vbagx/source/vba/gba/GBAinline.h

840 lines
21 KiB
C++

// -*- C++ -*-
// VisualBoyAdvance - Nintendo Gameboy/GameboyAdvance (TM) emulator.
// Copyright (C) 1999-2003 Forgotten
// Copyright (C) 2005 Forgotten and the VBA development team
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or(at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#ifndef VBA_GBAinline_H
#define VBA_GBAinline_H
#include "../System.h"
#include "../Port.h"
#include "../RTC.h"
#include "../Sound.h"
#include "agbprint.h"
#include "vmmem.h" // Nintendo GC Virtual Memory
extern const u32 objTilesAddress[3];
extern bool stopState;
extern bool holdState;
extern int holdType;
extern int cpuNextEvent;
extern bool cpuSramEnabled;
extern bool cpuFlashEnabled;
extern bool cpuEEPROMEnabled;
extern bool cpuEEPROMSensorEnabled;
extern bool cpuDmaHack;
extern u32 cpuDmaLast;
extern bool timer0On;
extern int timer0Ticks;
extern int timer0ClockReload;
extern bool timer1On;
extern int timer1Ticks;
extern int timer1ClockReload;
extern bool timer2On;
extern int timer2Ticks;
extern int timer2ClockReload;
extern bool timer3On;
extern int timer3Ticks;
extern int timer3ClockReload;
extern int cpuTotalTicks;
/*****************************************************************************
* Nintendo GC Virtual Memory function override
* Tantric September 2008
****************************************************************************/
#define CPUReadByteQuickDef(addr) \
map[(addr)>>24].address[(addr) & map[(addr)>>24].mask]
#define CPUReadHalfWordQuickDef(addr) \
READ16LE(((u16*)&map[(addr)>>24].address[(addr) & map[(addr)>>24].mask]))
#define CPUReadMemoryQuickDef(addr) \
READ32LE(((u32*)&map[(addr)>>24].address[(addr) & map[(addr)>>24].mask]))
u8 inline CPUReadByteQuick( u32 addr )
{
switch(addr >> 24 )
{
case 8:
case 9:
case 10:
case 12:
#ifdef USE_VM
return VMRead8( addr & 0x1FFFFFF );
#endif
default:
return CPUReadByteQuickDef(addr);
}
return 0;
}
u16 inline CPUReadHalfWordQuick( u32 addr )
{
switch(addr >> 24)
{
case 8:
case 9:
case 10:
case 12:
#ifdef USE_VM
return VMRead16( addr & 0x1FFFFFF );
#endif
default:
return CPUReadHalfWordQuickDef(addr);
}
return 0;
}
u32 inline CPUReadMemoryQuick( u32 addr )
{
switch(addr >> 24)
{
case 8:
case 9:
case 10:
case 12:
#ifdef USE_VM
return VMRead32( addr & 0x1FFFFFF );
#endif
default:
return CPUReadMemoryQuickDef(addr);
}
return 0;
}
/*****************************************************************************
* End of NGC VM override
****************************************************************************/
static inline u32 CPUReadMemory(u32 address)
{
#ifdef GBA_LOGGING
if(address & 3) {
if(systemVerbose & VERBOSE_UNALIGNED_MEMORY) {
log("Unaligned word read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
}
#endif
u32 value;
switch(address >> 24) {
case 0:
if(reg[15].I >> 24) {
if(address < 0x4000) {
#ifdef GBA_LOGGING
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal word read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
value = READ32LE(((u32 *)&biosProtected));
}
else goto unreadable;
} else
value = READ32LE(((u32 *)&bios[address & 0x3FFC]));
break;
case 2:
value = READ32LE(((u32 *)&workRAM[address & 0x3FFFC]));
break;
case 3:
value = READ32LE(((u32 *)&internalRAM[address & 0x7ffC]));
break;
case 4:
