#include #include "Sound.h" #include "GBA.h" #include "Globals.h" #include "../Util.h" #include "../common/Port.h" #include "../apu/Gb_Apu.h" #include "../apu/Multi_Buffer.h" #include "../common/SoundDriver.h" #define NR10 0x60 #define NR11 0x62 #define NR12 0x63 #define NR13 0x64 #define NR14 0x65 #define NR21 0x68 #define NR22 0x69 #define NR23 0x6c #define NR24 0x6d #define NR30 0x70 #define NR31 0x72 #define NR32 0x73 #define NR33 0x74 #define NR34 0x75 #define NR41 0x78 #define NR42 0x79 #define NR43 0x7c #define NR44 0x7d #define NR50 0x80 #define NR51 0x81 #define NR52 0x84 SoundDriver * soundDriver = 0; extern bool stopState; // TODO: silence sound when true int const SOUND_CLOCK_TICKS_ = 167772; // 1/100 second static u16 soundFinalWave [1600]; long soundSampleRate = 44100; bool soundInterpolation = true; bool soundPaused = true; float soundFiltering = 0.5f; int SOUND_CLOCK_TICKS = SOUND_CLOCK_TICKS_; int soundTicks = SOUND_CLOCK_TICKS_; static float soundVolume = 1.0f; static int soundEnableFlag = 0x3ff; // emulator channels enabled static float soundFiltering_ = -1; static float soundVolume_ = -1; void interp_rate() { /* empty for now */ } class Gba_Pcm { public: void init(); void apply_control( int idx ); void update( int dac ); void end_frame( blip_time_t ); private: Blip_Buffer* output; blip_time_t last_time; int last_amp; int shift; }; class Gba_Pcm_Fifo { public: int which; Gba_Pcm pcm; void write_control( int data ); void write_fifo( int data ); void timer_overflowed( int which_timer ); // public only so save state routines can access it int readIndex; int count; int writeIndex; u8 fifo [32]; int dac; private: int timer; bool enabled; }; static Gba_Pcm_Fifo pcm [2]; static Gb_Apu* gb_apu; static Stereo_Buffer* stereo_buffer; static Blip_Synth pcm_synth [3]; // 32 kHz, 16 kHz, 8 kHz static inline blip_time_t blip_time() { return SOUND_CLOCK_TICKS - soundTicks; } void Gba_Pcm::init() { output = 0; last_time = 0; last_amp = 0; shift = 0; } void Gba_Pcm::apply_control( int idx ) { shift = ~ioMem [SGCNT0_H] >> (2 + idx) & 1; int ch = 0; if ( (soundEnableFlag >> idx & 0x100) && (ioMem [NR52] & 0x80) ) ch = ioMem [SGCNT0_H+1] >> (idx * 4) & 3; Blip_Buffer* out = 0; switch ( ch ) { case 1: out = stereo_buffer->right(); break; case 2: out = stereo_buffer->left(); break; case 3: out = stereo_buffer->center(); break; } if ( output != out ) { if ( output ) { output->set_modified(); pcm_synth [0].offset( blip_time(), -last_amp, output ); } last_amp = 0; output = out; } } void Gba_Pcm::end_frame( blip_time_t time ) { last_time -= time; if ( last_time < -2048 ) last_time = -2048; if ( output ) output->set_modified(); } void Gba_Pcm::update( int dac ) { if ( output ) { blip_time_t time = blip_time(); dac = (s8) dac >> shift; int delta = dac - last_amp; if ( delta ) { last_amp = dac; int filter = 0; if ( soundInterpolation ) { // base filtering on how long since last sample was output int period = time - last_time; int idx = (unsigned) period / 512; if ( idx >= 3 ) idx = 3; static int const filters [4] = { 0, 0, 1, 2 }; filter = filters [idx]; } pcm_synth [filter].offset( time, delta, output ); } last_time = time; } } void Gba_Pcm_Fifo::timer_overflowed( int which_timer ) { if ( which_timer == timer && enabled ) { /* Mother 3 fix, refined to not break Metroid Fusion */ if ( count == 16 || count == 0 ) { // Need to fill FIFO int saved_count = count; CPUCheckDMA( 3, which ? 