// Blip_Buffer 0.4.1. http://www.slack.net/~ant/ #include "Blip_Buffer.h" #include #include #include #include #include /* Copyright (C) 2003-2007 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ // TODO: use scoped for variables in treble_eq() #ifdef BLARGG_ENABLE_OPTIMIZER #include BLARGG_ENABLE_OPTIMIZER #endif int const silent_buf_size = 1; // size used for Silent_Blip_Buffer Blip_Buffer::Blip_Buffer() { factor_ = LONG_MAX; buffer_ = 0; buffer_size_ = 0; sample_rate_ = 0; bass_shift_ = 0; clock_rate_ = 0; bass_freq_ = 16; length_ = 0; // assumptions code makes about implementation-defined features #ifndef NDEBUG // right shift of negative value preserves sign buf_t_ i = -0x7FFFFFFE; assert( (i >> 1) == -0x3FFFFFFF ); // casting to short truncates to 16 bits and sign-extends i = 0x18000; assert( (short) i == -0x8000 ); #endif clear(); } Blip_Buffer::~Blip_Buffer() { if ( buffer_size_ != silent_buf_size ) free( buffer_ ); } Silent_Blip_Buffer::Silent_Blip_Buffer() { factor_ = 0; buffer_ = buf; buffer_size_ = silent_buf_size; clear(); } void Blip_Buffer::clear( int entire_buffer ) { offset_ = 0; reader_accum_ = 0; modified_ = 0; if ( buffer_ ) { long count = (entire_buffer ? buffer_size_ : samples_avail()); memset( buffer_, 0, (count + blip_buffer_extra_) * sizeof (buf_t_) ); } } Blip_Buffer::blargg_err_t Blip_Buffer::set_sample_rate( long new_rate, int msec ) { if ( buffer_size_ == silent_buf_size ) { assert( 0 ); return "Internal (tried to resize Silent_Blip_Buffer)"; } // start with maximum length that resampled time can represent long new_size = (ULONG_MAX >> BLIP_BUFFER_ACCURACY) - blip_buffer_extra_ - 64; if ( msec != blip_max_length ) { long s = (new_rate * (msec + 1) + 999) / 1000; if ( s < new_size ) new_size = s; else assert( 0 ); // fails if requested buffer length exceeds limit } if ( buffer_size_ != new_size ) { void* p = realloc( buffer_, (new_size + blip_buffer_extra_) * sizeof *buffer_ ); if ( !p ) return "Out of memory"; buffer_ = (buf_t_*) p; } buffer_size_ = new_size; assert( buffer_size_ != silent_buf_size ); // size should never happen to match this // update things based on the sample rate sample_rate_ = new_rate; length_ = new_size * 1000 / new_rate - 1; if ( msec ) assert( length_ == msec ); // ensure length is same as that passed in // update these since they depend on sample rate if ( clock_rate_ ) clock_rate( clock_rate_ ); bass_freq( bass_freq_ ); clear(); return 0; // success } blip_resampled_time_t Blip_Buffer::clock_rate_factor( long rate ) const { double ratio = (double)(sample_rate_) / double(rate); blip_long factor = (blip_long) floor( ratio * (1L << BLIP_BUFFER_ACCURACY) + 0.5 ); assert( factor > 0 || !sample_rate_ ); // fails if clock/output ratio is too large return (blip_resampled_time_t) factor; } void Blip_Buffer::bass_freq( int freq ) { bass_freq_ = freq; int shift = 31; if ( freq > 0 ) { shift = 13; long f = (freq << 16) / sample_rate_; while ( (f >>= 1) && --shift ) { } } bass_shift_ = shift; } void Blip_Buffer::end_frame( blip_time_t t ) { offset_ += t * factor_; assert( samples_avail() <= (long) buffer_size_ ); // fails if time is past end of buffer } long Blip_Buffer::count_samples( blip_time_t t ) const { blip_resampled_time_t last_sample = resampled_time( t ) >> BLIP_BUFFER_ACCURACY; blip_resampled_time_t first_sample = offset_ >> BLIP_BUFFER_ACCURACY; return long (last_sample - first_sample); } blip_time_t Blip_Buffer::count_clocks( long count ) const { if ( !factor_ ) { assert( 0 ); // sample rate and clock rates must be set first return 0; } if ( count > buffer_size_ ) count = buffer_size_; blip_resampled_time_t