// Gb_Snd_Emu 0.2.0. http://www.slack.net/~ant/ #include "Gb_Apu.h" /* Copyright (C) 2003-2007 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "blargg_source.h" bool const cgb_02 = false; // enables bug in early CGB units that causes problems in some games bool const cgb_05 = false; // enables CGB-05 zombie behavior int const trigger_mask = 0x80; int const length_enabled = 0x40; void Gb_Osc::reset() { output = 0; last_amp = 0; delay = 0; phase = 0; enabled = false; } inline void Gb_Osc::update_amp( blip_time_t time, int new_amp ) { output->set_modified(); int delta = new_amp - last_amp; if ( delta ) { last_amp = new_amp; med_synth->offset( time, delta, output ); } } // Units void Gb_Osc::clock_length() { if ( (regs [4] & length_enabled) && length_ctr ) { if ( --length_ctr <= 0 ) enabled = false; } } inline int Gb_Env::reload_env_timer() { int raw = regs [2] & 7; env_delay = (raw ? raw : 8); return raw; } void Gb_Env::clock_envelope() { if ( env_enabled && --env_delay <= 0 && reload_env_timer() ) { int v = volume + (regs [2] & 0x08 ? +1 : -1); if ( 0 <= v && v <= 15 ) volume = v; else env_enabled = false; } } inline void Gb_Sweep_Square::reload_sweep_timer() { sweep_delay = (regs [0] & period_mask) >> 4; if ( !sweep_delay ) sweep_delay = 8; } void Gb_Sweep_Square::calc_sweep( bool update ) { int const shift = regs [0] & shift_mask; int const delta = sweep_freq >> shift; sweep_neg = (regs [0] & 0x08) != 0; int const freq = sweep_freq + (sweep_neg ? -delta : delta); if ( freq > 0x7FF ) { enabled = false; } else if ( shift && update ) { sweep_freq = freq; regs [3] = freq & 0xFF; regs [4] = (regs [4] & ~0x07) | (freq >> 8 & 0x07); } } void Gb_Sweep_Square::clock_sweep() { if ( --sweep_delay <= 0 ) { reload_sweep_timer(); if ( sweep_enabled && (regs [0] & period_mask) ) { calc_sweep( true ); calc_sweep( false ); } } } int Gb_Wave::access( unsigned addr ) const { if ( enabled ) { addr = phase & (bank_size - 1); if ( mode == Gb_Apu::mode_dmg ) { addr++; if ( delay > clk_mul ) return -1; // can only access within narrow time window while playing } addr >>= 1; } return addr & 0x0F; } // write_register int Gb_Osc::write_trig( int frame_phase, int max_len, int old_data ) { int data = regs [4]; if ( (frame_phase & 1) && !(old_data & length_enabled) && length_ctr ) { if ( (data & length_enabled) || cgb_02 ) length_ctr--; } if ( data & trigger_mask ) { enabled = true; if ( !length_ctr ) { length_ctr = max_len; if ( (frame_phase & 1) && (data & length_enabled) ) length_ctr--; } } if ( !length_ctr ) enabled = false; return data & trigger_mask; } inline void Gb_Env::zombie_volume( int old, int data ) { int v = volume; if ( mode == Gb_Apu::mode_agb || cgb_05 ) { // CGB-05 behavior, very close to AGB behavior as well if ( (old ^ data) & 8 ) { if ( !(old & 8) ) { v++; if ( old & 7 ) v++; } v = 16 - v; } else if ( (old & 0x0F) == 8 ) { v++; } } else { // CGB-04&02 behavior, very close to MGB behavior as well if ( !(old & 7) && env_enabled ) v++; else if ( !(old & 8) ) v += 2; if ( (old ^ data) & 8 ) v = 16 - v; } volume = v & 0x0F; } bool Gb_Env::write_register( int frame_phase, int reg, int old, int data ) { int const max_len = 64; switch ( reg ) { case 1: length_ctr = max_len - (data & (max_len - 1)); break; case 2: if ( !dac_enabled() ) enabled = false; zombie_volume( old, data ); if ( (data & 7) && env_delay == 8 ) { env_delay = 1; clock_envelope(); // TODO: really happens at next length clock } break; case 4: if ( write_trig( frame_phase, max_len, old ) ) { volume = regs [2] >> 4; reload_env_timer(); env_enabled = true; if ( frame_phase == 7 ) env_delay++; if ( !dac_enabled() ) enabled = false; return true; } } return false; } bool Gb_Square::write_register( int frame_phase, int reg, int old_data, int data ) { bool result = Gb_Env::write_register( frame_phase, reg, old_data, data ); if ( result ) delay = (delay & (4 * clk_mul - 1)) + period(); return result; } inline void Gb_Noise::write_register( int frame_phase, int reg, int old_data, int data ) { if ( Gb_Env::write_register( frame_phase, reg, old_data, data ) ) { phase = 0x7FFF; delay += 8 * clk_mul; } } inline void Gb_Sweep_Square::write_register( int frame_phase, int reg, int old_data, int data ) { if ( reg == 0 && sweep_enabled && sweep_neg && !