4 : 2 ); if ( saved_count == 0 && count == 16 ) CPUCheckDMA( 3, which ? 4 : 2 ); if ( count == 0 ) { // Not filled by DMA, so fill with 16 bytes of silence int reg = which ? FIFOB_L : FIFOA_L; for ( int n = 8; n--; ) { soundEvent(reg , (u16)0); soundEvent(reg+2, (u16)0); } } } // Read next sample from FIFO count--; dac = fifo [readIndex]; readIndex = (readIndex + 1) & 31; pcm.update( dac ); } } void Gba_Pcm_Fifo::write_control( int data ) { enabled = (data & 0x0300) ? true : false; timer = (data & 0x0400) ? 1 : 0; if ( data & 0x0800 ) { // Reset writeIndex = 0; readIndex = 0; count = 0; dac = 0; memset( fifo, 0, sizeof fifo ); } pcm.apply_control( which ); pcm.update( dac ); } void Gba_Pcm_Fifo::write_fifo( int data ) { fifo [writeIndex ] = data & 0xFF; fifo [writeIndex+1] = data >> 8; count += 2; writeIndex = (writeIndex + 2) & 31; } static void apply_control() { pcm [0].pcm.apply_control( 0 ); pcm [1].pcm.apply_control( 1 ); } static int gba_to_gb_sound( int addr ) { static const int table [0x40] = { 0xFF10, 0,0xFF11,0xFF12,0xFF13,0xFF14, 0, 0, 0xFF16,0xFF17, 0, 0,0xFF18,0xFF19, 0, 0, 0xFF1A, 0,0xFF1B,0xFF1C,0xFF1D,0xFF1E, 0, 0, 0xFF20,0xFF21, 0, 0,0xFF22,0xFF23, 0, 0, 0xFF24,0xFF25, 0, 0,0xFF26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF30,0xFF31,0xFF32,0xFF33,0xFF34,0xFF35,0xFF36,0xFF37, 0xFF38,0xFF39,0xFF3A,0xFF3B,0xFF3C,0xFF3D,0xFF3E,0xFF3F, }; if ( addr >= 0x60 && addr < 0xA0 ) return table [addr - 0x60]; return 0; } void soundEvent(u32 address, u8 data) { int gb_addr = gba_to_gb_sound( address ); if ( gb_addr ) { ioMem[address] = data; gb_apu->write_register( blip_time(), gb_addr, data ); if ( address == NR52 ) apply_control(); } // TODO: what about byte writes to SGCNT0_H etc.? } static void apply_volume( bool apu_only = false ) { if ( !apu_only ) soundVolume_ = soundVolume; if ( gb_apu ) { static float const apu_vols [4] = { 0.25, 0.5, 1, 0.25 }; gb_apu->volume( soundVolume_ * apu_vols [ioMem [SGCNT0_H] & 3] ); } if ( !apu_only ) { for ( int i = 0; i < 3; i++ ) pcm_synth [i].volume( 0.66 / 256 * soundVolume_ ); } } static void write_SGCNT0_H( int data ) { WRITE16LE( &ioMem [SGCNT0_H], data & 0x770F ); pcm [0].write_control( data ); pcm [1].write_control( data >> 4 ); apply_volume( true ); } void soundEvent(u32 address, u16 data) { switch ( address ) { case SGCNT0_H: write_SGCNT0_H( data ); break; case FIFOA_L: case FIFOA_H: pcm [0].write_fifo( data ); WRITE16LE( &ioMem[address], data ); break; case FIFOB_L: case FIFOB_H: pcm [1].write_fifo( data ); WRITE16LE( &ioMem[address], data ); break; case 0x88: data &= 0xC3FF; WRITE16LE( &ioMem[address], data ); break; default: soundEvent( address & ~1, (u8) (data ) ); // even soundEvent( address | 1, (u8) (data >> 8) ); // odd break; } } void soundTimerOverflow(int timer) { pcm [0].timer_overflowed( timer ); pcm [1].timer_overflowed( timer ); } static void end_frame( blip_time_t time ) { pcm [0].pcm.end_frame( time ); pcm [1].pcm.end_frame( time ); gb_apu ->end_frame( time ); stereo_buffer->end_frame( time ); } void flush_samples(Multi_Buffer * buffer) { #ifdef __LIBRETRO__ int numSamples = buffer->read_samples( (blip_sample_t*) soundFinalWave, buffer->samples_avail() ); soundDriver->write(soundFinalWave, numSamples); systemOnWriteDataToSoundBuffer(soundFinalWave, numSamples); #else // We want to write the