vbagx/source/vba/apu/Gb_Oscs.h

191 lines
4.7 KiB
C++

// Private oscillators used by Gb_Apu
// Gb_Snd_Emu 0.2.0
#ifndef GB_OSCS_H
#define GB_OSCS_H
#include "blargg_common.h"
#include "Blip_Buffer.h"
#ifndef GB_APU_OVERCLOCK
#define GB_APU_OVERCLOCK 1
#endif
#if GB_APU_OVERCLOCK & (GB_APU_OVERCLOCK - 1)
#error "GB_APU_OVERCLOCK must be a power of 2"
#endif
class Gb_Osc {
protected:
// 11-bit frequency in NRx3 and NRx4
int frequency() const { return (regs [4] & 7) * 0x100 + regs [3]; }
void update_amp( blip_time_t, int new_amp );
int write_trig( int frame_phase, int max_len, int old_data );
public:
enum { clk_mul = GB_APU_OVERCLOCK };
enum { dac_bias = 7 };
Blip_Buffer* outputs [4];// NULL, right, left, center
Blip_Buffer* output; // where to output sound
BOOST::uint8_t* regs; // osc's 5 registers
int mode; // mode_dmg, mode_cgb, mode_agb
int dac_off_amp;// amplitude when DAC is off
int last_amp; // current amplitude in Blip_Buffer
typedef Blip_Synth<blip_good_quality,1> Good_Synth;
typedef Blip_Synth<blip_med_quality ,1> Med_Synth;
Good_Synth const* good_synth;
Med_Synth const* med_synth;
int delay; // clocks until frequency timer expires
int length_ctr; // length counter
unsigned phase; // waveform phase (or equivalent)
bool enabled; // internal enabled flag
void clock_length();
void reset();
};
class Gb_Env : public Gb_Osc {
public:
int env_delay;
int volume;
bool env_enabled;
void clock_envelope();
bool write_register( int frame_phase, int reg, int old_data, int data );
void reset()
{
env_delay = 0;
volume = 0;
Gb_Osc::reset();
}
protected:
// Non-zero if DAC is enabled
int dac_enabled() const { return regs [2] & 0xF8; }
private:
void zombie_volume( int old, int data );
int reload_env_timer();
};
class Gb_Square : public Gb_Env {
public:
bool write_register( int frame_phase, int reg, int old_data, int data );
void run( blip_time_t, blip_time_t );
void reset()
{
Gb_Env::reset();
delay = 0x40000000; // TODO: something less hacky (never clocked until first trigger)
}
private:
// Frequency timer period
int period() const { return (2048 - frequency()) * (4 * clk_mul); }
};
class Gb_Sweep_Square : public Gb_Square {
public:
int sweep_freq;
int sweep_delay;
bool sweep_enabled;
bool sweep_neg;
void clock_sweep();
void write_register( int frame_phase, int reg, int old_data, int data );
void reset()
{
sweep_freq = 0;
sweep_delay = 0;
sweep_enabled = false;
sweep_neg = false;
Gb_Square::reset();
}
private:
enum { period_mask = 0x70 };
enum { shift_mask = 0x07 };
void calc_sweep( bool update );
void reload_sweep_timer();
};
class Gb_Noise : public Gb_Env {
public:
int divider; // noise has more complex frequency divider setup
void run( blip_time_t, blip_time_t );
void write_register( int frame_phase, int reg, int old_data, int data );
void reset()
{
divider = 0;
Gb_Env::reset();
delay = 4 * clk_mul; // TODO: remove?
}
private:
enum { period2_mask = 0x1FFFF };
int period2_index() const { return regs [3] >> 4; }
int period2( int base = 8 ) const { return base << period2_index(); }
unsigned lfsr_mask() const { return (regs [3] & 0x08) ? ~0x4040 : ~0x4000; }
};
class Gb_Wave : public Gb_Osc {
public:
int sample_buf; // last wave RAM byte read (hardware has this as well)
void write_register( int frame_phase, int reg, int old_data, int data );
void run( blip_time_t, blip_time_t );
// Reads/writes wave RAM
int read( unsigned addr ) const;
void write( unsigned addr, int data );
void reset()
{
sample_buf = 0;
Gb_Osc::reset();
}
private:
enum { bank40_mask = 0x40 };
enum { bank_size = 32 };
int agb_mask; // 0xFF if AGB features enabled, 0 otherwise
BOOST::uint8_t* wave_ram; // 32 bytes (64 nybbles), stored in APU
friend class Gb_Apu;
// Frequency timer period
int period() const { return (2048 - frequency()) * (2 * clk_mul); }
// Non-zero if DAC is enabled
int dac_enabled() const { return regs [0] & 0x80; }
void corrupt_wave();
BOOST::uint8_t* wave_bank() const { return &wave_ram [(~regs [0] & bank40_mask) >> 2 & agb_mask]; }
// Wave index that would be accessed, or -1 if no access would occur
int access( unsigned addr ) const;
};
inline int Gb_Wave::read( unsigned addr ) const
{
int index = access( addr );
return (index < 0 ? 0xFF : wave_bank() [index]);
}
inline void Gb_Wave::write( unsigned addr, int data )
{
int index = access( addr );
if ( index >= 0 )
wave_bank() [index] = data;;
}
#endif