// VisualBoyAdvance - Nintendo Gameboy/GameboyAdvance (TM) emulator. // Copyright (C) 1999-2003 Forgotten // Copyright (C) 2004 Forgotten and the VBA development team // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2, or(at your option) // any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software Foundation, // Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. #include #include "../System.h" #include "../Util.h" #include "gbGlobals.h" #include "gbSound.h" extern u8 soundBuffer[6][735]; extern u16 soundFinalWave[1470]; extern int soundVolume; #define SOUND_MAGIC 0x60000000 #define SOUND_MAGIC_2 0x30000000 #define NOISE_MAGIC 5 extern int speed; extern void soundResume(); extern u8 soundWavePattern[4][32]; extern int soundBufferLen; extern int soundBufferTotalLen; extern int soundQuality; extern int soundPaused; extern int soundPlay; extern int soundTicks; extern int SOUND_CLOCK_TICKS; extern u32 soundNextPosition; extern int soundLevel1; extern int soundLevel2; extern int soundBalance; extern int soundMasterOn; extern int soundIndex; extern int soundBufferIndex; int soundVIN = 0; extern int soundDebug; extern int sound1On; extern int sound1ATL; extern int sound1Skip; extern int sound1Index; extern int sound1Continue; extern int sound1EnvelopeVolume; extern int sound1EnvelopeATL; extern int sound1EnvelopeUpDown; extern int sound1EnvelopeATLReload; extern int sound1SweepATL; extern int sound1SweepATLReload; extern int sound1SweepSteps; extern int sound1SweepUpDown; extern int sound1SweepStep; extern u8 *sound1Wave; extern int sound2On; extern int sound2ATL; extern int sound2Skip; extern int sound2Index; extern int sound2Continue; extern int sound2EnvelopeVolume; extern int sound2EnvelopeATL; extern int sound2EnvelopeUpDown; extern int sound2EnvelopeATLReload; extern u8 *sound2Wave; extern int sound3On; extern int sound3ATL; extern int sound3Skip; extern int sound3Index; extern int sound3Continue; extern int sound3OutputLevel; extern int sound3Last; extern int sound4On; extern int sound4Clock; extern int sound4ATL; extern int sound4Skip; extern int sound4Index; extern int sound4ShiftRight; extern int sound4ShiftSkip; extern int sound4ShiftIndex; extern int sound4NSteps; extern int sound4CountDown; extern int sound4Continue; extern int sound4EnvelopeVolume; extern int sound4EnvelopeATL; extern int sound4EnvelopeUpDown; extern int sound4EnvelopeATLReload; extern int soundEnableFlag; extern int soundFreqRatio[8]; extern int soundShiftClock[16]; extern s16 soundFilter[4000]; extern s16 soundLeft[5]; extern s16 soundRight[5]; extern int soundEchoIndex; extern bool soundEcho; extern bool soundLowPass; extern bool soundReverse; extern bool soundOffFlag; bool gbDigitalSound = false; void gbSoundEvent(register u16 address, register int data) { int freq = 0; gbMemory[address] = data; #ifndef FINAL_VERSION if(soundDebug) { // don't translate. debug only log("Sound event: %08lx %02x\n", address, data); } #endif switch(address) { case NR10: sound1SweepATL = sound1SweepATLReload = 344 * ((data >> 4) & 7); sound1SweepSteps = data & 7; sound1SweepUpDown = data & 0x08; sound1SweepStep = 0; break; case NR11: sound1Wave = soundWavePattern[data >> 6]; sound1ATL = 172 * (64 - (data & 0x3f)); break; case NR12: sound1EnvelopeVolume = data >> 4; sound1EnvelopeUpDown = data & 0x08; sound1EnvelopeATLReload = sound1EnvelopeATL = 689 * (data & 7); break; case NR13: freq = (((int)(gbMemory[NR14] & 7)) << 8) | data; sound1ATL = 172 * (64 - (gbMemory[NR11] & 0x3f)); freq = 2048 - freq; if(freq) { sound1Skip = SOUND_MAGIC / freq; } else sound1Skip = 0; break; case NR14: freq = (((int)(data&7) << 8) | gbMemory[NR13]); freq = 2048 - freq; sound1ATL = 172 * (64 - (gbMemory[NR11] & 0x3f)); sound1Continue = data & 0x40; if(freq) { sound1Skip = SOUND_MAGIC / freq; } else sound1Skip = 0; if(data & 0x80) { gbMemory[NR52] |= 1; sound1EnvelopeVolume = gbMemory[NR12] >> 4; sound1EnvelopeUpDown = gbMemory[NR12] & 0x08; sound1ATL = 172 * (64 - (gbMemory[NR11] & 0x3f)); sound1EnvelopeATLReload = sound1EnvelopeATL = 689 * (gbMemory[NR12] & 7); sound1SweepATL = sound1SweepATLReload = 344 * ((gbMemory[NR10] >> 4) & 7); sound1SweepSteps = gbMemory[NR10] & 7; sound1SweepUpDown = gbMemory[NR10] & 0x08; sound1SweepStep = 0; sound1Index = 0; sound1On = 1; } break; case NR21: sound2Wave = soundWavePattern[data >> 6]; sound2ATL = 172 * (64 - (data & 0x3f)); break; case NR22: sound2EnvelopeVolume = data >> 4; sound2EnvelopeUpDown = data & 0x08; sound2EnvelopeATLReload = sound2EnvelopeATL = 689 * (data & 7); break; case NR23: freq = (((int)(gbMemory[NR24] & 7)) << 8) | data; sound2ATL = 172 * (64 - (gbMemory[NR21] & 0x3f)); freq = 2048 - freq; if(freq) { sound2Skip = SOUND_MAGIC / freq; } else sound2Skip = 0; break; case NR24: freq = (((int)(data&7) << 8) | gbMemory[NR23]); freq = 2048 - freq; sound2ATL = 172 * (64 - (gbMemory[NR21] & 0x3f)); sound2Continue = data & 0x40; if(freq) { sound2Skip = SOUND_MAGIC / freq; } else sound2Skip = 0; if(data & 0x80) { gbMemory[NR52] |= 2; sound2EnvelopeVolume = gbMemory[NR22] >> 4; sound2EnvelopeUpDown = gbMemory[NR22] & 0x08; sound2ATL = 172 * (64 - (gbMemory[NR21] & 0x3f)); sound2EnvelopeATLReload = sound2EnvelopeATL = 689 * (gbMemory[NR22] & 7); sound2Index = 0; sound2On = 1; } break; case NR30: if(!(data & 0x80)) { gbMemory[NR52] &= 0xfb; sound3On = 0; } break; case NR31: sound3ATL = 172 * (256-data); break; case NR32: sound3OutputLevel = (data >> 5) & 3; break; case NR33: freq = 2048 - (((int)(gbMemory[NR34]&7) << 8) | data); if(freq) { sound3Skip = SOUND_MAGIC_2 / freq; } else sound3Skip = 0; break; case NR34: freq = 2048 - (((data &7) << 8) | (int)gbMemory[NR33]); if(freq) { sound3Skip = SOUND_MAGIC_2 / freq; } else { sound3Skip = 0; } sound3Continue = data & 0x40; if((data & 0x80) && (gbMemory[NR30] & 0x80)) { gbMemory[NR52] |= 4; sound3ATL = 172 * (256 - gbMemory[NR31]); sound3Index = 0; sound3On = 1; } break; case NR41: sound4ATL = 172 * (64 - (data & 0x3f)); break; case NR42: sound4EnvelopeVolume = data >> 4; sound4EnvelopeUpDown = data & 0x08; sound4EnvelopeATLReload = sound4EnvelopeATL = 689 * (data & 7); break; case NR43: freq = soundFreqRatio[data & 7]; sound4NSteps = data & 0x08; sound4Skip = (freq << 8) / NOISE_MAGIC; sound4Clock = data >> 4; freq = freq / soundShiftClock[sound4Clock]; sound4ShiftSkip = (freq << 8) / NOISE_MAGIC; break; case NR44: sound4Continue = data & 0x40; if(data & 0x80) { gbMemory[NR52] |= 8; sound4EnvelopeVolume = gbMemory[NR42] >> 4; sound4EnvelopeUpDown = gbMemory[NR42] & 0x08; sound4ATL = 172 * (64 - (gbMemory[NR41] & 0x3f)); sound4EnvelopeATLReload = sound4EnvelopeATL = 689 * (gbMemory[NR42] & 7); sound4On = 1; sound4Index = 0; sound4ShiftIndex = 0; freq = soundFreqRatio[gbMemory[NR43] & 7]; sound4Skip = (freq << 8) / NOISE_MAGIC; sound4NSteps = gbMemory[NR43] & 0x08; freq = freq / soundShiftClock[gbMemory[NR43] >> 4]; sound4ShiftSkip = (freq << 8) / NOISE_MAGIC; if(sound4NSteps) sound4ShiftRight = 0x7fff; else sound4ShiftRight = 0x7f; } break; case NR50: soundVIN = data & 0x88; soundLevel1 = data & 7; soundLevel2 = (data >> 4) & 7; break; case NR51: soundBalance = (data & soundEnableFlag); break; case NR52: soundMasterOn = data & 0x80; if(!(data & 0x80)) { sound1On = 0; sound2On = 0; sound3On = 0; sound4On = 0; } break; } gbDigitalSound = true; if(sound1On && sound1EnvelopeVolume != 0) gbDigitalSound = false; if(sound2On && sound2EnvelopeVolume != 0) gbDigitalSound = false; if(sound3On && sound3OutputLevel != 0) gbDigitalSound = false; if(sound4On && sound4EnvelopeVolume != 0) gbDigitalSound = false; } void gbSoundChannel1() { int vol = sound1EnvelopeVolume; int freq = 0; int value = 0; if(sound1On && (sound1ATL || !sound1Continue)) { sound1Index += soundQuality*sound1Skip; sound1Index &= 0x1fffffff; value = ((s8)sound1Wave[sound1Index>>24]) * vol; } soundBuffer[0][soundIndex] = value; if(sound1On) { if(sound1ATL) { sound1ATL-=soundQuality; if(sound1ATL <=0 && sound1Continue) { gbMemory[NR52] &= 0xfe; sound1On = 0; } } if(sound1EnvelopeATL) { sound1EnvelopeATL-=soundQuality; if(sound1EnvelopeATL<=0) { if(sound1EnvelopeUpDown) { if(sound1EnvelopeVolume < 15) sound1EnvelopeVolume++; } else { if(sound1EnvelopeVolume) sound1EnvelopeVolume--; } sound1EnvelopeATL += sound1EnvelopeATLReload; } } if(sound1SweepATL) { sound1SweepATL-=soundQuality; if(sound1SweepATL<=0) { freq = (((int)(gbMemory[NR14]&7) << 8) | gbMemory[NR13]); int updown = 1; if(sound1SweepUpDown) updown = -1; int newfreq = 0; if(sound1SweepSteps) { newfreq = freq + updown * freq / (1 << sound1SweepSteps); if(newfreq == freq) newfreq = 0; } else newfreq = freq; if(newfreq < 0) { sound1SweepATL += sound1SweepATLReload; } else if(newfreq > 2047) { sound1SweepATL = 0; sound1On = 0; gbMemory[NR52] &= 0xfe; } else { sound1SweepATL += sound1SweepATLReload; sound1Skip = SOUND_MAGIC/(2048 - newfreq); gbMemory[NR13] = newfreq & 0xff; gbMemory[NR14] = (gbMemory[NR14] & 0xf8) |((newfreq >> 8) & 7); } } } } } void gbSoundChannel2() { // int freq = 0; int vol = sound2EnvelopeVolume; int value = 0; if(sound2On && (sound2ATL || !sound2Continue)) { sound2Index += soundQuality*sound2Skip; sound2Index &= 0x1fffffff; value = ((s8)sound2Wave[sound2Index>>24]) * vol; } soundBuffer[1][soundIndex] = value; if(sound2On) { if(sound2ATL) { sound2ATL-=soundQuality; if(sound2ATL <= 0 && sound2Continue) { gbMemory[NR52] &= 0xfd; sound2On = 0; } } if(sound2EnvelopeATL) { sound2EnvelopeATL-=soundQuality; if(sound2EnvelopeATL <= 0) { if(sound2EnvelopeUpDown) { if(sound2EnvelopeVolume < 15) sound2EnvelopeVolume++; } else { if(sound2EnvelopeVolume) sound2EnvelopeVolume--; } sound2EnvelopeATL += sound2EnvelopeATLReload; } } } } void gbSoundChannel3() { int value = sound3Last; if(sound3On && (sound3ATL || !sound3Continue)) { sound3Index += soundQuality*sound3Skip; sound3Index &= 0x1fffffff; value = gbMemory[0xff30 + (sound3Index>>25)]; if( (sound3Index & 0x01000000)) { value &= 0x0f; } else { value >>= 4; } value -= 8; switch(sound3OutputLevel) { case 0: value = 0; break; case 1: break; case 2: value = (value >> 1); break; case 3: value = (value >> 2); break; } sound3Last = value; } soundBuffer[2][soundIndex] = value; if(sound3On) { if(sound3ATL) { sound3ATL-=soundQuality; if(sound3ATL <= 0 && sound3Continue) { gbMemory[NR52] &= 0xfb; sound3On = 0; } } } } void gbSoundChannel4() { int vol = sound4EnvelopeVolume; int value = 0; if(sound4Clock <= 0x0c) { if(sound4On && (sound4ATL || !sound4Continue)) { sound4Index += soundQuality*sound4Skip; sound4ShiftIndex += soundQuality*sound4ShiftSkip; if(sound4NSteps) { while(sound4ShiftIndex > 0x1fffff) { sound4ShiftRight = (((sound4ShiftRight << 6) ^ (sound4ShiftRight << 5)) & 0x40) | (sound4ShiftRight >> 1); sound4ShiftIndex -= 0x200000; } } else { while(sound4ShiftIndex > 0x1fffff) { sound4ShiftRight = (((sound4ShiftRight << 14) ^ (sound4ShiftRight << 13)) & 0x4000) | (sound4ShiftRight >> 1); sound4ShiftIndex -= 0x200000; } } sound4Index &= 0x1fffff; sound4ShiftIndex &= 0x1fffff; value = ((sound4ShiftRight & 1)*2-1) * vol; } else { value = 0; } } soundBuffer[3][soundIndex] = value; if(sound4On) { if(sound4ATL) { sound4ATL-=soundQuality; if(sound4ATL <= 0 && sound4Continue) { gbMemory[NR52] &= 0xfd; sound4On = 0; } } if(sound4EnvelopeATL) { sound4EnvelopeATL-=soundQuality; if(sound4EnvelopeATL <= 0) { if(sound4EnvelopeUpDown) { if(sound4EnvelopeVolume < 15) sound4EnvelopeVolume++; } else { if(sound4EnvelopeVolume) sound4EnvelopeVolume--; } sound4EnvelopeATL += sound4EnvelopeATLReload; } } } } void gbSoundMix() { int res = 0; if(soundBalance & 16) { res += ((s8)soundBuffer[0][soundIndex]); } if(soundBalance & 32) { res += ((s8)soundBuffer[1][soundIndex]); } if(soundBalance & 64) { res += ((s8)soundBuffer[2][soundIndex]); } if(soundBalance & 128) { res += ((s8)soundBuffer[3][soundIndex]); } if(gbDigitalSound) res = soundLevel1*256; else res *= soundLevel1*60; if(soundEcho) { res *= 2; res += soundFilter[soundEchoIndex]; res /= 2; soundFilter[soundEchoIndex++] = res; } if(soundLowPass) { soundLeft[4] = soundLeft[3]; soundLeft[3] = soundLeft[2]; soundLeft[2] = soundLeft[1]; soundLeft[1] = soundLeft[0]; soundLeft[0] = res; res = (soundLeft[4] + 2*soundLeft[3] + 8*soundLeft[2] + 2*soundLeft[1] + soundLeft[0])/14; } switch(soundVolume) { case 0: case 1: case 2: case 3: res *= (soundVolume+1); break; case 4: res >>= 2; break; case 5: res >>= 1; break; } if(res > 32767) res = 32767; if(res < -32768) res = -32768; if(soundReverse) soundFinalWave[++soundBufferIndex] = res; else soundFinalWave[soundBufferIndex++] = res; res = 0; if(soundBalance & 1) { res += ((s8)soundBuffer[0][soundIndex]); } if(soundBalance & 2) { res += ((s8)soundBuffer[1][soundIndex]); } if(soundBalance & 4) { res += ((s8)soundBuffer[2][soundIndex]); } if(soundBalance & 8) { res += ((s8)soundBuffer[3][soundIndex]); } if(gbDigitalSound) res = soundLevel2*256; else res *= soundLevel2*60; if(soundEcho) { res *= 2; res += soundFilter[soundEchoIndex]; res /= 2; soundFilter[soundEchoIndex++] = res; if(soundEchoIndex >= 4000) soundEchoIndex = 0; } if(soundLowPass) { soundRight[4] = soundRight[3]; soundRight[3] = soundRight[2]; soundRight[2] = soundRight[1]; soundRight[1] = soundRight[0]; soundRight[0] = res; res = (soundRight[4] + 2*soundRight[3] + 8*soundRight[2] + 2*soundRight[1] + soundRight[0])/14; } switch(soundVolume) { case 0: case 1: case 2: case 3: res *= (soundVolume+1); break; case 4: res >>= 2; break; case 5: res >>= 1; break; } if(res > 32767) res = 32767; if(res < -32768) res = -32768; if(soundReverse) soundFinalWave[-1+soundBufferIndex++] = res; else soundFinalWave[soundBufferIndex++] = res; } void gbSoundTick() { if(systemSoundOn) { if(soundMasterOn) { gbSoundChannel1(); gbSoundChannel2(); gbSoundChannel3(); gbSoundChannel4(); gbSoundMix(); } else { soundFinalWave[soundBufferIndex++] = 0; soundFinalWave[soundBufferIndex++] = 0; } soundIndex++; if(2*soundBufferIndex >= soundBufferLen) { if(systemSoundOn) { if(soundPaused) { soundResume(); } systemWriteDataToSoundBuffer(); } soundIndex = 0; soundBufferIndex = 0; } } } void gbSoundReset() { soundPaused = 1; soundPlay = 0; SOUND_CLOCK_TICKS = soundQuality * 24; soundTicks = SOUND_CLOCK_TICKS; soundNextPosition = 0; soundMasterOn = 1; soundIndex = 0; soundBufferIndex = 0; soundLevel1 = 7; soundLevel2 = 7; soundVIN = 0; sound1On = 0; sound1ATL = 0; sound1Skip = 0; sound1Index = 0; sound1Continue = 0; sound1EnvelopeVolume = 0; sound1EnvelopeATL = 0; sound1EnvelopeUpDown = 0; sound1EnvelopeATLReload = 0; sound1SweepATL = 0; sound1SweepATLReload = 0; sound1SweepSteps = 0; sound1SweepUpDown = 0; sound1SweepStep = 0; sound1Wave = soundWavePattern[2]; sound2On = 0; sound2ATL = 0; sound2Skip = 0; sound2Index = 0; sound2Continue = 0; sound2EnvelopeVolume = 0; sound2EnvelopeATL = 0; sound2EnvelopeUpDown = 0; sound2EnvelopeATLReload = 0; sound2Wave = soundWavePattern[2]; sound3On = 0; sound3ATL = 0; sound3Skip = 0; sound3Index = 0; sound3Continue = 0; sound3OutputLevel = 0; sound4On = 0; sound4Clock = 0; sound4ATL = 0; sound4Skip = 0; sound4Index = 0; sound4ShiftRight = 0x7f; sound4NSteps = 0; sound4CountDown = 0; sound4Continue = 0; sound4EnvelopeVolume = 0; sound4EnvelopeATL = 0; sound4EnvelopeUpDown = 0; sound4EnvelopeATLReload = 0; // don't translate if(soundDebug) { log("*** Sound Init ***\n"); } gbSoundEvent(0xff10, 0x80); gbSoundEvent(0xff11, 0xbf); gbSoundEvent(0xff12, 0xf3); gbSoundEvent(0xff14, 0xbf); gbSoundEvent(0xff16, 0x3f); gbSoundEvent(0xff17, 0x00); gbSoundEvent(0xff19, 0xbf); gbSoundEvent(0xff1a, 0x7f); gbSoundEvent(0xff1b, 0xff); gbSoundEvent(0xff1c, 0xbf); gbSoundEvent(0xff1e, 0xbf); gbSoundEvent(0xff20, 0xff); gbSoundEvent(0xff21, 0x00); gbSoundEvent(0xff22, 0x00); gbSoundEvent(0xff23, 0xbf); gbSoundEvent(0xff24, 0x77); gbSoundEvent(0xff25, 0xf3); gbSoundEvent(0xff26, 0xf0); // don't translate if(soundDebug) { log("*** Sound Init Complete ***\n"); } sound1On = 0; sound2On = 0; sound3On = 0; sound4On = 0; int addr = 0xff30; while(addr < 0xff40) { gbMemory[addr++] = 0x00; gbMemory[addr++] = 0xff; } memset(soundFinalWave, 0x00, soundBufferLen); memset(soundFilter, 0, sizeof(soundFilter)); soundEchoIndex = 0; } extern bool soundInit(); extern void soundShutdown(); void gbSoundSetQuality(int quality) { if(soundQuality != quality && systemCanChangeSoundQuality()) { if(!soundOffFlag) soundShutdown(); soundQuality = quality; soundNextPosition = 0; if(!soundOffFlag) soundInit(); SOUND_CLOCK_TICKS = (gbSpeed ? 