(data & 0x08) ) enabled = false; // sweep negate disabled after used if ( Gb_Square::write_register( frame_phase, reg, old_data, data ) ) { sweep_freq = frequency(); sweep_neg = false; reload_sweep_timer(); sweep_enabled = (regs [0] & (period_mask | shift_mask)) != 0; if ( regs [0] & shift_mask ) calc_sweep( false ); } } void Gb_Wave::corrupt_wave() { int pos = ((phase + 1) & (bank_size - 1)) >> 1; if ( pos < 4 ) wave_ram [0] = wave_ram [pos]; else for ( int i = 4; --i >= 0; ) wave_ram [i] = wave_ram [(pos & ~3) + i]; } inline void Gb_Wave::write_register( int frame_phase, int reg, int old_data, int data ) { int const max_len = 256; switch ( reg ) { case 0: if ( !dac_enabled() ) enabled = false; break; case 1: length_ctr = max_len - data; break; case 4: bool was_enabled = enabled; if ( write_trig( frame_phase, max_len, old_data ) ) { if ( !dac_enabled() ) enabled = false; else if ( mode == Gb_Apu::mode_dmg && was_enabled && (unsigned) (delay - 2 * clk_mul) < 2 * clk_mul ) corrupt_wave(); phase = 0; delay = period() + 6 * clk_mul; } } } void Gb_Apu::write_osc( int index, int reg, int old_data, int data ) { reg -= index * 5; switch ( index ) { case 0: square1.write_register( frame_phase, reg, old_data, data ); break; case 1: square2.write_register( frame_phase, reg, old_data, data ); break; case 2: wave .write_register( frame_phase, reg, old_data, data ); break; case 3: noise .write_register( frame_phase, reg, old_data, data ); break; } } // Synthesis void Gb_Square::run( blip_time_t time, blip_time_t end_time ) { // Calc duty and phase static byte const duty_offsets [4] = { 1, 1, 3, 7 }; static byte const duties [4] = { 1, 2, 4, 6 }; int const duty_code = regs [1] >> 6; int duty_offset = duty_offsets [duty_code]; int duty = duties [duty_code]; if ( mode == Gb_Apu::mode_agb ) { // AGB uses inverted duty duty_offset -= duty; duty = 8 - duty; } int ph = (this->phase + duty_offset) & 7; // Determine what will be generated int vol = 0; Blip_Buffer* const out = this->output; if ( out ) { int amp = dac_off_amp; if ( dac_enabled() ) { if ( enabled ) vol = this->volume; amp = -dac_bias; if ( mode == Gb_Apu::mode_agb ) amp = -(vol >> 1); // Play inaudible frequencies as constant amplitude if ( frequency() >= 0x7FA && delay < 32 * clk_mul ) { amp += (vol * duty) >> 3; vol = 0; } if ( ph < duty ) { amp += vol; vol = -vol; } } update_amp( time, amp ); } // Generate wave time += delay; if ( time < end_time ) { int const per = this->period(); if ( !vol ) { // Maintain phase when not playing int count = (end_time - time + per - 1) / per; ph += count; // will be masked below time += (blip_time_t) count * per; } else { // Output amplitude transitions int delta = vol; do { ph = (ph + 1) & 7; if ( ph == 0 || ph == duty ) { good_synth->offset_inline( time, delta, out ); delta = -delta; } time += per; } while ( time < end_time ); if ( delta != vol ) last_amp -= delta; } this->phase = (ph - duty_offset) & 7; } delay = time - end_time; } // Quickly runs LFSR for a large number of clocks. For use when noise is generating // no sound. static unsigned run_lfsr( unsigned s, unsigned mask, int count ) { bool const optimized = true; // set to false to use only unoptimized loop in middle // optimization used in several places: // ((s & (1 << b)) << n) ^ ((s & (1 << b)) << (n + 1)) = (s & (1 << b)) * (3 << n) if ( mask == 0x4000 && optimized ) { if ( count >= 32767 ) count %= 32767; // Convert from Fibonacci to Galois configuration, // shifted left 1 bit s ^= (s & 1) * 0x8000; // Each iteration is equivalent to clocking LFSR 255 times while ( (count -= 255) > 0 ) s ^= ((s & 0xE) << 12) ^ ((s & 0xE) << 11) ^ (s >> 3); count += 255; // Each iteration is equivalent to clocking LFSR 15 times // (interesting similarity to single clocking below) while ( (count -= 15) > 0 ) s ^= ((s & 2) * (3 << 13)) ^ (s >> 1); count += 15; // Remaining singles while ( --count >= 0 ) s = ((s & 2) * (3 << 13)) ^ (s >> 1); // Convert back to Fibonacci configuration s &= 0x7FFF; } else if ( count < 8 || !optimized ) { // won't fully replace upper 8 bits, so have to do the unoptimized way while ( --count >= 0 ) s = (s >> 1 | mask) ^ (mask & -((s - 1) & 2)); } else { if ( count > 127 ) { count %= 127; if ( !count ) count = 127; // must run at least once } // Need to keep one extra bit of history s = s << 1 & 