 4);
THUMB_STM_REG(32, 5, 4);
THUMB_STM_REG(64, 6, 4);
THUMB_STM_REG(128, 7, 4);
}
break;
case 0xc5:
{
// STM R5!, {Rlist}
u32 address = reg[5].I & 0xFFFFFFFC;
u32 temp = reg[5].I + 4*cpuBitsSet[opcode & 0xff];
int offset = 0;
// store
THUMB_STM_REG(1, 0, 5);
THUMB_STM_REG(2, 1, 5);
THUMB_STM_REG(4, 2, 5);
THUMB_STM_REG(8, 3, 5);
THUMB_STM_REG(16, 4, 5);
THUMB_STM_REG(32, 5, 5);
THUMB_STM_REG(64, 6, 5);
THUMB_STM_REG(128, 7, 5);
}
break;
case 0xc6:
{
// STM R6!, {Rlist}
u32 address = reg[6].I & 0xFFFFFFFC;
u32 temp = reg[6].I + 4*cpuBitsSet[opcode & 0xff];
int offset = 0;
// store
THUMB_STM_REG(1, 0, 6);
THUMB_STM_REG(2, 1, 6);
THUMB_STM_REG(4, 2, 6);
THUMB_STM_REG(8, 3, 6);
THUMB_STM_REG(16, 4, 6);
THUMB_STM_REG(32, 5, 6);
THUMB_STM_REG(64, 6, 6);
THUMB_STM_REG(128, 7, 6);
}
break;
case 0xc7:
{
// STM R7!, {Rlist}
u32 address = reg[7].I & 0xFFFFFFFC;
u32 temp = reg[7].I + 4*cpuBitsSet[opcode & 0xff];
int offset = 0;
// store
THUMB_STM_REG(1, 0, 7);
THUMB_STM_REG(2, 1, 7);
THUMB_STM_REG(4, 2, 7);
THUMB_STM_REG(8, 3, 7);
THUMB_STM_REG(16, 4, 7);
THUMB_STM_REG(32, 5, 7);
THUMB_STM_REG(64, 6, 7);
THUMB_STM_REG(128, 7, 7);
}
break;
#define THUMB_LDM_REG(val,r) \
if(opcode & (val)) {\
reg[(r)].I = CPUReadMemory(address);\
if(offset)\
clockTicks += 2 + CPUUpdateTicksAccessSeq32(address);\
else\
clockTicks += 2 + CPUUpdateTicksAccess32(address);\
offset = 1;\
address += 4;\
}
case 0xc8:
{
// LDM R0!, {Rlist}
u32 address = reg[0].I & 0xFFFFFFFC;
u32 temp = reg[0].I + 4*cpuBitsSet[opcode & 0xFF];
int offset = 0;
// load
THUMB_LDM_REG(1, 0);
THUMB_LDM_REG(2, 1);
THUMB_LDM_REG(4, 2);
THUMB_LDM_REG(8, 3);
THUMB_LDM_REG(16, 4);
THUMB_LDM_REG(32, 5);
THUMB_LDM_REG(64, 6);
THUMB_LDM_REG(128, 7);
if(!(opcode & 1))
reg[0].I = temp;
}
break;
case 0xc9:
{
// LDM R1!, {Rlist}
u32 address = reg[1].I & 0xFFFFFFFC;
u32 temp = reg[1].I + 4*cpuBitsSet[opcode & 0xFF];
int offset = 0;
// load
THUMB_LDM_REG(1, 0);
THUMB_LDM_REG(2, 1);
THUMB_LDM_REG(4, 2);
THUMB_LDM_REG(8, 3);
THUMB_LDM_REG(16, 4);
THUMB_LDM_REG(32, 5);
THUMB_LDM_REG(64, 6);
THUMB_LDM_REG(128, 7);
if(!(opcode & 2))
reg[1].I = temp;
}
break;
case 0xca:
{
// LDM R2!, {Rlist}
u32 address = reg[2].I & 0xFFFFFFFC;
u32 temp = reg[2].I + 4*cpuBitsSet[opcode & 0xFF];
int offset = 0;
// load
THUMB_LDM_REG(1, 0);
THUMB_LDM_REG(2, 1);
THUMB_LDM_REG(4, 2);
THUMB_LDM_REG(8, 3);
THUMB_LDM_REG(16, 4);
THUMB_LDM_REG(32, 5);
THUMB_LDM_REG(64, 6);
THUMB_LDM_REG(128, 7);
if(!(opcode & 4))
reg[2].I = temp;
}
break;
case 0xcb:
{
// LDM R3!, {Rlist}
u32 address = reg[3].I & 0xFFFFFFFC;
u32 temp = reg[3].I + 4*cpuBitsSet[opcode & 0xFF];
int offset = 0;
// load
THUMB_LDM_REG(1, 0);
THUMB_LDM_REG(2, 1);
THUMB_LDM_REG(4, 2);
THUMB_LDM_REG(8, 3);
THUMB_LDM_REG(16, 4);
THUMB_LDM_REG(32, 5);
THUMB_LDM_REG(64, 6);
THUMB_LDM_REG(128, 7);
if(!(opcode & 8))
reg[3].I = temp;
}
break;
case 0xcc:
{
// LDM R4!, {Rlist}
u32 address = reg[4].I & 0xFFFFFFFC;
u32 temp = reg[4].I + 4*cpuBitsSet[opcode & 0xFF];
int offset = 0;
// load
THUMB_LDM_REG(1, 0);
THUMB_LDM_REG(2, 1);
THUMB_LDM_REG(4, 2);
THUMB_LDM_REG(8, 3);
THUMB_LDM_REG(16, 4);
THUMB_LDM_REG(32, 5);
THUMB_LDM_REG(64, 6);
THUMB_LDM_REG(128, 7);
if(!(opcode & 16))
reg[4].I = temp;
}
break;
case 0xcd:
{
// LDM R5!, {Rlist}
u32 address = reg[5].I & 0xFFFFFFFC;
u32 temp = reg[5].I + 4*cpuBitsSet[opcode & 0xFF];
int offset = 0;
// load
THUMB_LDM_REG(1, 0);
THUMB_LDM_REG(2, 1);
THUMB_LDM_REG(4, 2);
THUMB_LDM_REG(8, 3);
THUMB_LDM_REG(16, 4);
THUMB_LDM_REG(32, 5);