if((address < 0x4000400) && ioReadable[address & 0x3fc]) {
if(ioReadable[(address & 0x3fc) + 2])
value = READ32LE(((u32 *)&ioMem[address & 0x3fC]));
else
value = READ16LE(((u16 *)&ioMem[address & 0x3fc]));
} else goto unreadable;
break;
case 5:
value = READ32LE(((u32 *)&paletteRAM[address & 0x3fC]));
break;
case 6:
address = (address & 0x1fffc);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
{
value = 0;
break;
}
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
value = READ32LE(((u32 *)&vram[address]));
break;
case 7:
value = READ32LE(((u32 *)&oam[address & 0x3FC]));
break;
case 8:
case 9:
case 10:
case 11:
case 12:
#ifdef USE_VM // Nintendo GC Virtual Memory
value = VMRead32( address & 0x1FFFFFC );
#else
value = READ32LE(((u32 *)&rom[address&0x1FFFFFC]));
#endif
break;
case 13:
if(cpuEEPROMEnabled)
// no need to swap this
return eepromRead(address);
goto unreadable;
case 14:
if(cpuFlashEnabled | cpuSramEnabled)
// no need to swap this
return flashRead(address);
// default
default:
unreadable:
#ifdef GBA_LOGGING
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal word read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
if(cpuDmaHack) {
value = cpuDmaLast;
} else {
if(armState) {
#ifdef USE_VM // Nintendo GC Virtual Memory
value = CPUReadMemoryQuick(reg[15].I);
#else
value = CPUReadMemoryQuickDef(reg[15].I);
#endif
} else {
#ifdef USE_VM // Nintendo GC Virtual Memory
value = CPUReadHalfWordQuick(reg[15].I) |
CPUReadHalfWordQuick(reg[15].I) << 16;
#else
value = CPUReadHalfWordQuickDef(reg[15].I) |
CPUReadHalfWordQuickDef(reg[15].I) << 16;
#endif
}
}
}
if(address & 3) {
#ifdef C_CORE
int shift = (address & 3) << 3;
value = (value >> shift) | (value << (32 - shift));
#else
#ifdef __GNUC__
asm("and $3, %%ecx;"
"shl $3 ,%%ecx;"
"ror %%cl, %0"
: "=r" (value)
: "r" (value), "c" (address));
#else
__asm {
mov ecx, address;
and ecx, 3;
shl ecx, 3;
ror [dword ptr value], cl;
}
#endif
#endif
}
return value;
}
extern u32 myROM[];
static inline u32 CPUReadHalfWord(u32 address)
{
#ifdef GBA_LOGGING
if(address & 1) {
if(systemVerbose & VERBOSE_UNALIGNED_MEMORY) {
log("Unaligned halfword read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
}
#endif
u32 value;
switch(address >> 24) {
case 0:
if (reg[15].I >> 24) {
if(address < 0x4000) {
#ifdef GBA_LOGGING
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal halfword read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
value = READ16LE(((u16 *)&biosProtected[address&2]));
} else goto unreadable;
} else
value = READ16LE(((u16 *)&bios[address & 0x3FFE]));
break;
case 2:
value = READ16LE(((u16 *)&workRAM[address & 0x3FFFE]));
break;
case 3:
value = READ16LE(((u16 *)&internalRAM[address & 0x7ffe]));
break;
case 4:
if((address < 0x4000400) && ioReadable[address & 0x3fe])
{
value = READ16LE(((u16 *)&ioMem[address & 0x3fe]));
if (((address & 0x3fe)>0xFF) && ((address & 0x3fe)<0x10E))
{
if (((address & 0x3fe) == 0x100) && timer0On)
value = 0xFFFF - ((timer0Ticks-cpuTotalTicks) >> timer0ClockReload);
else
if (((address & 0x3fe) == 0x104) && timer1On && !(TM1CNT & 4))
value = 0xFFFF - ((timer1Ticks-cpuTotalTicks) >> timer1ClockReload);
else
if (((address & 0x3fe) == 0x108) && timer2On && !(TM2CNT & 4))
value = 0xFFFF - ((timer2Ticks-cpuTotalTicks) >> timer2ClockReload);
else
if (((address & 0x3fe) == 0x10C) && timer3On && !(TM3CNT & 4))