2 : 1) * 24 * soundQuality; soundIndex = 0; soundBufferIndex = 0; } else { soundNextPosition = 0; SOUND_CLOCK_TICKS = (gbSpeed ? 2 : 1) * 24 * soundQuality; soundIndex = 0; soundBufferIndex = 0; } } variable_desc gbSoundSaveStruct[] = { { &soundPaused, sizeof(int) }, { &soundPlay, sizeof(int) }, { &soundTicks, sizeof(int) }, { &SOUND_CLOCK_TICKS, sizeof(int) }, { &soundLevel1, sizeof(int) }, { &soundLevel2, sizeof(int) }, { &soundBalance, sizeof(int) }, { &soundMasterOn, sizeof(int) }, { &soundIndex, sizeof(int) }, { &soundVIN, sizeof(int) }, { &sound1On, sizeof(int) }, { &sound1ATL, sizeof(int) }, { &sound1Skip, sizeof(int) }, { &sound1Index, sizeof(int) }, { &sound1Continue, sizeof(int) }, { &sound1EnvelopeVolume, sizeof(int) }, { &sound1EnvelopeATL, sizeof(int) }, { &sound1EnvelopeATLReload, sizeof(int) }, { &sound1EnvelopeUpDown, sizeof(int) }, { &sound1SweepATL, sizeof(int) }, { &sound1SweepATLReload, sizeof(int) }, { &sound1SweepSteps, sizeof(int) }, { &sound1SweepUpDown, sizeof(int) }, { &sound1SweepStep, sizeof(int) }, { &sound2On, sizeof(int) }, { &sound2ATL, sizeof(int) }, { &sound2Skip, sizeof(int) }, { &sound2Index, sizeof(int) }, { &sound2Continue, sizeof(int) }, { &sound2EnvelopeVolume, sizeof(int) }, { &sound2EnvelopeATL, sizeof(int) }, { &sound2EnvelopeATLReload, sizeof(int) }, { &sound2EnvelopeUpDown, sizeof(int) }, { &sound3On, sizeof(int) }, { &sound3ATL, sizeof(int) }, { &sound3Skip, sizeof(int) }, { &sound3Index, sizeof(int) }, { &sound3Continue, sizeof(int) }, { &sound3OutputLevel, sizeof(int) }, { &sound4On, sizeof(int) }, { &sound4ATL, sizeof(int) }, { &sound4Skip, sizeof(int) }, { &sound4Index, sizeof(int) }, { &sound4Clock, sizeof(int) }, { &sound4ShiftRight, sizeof(int) }, { &sound4ShiftSkip, sizeof(int) }, { &sound4ShiftIndex, sizeof(int) }, { &sound4NSteps, sizeof(int) }, { &sound4CountDown, sizeof(int) }, { &sound4Continue, sizeof(int) }, { &sound4EnvelopeVolume, sizeof(int) }, { &sound4EnvelopeATL, sizeof(int) }, { &sound4EnvelopeATLReload, sizeof(int) }, { &sound4EnvelopeUpDown, sizeof(int) }, { &soundEnableFlag, sizeof(int) }, { NULL, 0 } }; void gbSoundSaveGame(gzFile gzFile) { utilWriteData(gzFile, gbSoundSaveStruct); utilGzWrite(gzFile, soundBuffer, 4*735); utilGzWrite(gzFile, soundFinalWave, 2*735); utilGzWrite(gzFile, &soundQuality, sizeof(int)); } void gbSoundReadGame(int version,gzFile gzFile) { utilReadData(gzFile, gbSoundSaveStruct); soundBufferIndex = soundIndex * 2; utilGzRead(gzFile, soundBuffer, 4*735); utilGzRead(gzFile, soundFinalWave, 2*735); if(version >=7) { int quality = 1; utilGzRead(gzFile, &quality, sizeof(int)); gbSoundSetQuality(quality); } else { soundQuality = -1; gbSoundSetQuality(1); } sound1Wave = soundWavePattern[gbMemory[NR11] >> 6]; sound2Wave = soundWavePattern[gbMemory[NR21] >> 6]; }