THUMB_LDM_REG(64, 6);
THUMB_LDM_REG(128, 7);
if(!(opcode & 32))
reg[5].I = temp;
}
break;
case 0xce:
{
// LDM R6!, {Rlist}
u32 address = reg[6].I & 0xFFFFFFFC;
u32 temp = reg[6].I + 4*cpuBitsSet[opcode & 0xFF];
int offset = 0;
// load
THUMB_LDM_REG(1, 0);
THUMB_LDM_REG(2, 1);
THUMB_LDM_REG(4, 2);
THUMB_LDM_REG(8, 3);
THUMB_LDM_REG(16, 4);
THUMB_LDM_REG(32, 5);
THUMB_LDM_REG(64, 6);
THUMB_LDM_REG(128, 7);
if(!(opcode & 64))
reg[6].I = temp;
}
break;
case 0xcf:
{
// LDM R7!, {Rlist}
u32 address = reg[7].I & 0xFFFFFFFC;
u32 temp = reg[7].I + 4*cpuBitsSet[opcode & 0xFF];
int offset = 0;
// load
THUMB_LDM_REG(1, 0);
THUMB_LDM_REG(2, 1);
THUMB_LDM_REG(4, 2);
THUMB_LDM_REG(8, 3);
THUMB_LDM_REG(16, 4);
THUMB_LDM_REG(32, 5);
THUMB_LDM_REG(64, 6);
THUMB_LDM_REG(128, 7);
if(!(opcode & 128))
reg[7].I = temp;
}
break;
case 0xd0:
// BEQ offset
if(Z_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xd1:
// BNE offset
if(!Z_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xd2:
// BCS offset
if(C_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xd3:
// BCC offset
if(!C_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xd4:
// BMI offset
if(N_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xd5:
// BPL offset
if(!N_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xd6:
// BVS offset
if(V_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xd7:
// BVC offset
if(!V_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xd8:
// BHI offset
if(C_FLAG && !Z_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xd9:
// BLS offset
if(!C_FLAG || Z_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xda:
// BGE offset
if(N_FLAG == V_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xdb:
// BLT offset
if(N_FLAG != V_FLAG) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xdc:
// BGT offset
if(!Z_FLAG && (N_FLAG == V_FLAG)) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xdd:
// BLE offset
if(Z_FLAG || (N_FLAG != V_FLAG)) {
reg[15].I += ((s8)(opcode & 0xFF)) << 1;
armNextPC = reg[15].I;
reg[15].I += 2;
clockTicks = 3;
}
break;
case 0xdf:
// SWI #comment
CPUSoftwareInterrupt(opcode & 0xFF);
break;
case 0xe0:
case 0xe1:
case 0xe2:
case 0xe3:
case 0xe4:
case 0xe5:
case 0xe6:
case 0xe7:
{
// B offset
int offset = (opcode & 0x3FF) << 1;
if(opcode & 0x0400)
offset |= 0xFFFFF800;
reg[15].I += offset;
armNextPC = reg[15].I;
reg[15].I += 2;
}
break;
case 0xf0:
case 0xf1:
case 0xf2:
case 0xf3:
{
// BLL #offset
int offset = (opcode & 0x7FF);
reg[14].I = reg[15].I + (offset << 12);
}
break;
case 0xf4:
case 0xf5:
case 0xf6:
case 0xf7:
{
// BLL #offset
int offset = (opcode & 0x7FF);
reg[14].I = reg[15].I + ((offset << 12) | 0xFF800000);
}
break;
case 0xf8:
case 0xf9:
case 0xfa:
case 0xfb:
case 0xfc:
case 0xfd:
case 0xfe:
case 0xff:
{
// BLH #offset
int offset = (opcode & 0x7FF);
u32 temp = reg[15].I-2;
reg[15].I = (reg[14].I + (offset<<1))&0xFFFFFFFE;
armNextPC = reg[15].I;
reg[15].I += 2;
reg[14].I = temp|1;
}
break;
#ifdef BKPT_SUPPORT
case 0xbe:
// BKPT #comment
extern void (*dbgSignal)(int,int);
reg[15].I -= 2;
armNextPC -= 2;
dbgSignal(5, opcode & 255);
return;
#endif
case 0xb1:
case 0xb2:
case 0xb3:
case 0xb6:
case 0xb7:
case 0xb8:
case 0xb9:
case 0xba:
case 0xbb:
#ifndef BKPT_SUPPORT
case 0xbe:
#endif
case 0xbf:
case 0xde:
default:
unknown_thumb:
#ifdef DEV_VERSION
if(systemVerbose & VERBOSE_UNDEFINED)
log("Undefined THUMB instruction %04x at %08x\n", opcode, armNextPC-2);
#endif
CPUUndefinedException();
break;
}