value = 0xFFFF - ((timer3Ticks-cpuTotalTicks) >> timer3ClockReload);
}
}
else goto unreadable;
break;
case 5:
value = READ16LE(((u16 *)&paletteRAM[address & 0x3fe]));
break;
case 6:
address = (address & 0x1fffe);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
{
value = 0;
break;
}
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
value = READ16LE(((u16 *)&vram[address]));
break;
case 7:
value = READ16LE(((u16 *)&oam[address & 0x3fe]));
break;
case 8:
case 9:
case 10:
case 11:
case 12:
if(address == 0x80000c4 || address == 0x80000c6 || address == 0x80000c8)
value = rtcRead(address);
else
#ifdef USE_VM // Nintendo GC Virtual Memory
value = VMRead16( address & 0x1FFFFFE );
#else
value = READ16LE(((u16 *)&rom[address & 0x1FFFFFE]));
#endif
break;
case 13:
if(cpuEEPROMEnabled)
// no need to swap this
return eepromRead(address);
goto unreadable;
case 14:
if(cpuFlashEnabled | cpuSramEnabled)
// no need to swap this
return flashRead(address);
// default
default:
unreadable:
#ifdef GBA_LOGGING
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal halfword read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
if(cpuDmaHack) {
value = cpuDmaLast & 0xFFFF;
} else {
if(armState) {
#ifdef USE_VM // Nintendo GC Virtual Memory
value = CPUReadHalfWordQuick(reg[15].I + (address & 2));
#else
value = CPUReadHalfWordQuickDef(reg[15].I + (address & 2));
#endif
} else {
#ifdef USE_VM // Nintendo GC Virtual Memory
value = CPUReadHalfWordQuick(reg[15].I);
#else
value = CPUReadHalfWordQuickDef(reg[15].I);
#endif
}
}
break;
}
if(address & 1) {
value = (value >> 8) | (value << 24);
}
return value;
}
static inline u16 CPUReadHalfWordSigned(u32 address)
{
u16 value = CPUReadHalfWord(address);
if((address & 1))
value = (s8)value;
return value;
}
static inline u8 CPUReadByte(u32 address)
{
switch(address >> 24) {
case 0:
if (reg[15].I >> 24) {
if(address < 0x4000) {
#ifdef GBA_LOGGING
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal byte read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
return biosProtected[address & 3];
} else goto unreadable;
}
return bios[address & 0x3FFF];
case 2:
return workRAM[address & 0x3FFFF];
case 3:
return internalRAM[address & 0x7fff];
case 4:
if((address < 0x4000400) && ioReadable[address & 0x3ff])
return ioMem[address & 0x3ff];
else goto unreadable;
case 5:
return paletteRAM[address & 0x3ff];
case 6:
address = (address & 0x1ffff);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
return 0;
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
return vram[address];
case 7:
return oam[address & 0x3ff];
case 8:
case 9:
case 10:
case 11:
case 12:
#ifdef USE_VM // Nintendo GC Virtual Memory
return VMRead8( address & 0x1FFFFFF );
#else
return rom[address & 0x1FFFFFF];
#endif
case 13:
if(cpuEEPROMEnabled)
return eepromRead(address);
goto unreadable;
case 14:
if(cpuSramEnabled | cpuFlashEnabled)
return flashRead(address);
if(cpuEEPROMSensorEnabled) {
switch(address & 0x00008f00) {
case 0x8200:
return systemGetSensorX() & 255;
case 0x8300:
return (systemGetSensorX() >> 8)|0x80;
case 0x8400:
return systemGetSensorY() & 255;
case 0x8500:
return systemGetSensorY() >> 8;
}
}
// default
default:
unreadable:
#ifdef GBA_LOGGING
if(systemVerbose & VERBOSE_ILLEGAL_READ) {
log("Illegal byte read: %08x at %08x\n", address, armMode ?