data frame by frame to support legacy audio drivers // that don't use the length parameter of the write method. // TODO: Update the Win32 audio drivers (DS, OAL, XA2), and flush all the // samples at once to help reducing the audio delay on all platforms. int soundBufferLen = ( soundSampleRate / 60 ) * 4; // soundBufferLen should have a whole number of sample pairs assert( soundBufferLen % (2 * sizeof *soundFinalWave) == 0 ); // number of samples in output buffer int const out_buf_size = soundBufferLen / sizeof *soundFinalWave; // Keep filling and writing soundFinalWave until it can't be fully filled while ( buffer->samples_avail() >= out_buf_size ) { buffer->read_samples( (blip_sample_t*) soundFinalWave, out_buf_size ); if(soundPaused) soundResume(); soundDriver->write(soundFinalWave, soundBufferLen); systemOnWriteDataToSoundBuffer(soundFinalWave, soundBufferLen); } #endif } static void apply_filtering() { soundFiltering_ = soundFiltering; int const base_freq = (int) (32768 - soundFiltering_ * 16384); int const nyquist = stereo_buffer->sample_rate() / 2; for ( int i = 0; i < 3; i++ ) { int cutoff = base_freq >> i; if ( cutoff > nyquist ) cutoff = nyquist; pcm_synth [i].treble_eq( blip_eq_t( 0, 0, stereo_buffer->sample_rate(), cutoff ) ); } } void psoundTickfn() { if ( gb_apu && stereo_buffer ) { // Run sound hardware to present end_frame( SOUND_CLOCK_TICKS ); flush_samples(stereo_buffer); if ( soundFiltering_ != soundFiltering ) apply_filtering(); if ( soundVolume_ != soundVolume ) apply_volume(); } } static void apply_muting() { if ( !stereo_buffer || !ioMem ) return; // PCM apply_control(); if ( gb_apu ) { // APU for ( int i = 0; i < 4; i++ ) { if ( soundEnableFlag >> i & 1 ) gb_apu->set_output( stereo_buffer->center(), stereo_buffer->left(), stereo_buffer->right(), i ); else gb_apu->set_output( 0, 0, 0, i ); } } } static void reset_apu() { gb_apu->reset( gb_apu->mode_agb, true ); if ( stereo_buffer ) stereo_buffer->clear(); soundTicks = SOUND_CLOCK_TICKS; } static void remake_stereo_buffer() { if ( !ioMem ) return; // Clears pointers kept to old stereo_buffer pcm [0].pcm.init(); pcm [1].pcm.init(); // APU if ( !gb_apu ) { gb_apu = new Gb_Apu; // TODO: handle out of memory reset_apu(); } // Stereo_Buffer delete stereo_buffer; stereo_buffer = 0; stereo_buffer = new Stereo_Buffer; // TODO: handle out of memory stereo_buffer->set_sample_rate( soundSampleRate ); // TODO: handle out of memory stereo_buffer->clock_rate( gb_apu->clock_rate ); // PCM pcm [0].which = 0; pcm [1].which = 1; apply_filtering(); // Volume Level apply_muting(); apply_volume(); } void soundShutdown() { if (soundDriver) { delete soundDriver; soundDriver = 0; } systemOnSoundShutdown(); } void soundPause() { soundPaused = true; if (soundDriver) soundDriver->pause(); } void soundResume() { soundPaused = false; if (soundDriver) soundDriver->resume(); } void soundSetVolume( float volume ) { soundVolume = volume; } float soundGetVolume() { return soundVolume; } void soundSetEnable(int channels) { soundEnableFlag = channels; apply_muting(); } int soundGetEnable() { return (soundEnableFlag & 0x30f); } void soundReset() { soundDriver->reset(); remake_stereo_buffer(); reset_apu(); soundPaused = true; SOUND_CLOCK_TICKS = SOUND_CLOCK_TICKS_; soundTicks = SOUND_CLOCK_TICKS_; soundEvent( NR52, (u8) 0x80 ); } bool soundInit() { soundDriver = systemSoundInit(); if ( !soundDriver ) return false; if (!soundDriver->init(soundSampleRate)) return false; soundPaused = true; return true; } void soundSetThrottle(unsigned short throttle) { if(!soundDriver) return; soundDriver->setThrottle(throttle); } long soundGetSampleRate() { return soundSampleRate; } void soundSetSampleRate(long sampleRate) { if ( soundSampleRate != sampleRate ) { if ( systemCanChangeSoundQuality() ) { soundShutdown(); soundSampleRate = sampleRate; soundInit(); } else { soundSampleRate = sampleRate; } remake_stereo_buffer(); } } static int dummy_state [16]; #define SKIP( type, name ) { dummy_state, sizeof (type) } #define LOAD( type, name ) { &name, sizeof (type) } static struct { gb_apu_state_t apu; // old state u8 soundDSAValue; int soundDSBValue; } state; // Old GBA sound state format static variable_desc old_gba_state [] = { SKIP( int, soundPaused ), SKIP( int, soundPlay ), SKIP( int, soundTicks ), SKIP( int, SOUND_CLOCK_TICKS ), SKIP( int, soundLevel1 ), SKIP( int, soundLevel2 ), SKIP( int, soundBalance ), SKIP( int, soundMasterOn ), SKIP( int, soundIndex ), SKIP( int, sound1On ), SKIP( int, sound1ATL ), SKIP( int, sound1Skip ), SKIP( int, sound1Index ), SKIP( int, sound1Continue ), SKIP( int, sound1EnvelopeVolume ), SKIP( int, sound1EnvelopeATL ), SKIP( int, sound1EnvelopeATLReload ), SKIP( int, sound1EnvelopeUpDown ), SKIP( int, sound1SweepATL ), SKIP( int, sound1SweepATLReload ), SKIP( int, sound1SweepSteps ), SKIP( int, sound1SweepUpDown ), SKIP( int, sound1SweepStep ), SKIP( int, sound2On ), SKIP( int, sound2ATL ), SKIP( int, sound2Skip ), SKIP( int, sound2Index ), SKIP( int, sound2Continue ), SKIP( int, sound2EnvelopeVolume ), SKIP( int, sound2EnvelopeATL ), SKIP( int, sound2EnvelopeATLReload ), SKIP( int, sound2EnvelopeUpDown ), SKIP( int, sound3On ), SKIP( int, sound3ATL ), SKIP( int, sound3Skip ), SKIP( int, sound3Index ), SKIP( int, sound3Continue ), SKIP( int, sound3OutputLevel ), SKIP( int, sound4On ), SKIP( int, sound4ATL ), SKIP( int, sound4Skip ), SKIP( int, sound4Index ), SKIP( int, sound4Clock ), SKIP( int, sound4ShiftRight ), SKIP( int, sound4ShiftSkip ), SKIP( int, sound4ShiftIndex ), SKIP( int, sound4NSteps ), SKIP( int, sound4CountDown ), SKIP( int, sound4Continue ), SKIP( int, sound4EnvelopeVolume ), SKIP( int, sound4EnvelopeATL ), SKIP( int, sound4EnvelopeATLReload ), SKIP( int, sound4EnvelopeUpDown ), LOAD( int, soundEnableFlag ), SKIP( int, soundControl ), LOAD( int, pcm [0].readIndex ), LOAD( int, pcm [0].count ), LOAD( int, pcm [0].writeIndex ), SKIP( u8, soundDSAEnabled ), // was bool, which was one byte on MS compiler SKIP( int, soundDSATimer ), LOAD( u8 [32], pcm [0].fifo ), LOAD( u8, state.soundDSAValue ), LOAD( int, pcm [1].readIndex ), LOAD( int, pcm [1].count ), LOAD( int, pcm [1].writeIndex ), SKIP( int, soundDSBEnabled ), SKIP( int, soundDSBTimer ), LOAD( u8 [32], pcm [1].fifo ), LOAD( int, state.soundDSBValue ), // skipped manually //LOAD( int, soundBuffer[0][0], 6*735 }, //LOAD( int, soundFinalWave[0], 2*735 }, { NULL, 0 } }; variable_desc old_gba_state2 [] = { LOAD( u8 [0x20], state.apu.regs [0x20] ), SKIP( int, sound3Bank ), SKIP( int, sound3DataSize ), SKIP( int, sound3ForcedOutput ), { NULL, 0 } }; // New state format static variable_desc gba_state [] = { // PCM LOAD( int, pcm [0].readIndex ), LOAD( int, pcm [0].count ), LOAD( int, pcm [0].writeIndex ), LOAD(u8[32],pcm[0].fifo ), LOAD( int, pcm [0].dac ), SKIP( int [4], room_for_expansion ), LOAD( int, pcm [1].readIndex ), LOAD( int, pcm [1].count ), LOAD( int, pcm [1].writeIndex ), LOAD(u8[32],pcm[1].fifo ), LOAD( int, pcm [1].dac ), SKIP( int [4], room_for_expansion ), // APU LOAD( u8 [0x40], state.apu.regs ), // last values written to registers and wave RAM (both banks) LOAD( int, state.apu.frame_time ), // clocks until next frame sequencer action LOAD( int, state.apu.frame_phase ), // next step frame sequencer will run LOAD( int, state.apu.sweep_freq ), // sweep's internal frequency register LOAD( int, state.apu.sweep_delay ), // clocks until next sweep action LOAD( int, state.apu.sweep_enabled ), LOAD( int, state.apu.sweep_neg ), // obscure internal flag LOAD( int, state.apu.noise_divider ), LOAD( int, state.apu.wave_buf ), // last read byte of wave RAM LOAD( int [4], state.apu.delay ), // clocks until next channel action LOAD( int [4], state.apu.length_ctr ), LOAD( int [4], state.apu.phase ), // square/wave phase, noise LFSR LOAD( int [4], state.apu.enabled ), // internal enabled flag LOAD( int [3], state.apu.env_delay ), // clocks until next envelope action LOAD( int [3], state.apu.env_volume ), LOAD( int [3], state.apu.env_enabled ), SKIP( int [13], room_for_expansion ), // Emulator LOAD( int, soundEnableFlag ), SKIP( int [15], room_for_expansion ), { NULL, 0 } }; // Reads and discards count bytes from in static void skip_read( gzFile in, int count ) { char buf [512]; while ( count ) { int n = sizeof buf; if ( n > count ) n = count; count -= n; utilGzRead( in, buf, n ); } } #ifdef __LIBRETRO__ void soundSaveGame( u8 *&out ) #else void soundSaveGame( gzFile out ) #endif { gb_apu->save_state( &state.apu ); // Be sure areas for expansion get written as zero memset( dummy_state, 0, sizeof dummy_state ); #ifdef __LIBRETRO__ utilWriteDataMem( out, gba_state ); #else utilWriteData( out, gba_state ); #endif } #ifndef __LIBRETRO__ static void soundReadGameOld( gzFile in, int version ) { // Read main data utilReadData( in, old_gba_state ); skip_read( in, 6*735 + 2*735 ); // Copy APU regs static int const regs_to_copy [] = { NR10, NR11, NR12, NR13, NR14, NR21, NR22, NR23, NR24, NR30, NR31, NR32, NR33, NR34, NR41, NR42, NR43, NR44, NR50, NR51, NR52, -1 }; ioMem [NR52] |= 0x80; // old sound played even when this wasn't set (power on) for ( int i = 0; regs_to_copy [i] >= 0; i++ ) state.apu.regs [gba_to_gb_sound( regs_to_copy [i] ) - 0xFF10] = ioMem [regs_to_copy [i]]; // Copy wave RAM to both banks memcpy( &state.apu.regs [0x20], &ioMem [0x90], 0x10 ); memcpy( &state.apu.regs [0x30], &ioMem [0x90], 0x10 ); // Read both banks of wave RAM if available if ( version >= SAVE_GAME_VERSION_3 ) utilReadData( in, old_gba_state2 ); // Restore PCM pcm [0].dac = state.soundDSAValue; pcm [1].dac = state.soundDSBValue; (void) utilReadInt( in ); // ignore quality } #endif #include #ifdef __LIBRETRO__ void soundReadGame(const u8*& in, int version ) #else void soundReadGame( gzFile in, int version ) #endif { // Prepare APU and default state reset_apu(); gb_apu->save_state( &state.apu ); if ( version > SAVE_GAME_VERSION_9 ) #ifdef __LIBRETRO__ utilReadDataMem( in, gba_state ); #else utilReadData( in, gba_state ); else soundReadGameOld( in, version ); #endif gb_apu->load_state( state.apu ); write_SGCNT0_H( READ16LE( &ioMem [SGCNT0_H] ) & 0x770F ); apply_muting(); }