time = (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY; return (blip_time_t) ((time - offset_ + factor_ - 1) / factor_); } void Blip_Buffer::remove_samples( long count ) { if ( count ) { remove_silence( count ); // copy remaining samples to beginning and clear old samples long remain = samples_avail() + blip_buffer_extra_; memmove( buffer_, buffer_ + count, remain * sizeof *buffer_ ); memset( buffer_ + remain, 0, count * sizeof *buffer_ ); } } // Blip_Synth_ Blip_Synth_Fast_::Blip_Synth_Fast_() { buf = 0; last_amp = 0; delta_factor = 0; } void Blip_Synth_Fast_::volume_unit( double new_unit ) { delta_factor = int (new_unit * (1L << blip_sample_bits) + 0.5); } #if !BLIP_BUFFER_FAST Blip_Synth_::Blip_Synth_( short* p, int w ) : impulses( p ), width( w ) { volume_unit_ = 0.0; kernel_unit = 0; buf = 0; last_amp = 0; delta_factor = 0; } #undef PI #define PI 3.1415926535897932384626433832795029 static void gen_sinc( float* out, int count, double oversample, double treble, double cutoff ) { if ( cutoff >= 0.999 ) cutoff = 0.999; if ( treble < -300.0 ) treble = -300.0; if ( treble > 5.0 ) treble = 5.0; double const maxh = 4096.0; double const rolloff = pow( 10.0, treble / (maxh * 20.0 * (1.0 - cutoff)) ); double const pow_a_n = pow( rolloff, maxh - maxh * cutoff ); double const to_angle = PI / (2.0 * maxh * oversample); for ( int i = 0; i < count; i++ ) { double angle = double(((i - count)<<1) + 1) * to_angle; double maxhAngle = maxh * angle; double c = rolloff * cos( maxhAngle - angle ) - cos( maxhAngle ); double cos_nc_angle = cos( maxhAngle * cutoff ); double cos_nc1_angle = cos( maxhAngle * cutoff - angle ); double cos_angle = cos( angle ); c = c * pow_a_n - rolloff * cos_nc1_angle + cos_nc_angle; double d = 1.0 + rolloff * (rolloff - cos_angle - cos_angle); double b = 2.0 - cos_angle - cos_angle; double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle; out [i] = (float) ((a * d + c * b) / (b * d)); // a / b + c / d } } void blip_eq_t::generate( float* out, int count ) const { // lower cutoff freq for narrow kernels with their wider transition band // (8 points->1.49, 16 points->1.15) double oversample = blip_res * 2.25 / double(count) + 0.85; double half_rate = sample_rate * 0.5; if ( cutoff_freq ) oversample = half_rate / cutoff_freq; double cutoff = rolloff_freq * oversample / half_rate; gen_sinc( out, count, blip_res * oversample, treble, cutoff ); // apply (half of) hamming window double to_fraction = PI / (count - 1); for ( int i = count; i--; ) out [i] *= 0.54f - 0.46f * (float) cos( i * to_fraction ); } void Blip_Synth_::adjust_impulse() { // sum pairs for each phase and add error correction to end of first half int const size = impulses_size(); int blipRes2 = blip_res >> 1; for ( int p = blip_res; p-- >= blipRes2; ) { int p2 = blip_res - 2 - p; long error = kernel_unit; for ( int i = 1; i < size; i += blip_res ) { error -= impulses [i + p ]; error -= impulses [i + p2]; } if ( p == p2 ) error /= 2; // phase = 0.5 impulse uses same half for both sides impulses [size - blip_res + p] += (short) error; //printf( "error: %ld\n", error ); } //for ( int i = blip_res; i--; printf( "\n" ) ) // for ( int j = 0; j < width / 2; j++ ) // printf( "%5ld,", impulses [j * blip_res + i + 1] ); } void Blip_Synth_::treble_eq( blip_eq_t const& eq ) { int blipRes2 = blip_res >> 1; float fimpulse [blipRes2 * (blip_widest_impulse_ - 1) + blip_res * 2]; int const half_size = blipRes2 * (width - 1); eq.generate( &fimpulse [blip_res], half_size ); int i; // need mirror slightly past center for calculation for ( i = blip_res; i--; ) fimpulse [blip_res + half_size + i] = fimpulse [blip_res + half_size - 1 - i]; // starts at 0 for ( i = 0; i < blip_res; ++i ) fimpulse [i] = 0.0f; // find rescale factor double total = 0.0; for ( i = 0; i < half_size; ++i ) total += fimpulse [blip_res + i]; //double const base_unit = 44800.0 - 128 * 18; // allows treble up to +0 dB //double const base_unit = 37888.0; // allows treble to +5 dB double const base_unit = 32768.0; // necessary for blip_unscaled to work double rescale = base_unit / (2 * total); kernel_unit = (long) base_unit; // integrate, first difference, rescale, convert to int double sum = 0.0; double next = 0.0; int const size = this->impulses_size(); for ( i = 0; i < size; ++i ) { impulses [i] = (short) (int) floor( (next - sum) * rescale + 0.5 ); sum += fimpulse [i]; next += fimpulse [i + blip_res]; } adjust_impulse(); // volume might require rescaling double vol = volume_unit_; if ( vol ) { volume_unit_ = 0.0; volume_unit( vol ); } } void Blip_Synth_::volume_unit( double new_unit ) { if ( new_unit != volume_unit_ ) { // use default eq if it hasn't been set yet if ( !kernel_unit ) treble_eq( -8.0 ); volume_unit_ = new_unit; double factor = new_unit * (1L << blip_sample_bits) / kernel_unit; if ( factor > 0.0 ) { int shift = 0; // if unit is really small, might need to attenuate kernel while ( factor < 2.0 ) { ++shift; factor *= 2.0; } if ( shift ) { kernel_unit >>= shift; assert( kernel_unit > 0 ); // fails if volume unit is too low // keep values positive to avoid round-towards-zero of sign-preserving // right shift for negative values long offset = 0x8000 + (1 << (shift - 1)); long offset2 = 0x8000 >> shift; for ( int i = impulses_size(); i--; ) impulses [i] = (short) (int) (((impulses [i] + offset) >> shift) - offset2); adjust_impulse(); } } delta_factor = (int) floor( factor + 0.5 ); //printf( "delta_factor: %d, kernel_unit: %d\n", delta_factor, kernel_unit ); } } #endif long Blip_Buffer::read_samples( blip_sample_t* out_, long max_samples, int stereo ) { long count = samples_avail(); if ( count > max_samples ) count = max_samples; if ( count ) { int const bass = BLIP_READER_BASS( *this ); BLIP_READER_BEGIN( reader, *this ); BLIP_READER_ADJ_( reader, count ); blip_sample_t* BLIP_RESTRICT out = out_ + count; blip_long offset = (blip_long) -count; if ( !stereo ) { do { blip_long s = BLIP_READER_READ( reader ); BLIP_READER_NEXT_IDX_( reader, bass, offset ); BLIP_CLAMP( s, s ); out [offset] = (blip_sample_t) s; } while ( ++offset ); } else { do { blip_long s = BLIP_READER_READ( reader ); BLIP_READER_NEXT_IDX_( reader, bass, offset ); BLIP_CLAMP( s, s ); out [offset << 1] = (blip_sample_t) s; } while ( ++offset ); } BLIP_READER_END( reader, *this ); remove_samples( count ); } return count; } void Blip_Buffer::mix_samples( blip_sample_t const* in, long count ) { if ( buffer_size_ == silent_buf_size ) { assert( 0 ); return; } buf_t_* out = buffer_ + (offset_ >> BLIP_BUFFER_ACCURACY) + blip_widest_impulse_ / 2; int const sample_shift = blip_sample_bits - 16; int prev = 0; while ( count-- ) { blip_long s = (blip_long) *in++ << sample_shift; *out += s - prev; prev = s; ++out; } *out -= prev; } blip_ulong const subsample_mask = (1L << BLIP_BUFFER_ACCURACY) - 1; void Blip_Buffer::save_state( blip_buffer_state_t* out ) { assert( samples_avail() == 0 ); out->offset_ = offset_; out->reader_accum_ = reader_accum_; memcpy( out->buf, &buffer_ [offset_ >> BLIP_BUFFER_ACCURACY], sizeof out->buf ); } void Blip_Buffer::load_state( blip_buffer_state_t const& in ) { clear( false ); offset_ = in.offset_; reader_accum_ = in.reader_accum_; memcpy( buffer_, in.buf, sizeof in.buf ); }