armNextPC - 4 : armNextPC - 2);
}
#endif
if(cpuDmaHack) {
return cpuDmaLast & 0xFF;
} else {
if(armState) {
#ifdef USE_VM // Nintendo GC Virtual Memory
return CPUReadByteQuick(reg[15].I+(address & 3));
#else
return CPUReadByteQuickDef(reg[15].I+(address & 3));
#endif
} else {
#ifdef USE_VM // Nintendo GC Virtual Memory
return CPUReadByteQuick(reg[15].I+(address & 1));
#else
return CPUReadByteQuickDef(reg[15].I+(address & 1));
#endif
}
}
break;
}
}
static inline void CPUWriteMemory(u32 address, u32 value)
{
#ifdef GBA_LOGGING
if(address & 3) {
if(systemVerbose & VERBOSE_UNALIGNED_MEMORY) {
log("Unaligned word write: %08x to %08x from %08x\n",
value,
address,
armMode ? armNextPC - 4 : armNextPC - 2);
}
}
#endif
switch(address >> 24) {
case 0x02:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeWorkRAM[address & 0x3FFFC]))
cheatsWriteMemory(address & 0x203FFFC,
value);
else
#endif
WRITE32LE(((u32 *)&workRAM[address & 0x3FFFC]), value);
break;
case 0x03:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeInternalRAM[address & 0x7ffc]))
cheatsWriteMemory(address & 0x3007FFC,
value);
else
#endif
WRITE32LE(((u32 *)&internalRAM[address & 0x7ffC]), value);
break;
case 0x04:
if(address < 0x4000400) {
CPUUpdateRegister((address & 0x3FC), value & 0xFFFF);
CPUUpdateRegister((address & 0x3FC) + 2, (value >> 16));
} else goto unwritable;
break;
case 0x05:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezePRAM[address & 0x3fc]))
cheatsWriteMemory(address & 0x70003FC,
value);
else
#endif
WRITE32LE(((u32 *)&paletteRAM[address & 0x3FC]), value);
break;
case 0x06:
address = (address & 0x1fffc);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
return;
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeVRAM[address]))
cheatsWriteMemory(address + 0x06000000, value);
else
#endif
WRITE32LE(((u32 *)&vram[address]), value);
break;
case 0x07:
#ifdef BKPT_SUPPORT
if(*((u32 *)&freezeOAM[address & 0x3fc]))
cheatsWriteMemory(address & 0x70003FC,
value);
else
#endif
WRITE32LE(((u32 *)&oam[address & 0x3fc]), value);
break;
case 0x0D:
if(cpuEEPROMEnabled) {
eepromWrite(address, value);
break;
}
goto unwritable;
case 0x0E:
if(!eepromInUse | cpuSramEnabled | cpuFlashEnabled) {
(*cpuSaveGameFunc)(address, (u8)value);
break;
}
// default
default:
unwritable:
#ifdef GBA_LOGGING
if(systemVerbose & VERBOSE_ILLEGAL_WRITE) {
log("Illegal word write: %08x to %08x from %08x\n",
value,
address,
armMode ? armNextPC - 4 : armNextPC - 2);
}
#endif
break;
}
}
static inline void CPUWriteHalfWord(u32 address, u16 value)
{
#ifdef GBA_LOGGING
if(address & 1) {
if(systemVerbose & VERBOSE_UNALIGNED_MEMORY) {
log("Unaligned halfword write: %04x to %08x from %08x\n",
value,
address,
armMode ? armNextPC - 4 : armNextPC - 2);
}
}
#endif
switch(address >> 24) {
case 2:
#ifdef BKPT_SUPPORT
if(*((u16 *)&freezeWorkRAM[address & 0x3FFFE]))
cheatsWriteHalfWord(address & 0x203FFFE,
value);
else
#endif
WRITE16LE(((u16 *)&workRAM[address & 0x3FFFE]),value);
break;
case 3:
#ifdef BKPT_SUPPORT
if(*((u16 *)&freezeInternalRAM[address & 0x7ffe]))
cheatsWriteHalfWord(address & 0x3007ffe,
value);
else
#endif
WRITE16LE(((u16 *)&internalRAM[address & 0x7ffe]), value);
break;
case 4:
if(address < 0x4000400)
CPUUpdateRegister(address & 0x3fe, value);
else goto unwritable;
break;
case 5:
#ifdef BKPT_SUPPORT
if(*((u16 *)&freezePRAM[address & 0x03fe]))
cheatsWriteHalfWord(address & 0x70003fe,
value);
else
#endif
WRITE16LE(((u16 *)&paletteRAM[address & 0x3fe]), value);
break;
case 6:
address = (address & 0x1fffe);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
return;
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
#ifdef BKPT_SUPPORT
if(*((u16 *)&freezeVRAM[address]))
cheatsWriteHalfWord(address + 0x06000000,
value);
else
#endif
WRITE16LE(((u16 *)&vram[address]), value);
break;
case 7:
#ifdef BKPT_SUPPORT
if(*((u16 *)&freezeOAM[address & 0x03fe]))
cheatsWriteHalfWord(address & 0x70003fe,
value);
else
#endif
WRITE16LE(((u16 *)&oam[address & 0x3fe]), value);
break;
case 8:
case 9:
if(address == 0x80000c4 || address == 0x80000c6 || address == 0x80000c8) {
if(!rtcWrite(address, value))
goto unwritable;
} else if(!agbPrintWrite(address, value)) goto unwritable;
break;
case 13:
if(cpuEEPROMEnabled) {
eepromWrite(address, (u8)value);
break;
}
goto unwritable;
case 14:
if(!eepromInUse | cpuSramEnabled | cpuFlashEnabled) {
(*cpuSaveGameFunc)(address, (u8)value);
break;
}
goto unwritable;
default:
unwritable:
#ifdef GBA_LOGGING
if(systemVerbose & VERBOSE_ILLEGAL_WRITE) {
log("Illegal halfword write: %04x to %08x from %08x\n",
value,
address,
armMode ? armNextPC - 4 : armNextPC - 2);
}
#endif
break;
}
}
static inline void CPUWriteByte(u32 address, u8 b)
{
switch(address >> 24) {
case 2:
#ifdef BKPT_SUPPORT
if(freezeWorkRAM[address & 0x3FFFF])
cheatsWriteByte(address & 0x203FFFF, b);
else
#endif
workRAM[address & 0x3FFFF] = b;
break;
case 3:
#ifdef BKPT_SUPPORT
if(freezeInternalRAM[address & 0x7fff])
cheatsWriteByte(address & 0x3007fff, b);
else
#endif
internalRAM[address & 0x7fff] = b;
break;
case 4:
if(address < 0x4000400) {
switch(address & 0x3FF) {
case 0x301:
if(b == 0x80)
stopState = true;
holdState = 1;
holdType = -1;
cpuNextEvent = cpuTotalTicks;
break;
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x68:
case 0x69:
case 0x6c:
case 0x6d:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x78:
case 0x79:
case 0x7c:
case 0x7d:
case 0x80:
case 0x81:
case 0x84:
case 0x85:
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97:
case 0x98:
case 0x99:
case 0x9a:
case 0x9b:
case 0x9c:
case 0x9d:
case 0x9e:
case 0x9f:
soundEvent(address&0xFF, b);
break;
default:
if(address & 1)
CPUUpdateRegister(address & 0x3fe,
((READ16LE(((u16 *)&ioMem[address & 0x3fe])))
& 0x00FF) |
b<<8);
else
CPUUpdateRegister(address & 0x3fe,
((READ16LE(((u16 *)&ioMem[address & 0x3fe])) & 0xFF00) | b));
}
break;
} else goto unwritable;
break;
case 5:
// no need to switch
*((u16 *)&paletteRAM[address & 0x3FE]) = (b << 8) | b;
break;
case 6:
address = (address & 0x1fffe);
if (((DISPCNT & 7) >2) && ((address & 0x1C000) == 0x18000))
return;
if ((address & 0x18000) == 0x18000)
address &= 0x17fff;
// no need to switch
// byte writes to OBJ VRAM are ignored
if ((address) < objTilesAddress[((DISPCNT&7)+1)>>2])
{
#ifdef BKPT_SUPPORT
if(freezeVRAM[address])
cheatsWriteByte(address + 0x06000000, b);
else
#endif
*((u16 *)&vram[address]) = (b << 8) | b;
}
break;
case 7:
// no need to switch
// byte writes to OAM are ignored
// *((u16 *)&oam[address & 0x3FE]) = (b << 8) | b;
break;
case 13:
if(cpuEEPROMEnabled) {
eepromWrite(address, b);
break;
}
goto unwritable;
case 14:
if (!(saveType == 5) && (!eepromInUse | cpuSramEnabled | cpuFlashEnabled)) {
//if(!cpuEEPROMEnabled && (cpuSramEnabled | cpuFlashEnabled)) {
(*cpuSaveGameFunc)(address, b);
break;
}
// default
default:
unwritable:
#ifdef GBA_LOGGING
if(systemVerbose & VERBOSE_ILLEGAL_WRITE) {
log("Illegal byte write: %02x to %08x from %08x\n",
b,
address,
armMode ? armNextPC - 4 : armNextPC -2 );
}
#endif
break;
}
}
#endif //VBA_GBAinline_H