0xFF; // Convert from Fibonacci to Galois configuration, // shifted left 2 bits s ^= (s & 2) * 0x80; // Each iteration is equivalent to clocking LFSR 7 times // (interesting similarity to single clocking below) while ( (count -= 7) > 0 ) s ^= ((s & 4) * (3 << 5)) ^ (s >> 1); count += 7; // Remaining singles while ( --count >= 0 ) s = ((s & 4) * (3 << 5)) ^ (s >> 1); // Convert back to Fibonacci configuration and // repeat last 8 bits above significant 7 s = (s << 7 & 0x7F80) | (s >> 1 & 0x7F); } return s; } void Gb_Noise::run( blip_time_t time, blip_time_t end_time ) { // Determine what will be generated int vol = 0; Blip_Buffer* const out = this->output; if ( out ) { int amp = dac_off_amp; if ( dac_enabled() ) { if ( enabled ) vol = this->volume; amp = -dac_bias; if ( mode == Gb_Apu::mode_agb ) amp = -(vol >> 1); if ( !(phase & 1) ) { amp += vol; vol = -vol; } } // AGB negates final output if ( mode == Gb_Apu::mode_agb ) { vol = -vol; amp = -amp; } update_amp( time, amp ); } // Run timer and calculate time of next LFSR clock static byte const period1s [8] = { 1, 2, 4, 6, 8, 10, 12, 14 }; int const period1 = period1s [regs [3] & 7] * clk_mul; { int extra = (end_time - time) - delay; int const per2 = this->period2(); time += delay + ((divider ^ (per2 >> 1)) & (per2 - 1)) * period1; int count = (extra < 0 ? 0 : (extra + period1 - 1) / period1); divider = (divider - count) & period2_mask; delay = count * period1 - extra; } // Generate wave if ( time < end_time ) { unsigned const mask = this->lfsr_mask(); unsigned bits = this->phase; int per = period2( period1 * 8 ); if ( period2_index() >= 0xE ) { time = end_time; } else if ( !vol ) { // Maintain phase when not playing int count = (end_time - time + per - 1) / per; time += (blip_time_t) count * per; bits = run_lfsr( bits, ~mask, count ); } else { // Output amplitude transitions int delta = -vol; do { unsigned changed = bits + 1; bits = bits >> 1 & mask; if ( changed & 2 ) { bits |= ~mask; delta = -delta; med_synth->offset_inline( time, delta, out ); } time += per; } while ( time < end_time ); if ( delta == vol ) last_amp += delta; } this->phase = bits; } } void Gb_Wave::run( blip_time_t time, blip_time_t end_time ) { // Calc volume static byte const volumes [8] = { 0, 4, 2, 1, 3, 3, 3, 3 }; int const volume_shift = 2; int const volume_idx = regs [2] >> 5 & (agb_mask | 3); // 2 bits on DMG/CGB, 3 on AGB int const volume_mul = volumes [volume_idx]; // Determine what will be generated int playing = false; Blip_Buffer* const out = this->output; if ( out ) { int amp = dac_off_amp; if ( dac_enabled() ) { // Play inaudible frequencies as constant amplitude amp = 8 << 4; // really depends on average of all samples in wave // if delay is larger, constant amplitude won't start yet if ( frequency() <= 0x7FB || delay > 15 * clk_mul ) { if ( volume_mul ) playing = (int) enabled; amp = (sample_buf << (phase << 2 & 4) & 0xF0) * playing; } amp = ((amp * volume_mul) >> (volume_shift + 4)) - dac_bias; } update_amp( time, amp ); } // Generate wave time += delay; if ( time < end_time ) { byte const* wave = this->wave_ram; // wave size and bank int const size20_mask = 0x20; int const flags = regs [0] & agb_mask; int const wave_mask = (flags & size20_mask) | 0x1F; int swap_banks = 0; if ( flags & bank40_mask ) { swap_banks = flags & size20_mask; wave += bank_size/2 - (swap_banks >> 1); } int ph = this->phase ^ swap_banks; ph = (ph + 1) & wave_mask; // pre-advance int const per = this->period(); if ( !playing ) { // Maintain phase when not playing int count = (end_time - time + per - 1) / per; ph += count; // will be masked below time += (blip_time_t) count * per; } else { // Output amplitude transitions int lamp = this->last_amp + dac_bias; do { // Extract nybble int nybble = wave [ph >> 1] << (ph << 2 & 4) & 0xF0; ph = (ph + 1) & wave_mask; // Scale by volume int amp = (nybble * volume_mul) >> (volume_shift + 4); int delta = amp - lamp; if ( delta ) { lamp = amp; med_synth->offset_inline( time, delta, out ); } time += per; } while ( time < end_time ); this->last_amp = lamp - dac_bias; } ph = (ph - 1) & wave_mask; // undo pre-advance and mask position // Keep track of last byte read if ( enabled ) sample_buf = wave [ph >> 1]; this->phase = ph ^ swap_banks; // undo swapped banks } delay = time - end_time; }