mirror of
https://github.com/dborth/vbagx.git
synced 2024-11-27 13:04:16 +01:00
472 lines
12 KiB
C++
472 lines
12 KiB
C++
// Blip_Buffer 0.4.1. http://www.slack.net/~ant/
|
|
|
|
#include "Blip_Buffer.h"
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
/* Copyright (C) 2003-2007 Shay Green. This module is free software; you
|
|
can redistribute it and/or modify it under the terms of the GNU Lesser
|
|
General Public License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version. This
|
|
module is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
|
|
details. You should have received a copy of the GNU Lesser General Public
|
|
License along with this module; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
// TODO: use scoped for variables in treble_eq()
|
|
|
|
#ifdef BLARGG_ENABLE_OPTIMIZER
|
|
#include BLARGG_ENABLE_OPTIMIZER
|
|
#endif
|
|
|
|
int const silent_buf_size = 1; // size used for Silent_Blip_Buffer
|
|
|
|
Blip_Buffer::Blip_Buffer()
|
|
{
|
|
factor_ = LONG_MAX;
|
|
buffer_ = 0;
|
|
buffer_size_ = 0;
|
|
sample_rate_ = 0;
|
|
bass_shift_ = 0;
|
|
clock_rate_ = 0;
|
|
bass_freq_ = 16;
|
|
length_ = 0;
|
|
|
|
// assumptions code makes about implementation-defined features
|
|
#ifndef NDEBUG
|
|
// right shift of negative value preserves sign
|
|
buf_t_ i = -0x7FFFFFFE;
|
|
assert( (i >> 1) == -0x3FFFFFFF );
|
|
|
|
// casting to short truncates to 16 bits and sign-extends
|
|
i = 0x18000;
|
|
assert( (short) i == -0x8000 );
|
|
#endif
|
|
|
|
clear();
|
|
}
|
|
|
|
Blip_Buffer::~Blip_Buffer()
|
|
{
|
|
if ( buffer_size_ != silent_buf_size )
|
|
free( buffer_ );
|
|
}
|
|
|
|
Silent_Blip_Buffer::Silent_Blip_Buffer()
|
|
{
|
|
factor_ = 0;
|
|
buffer_ = buf;
|
|
buffer_size_ = silent_buf_size;
|
|
clear();
|
|
}
|
|
|
|
void Blip_Buffer::clear( int entire_buffer )
|
|
{
|
|
offset_ = 0;
|
|
reader_accum_ = 0;
|
|
modified_ = 0;
|
|
if ( buffer_ )
|
|
{
|
|
long count = (entire_buffer ? buffer_size_ : samples_avail());
|
|
memset( buffer_, 0, (count + blip_buffer_extra_) * sizeof (buf_t_) );
|
|
}
|
|
}
|
|
|
|
Blip_Buffer::blargg_err_t Blip_Buffer::set_sample_rate( long new_rate, int msec )
|
|
{
|
|
if ( buffer_size_ == silent_buf_size )
|
|
{
|
|
assert( 0 );
|
|
return "Internal (tried to resize Silent_Blip_Buffer)";
|
|
}
|
|
|
|
// start with maximum length that resampled time can represent
|
|
long new_size = (ULONG_MAX >> BLIP_BUFFER_ACCURACY) - blip_buffer_extra_ - 64;
|
|
if ( msec != blip_max_length )
|
|
{
|
|
long s = (new_rate * (msec + 1) + 999) / 1000;
|
|
if ( s < new_size )
|
|
new_size = s;
|
|
else
|
|
assert( 0 ); // fails if requested buffer length exceeds limit
|
|
}
|
|
|
|
if ( buffer_size_ != new_size )
|
|
{
|
|
void* p = realloc( buffer_, (new_size + blip_buffer_extra_) * sizeof *buffer_ );
|
|
if ( !p )
|
|
return "Out of memory";
|
|
buffer_ = (buf_t_*) p;
|
|
}
|
|
|
|
buffer_size_ = new_size;
|
|
assert( buffer_size_ != silent_buf_size ); // size should never happen to match this
|
|
|
|
// update things based on the sample rate
|
|
sample_rate_ = new_rate;
|
|
length_ = new_size * 1000 / new_rate - 1;
|
|
if ( msec )
|
|
assert( length_ == msec ); // ensure length is same as that passed in
|
|
|
|
// update these since they depend on sample rate
|
|
if ( clock_rate_ )
|
|
clock_rate( clock_rate_ );
|
|
bass_freq( bass_freq_ );
|
|
|
|
clear();
|
|
|
|
return 0; // success
|
|
}
|
|
|
|
blip_resampled_time_t Blip_Buffer::clock_rate_factor( long rate ) const
|
|
{
|
|
double ratio = (double)(sample_rate_) / double(rate);
|
|
blip_long factor = (blip_long) floor( ratio * (1L << BLIP_BUFFER_ACCURACY) + 0.5 );
|
|
assert( factor > 0 || !sample_rate_ ); // fails if clock/output ratio is too large
|
|
return (blip_resampled_time_t) factor;
|
|
}
|
|
|
|
void Blip_Buffer::bass_freq( int freq )
|
|
{
|
|
bass_freq_ = freq;
|
|
int shift = 31;
|
|
if ( freq > 0 )
|
|
{
|
|
shift = 13;
|
|
long f = (freq << 16) / sample_rate_;
|
|
while ( (f >>= 1) && --shift ) { }
|
|
}
|
|
bass_shift_ = shift;
|
|
}
|
|
|
|
void Blip_Buffer::end_frame( blip_time_t t )
|
|
{
|
|
offset_ += t * factor_;
|
|
assert( samples_avail() <= (long) buffer_size_ ); // fails if time is past end of buffer
|
|
}
|
|
|
|
long Blip_Buffer::count_samples( blip_time_t t ) const
|
|
{
|
|
blip_resampled_time_t last_sample = resampled_time( t ) >> BLIP_BUFFER_ACCURACY;
|
|
blip_resampled_time_t first_sample = offset_ >> BLIP_BUFFER_ACCURACY;
|
|
return long (last_sample - first_sample);
|
|
}
|
|
|
|
blip_time_t Blip_Buffer::count_clocks( long count ) const
|
|
{
|
|
if ( !factor_ )
|
|
{
|
|
assert( 0 ); // sample rate and clock rates must be set first
|
|
return 0;
|
|
}
|
|
|
|
if ( count > buffer_size_ )
|
|
count = buffer_size_;
|
|
blip_resampled_time_t time = (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY;
|
|
return (blip_time_t) ((time - offset_ + factor_ - 1) / factor_);
|
|
}
|
|
|
|
void Blip_Buffer::remove_samples( long count )
|
|
{
|
|
if ( count )
|
|
{
|
|
remove_silence( count );
|
|
|
|
// copy remaining samples to beginning and clear old samples
|
|
long remain = samples_avail() + blip_buffer_extra_;
|
|
memmove( buffer_, buffer_ + count, remain * sizeof *buffer_ );
|
|
memset( buffer_ + remain, 0, count * sizeof *buffer_ );
|
|
}
|
|
}
|
|
|
|
// Blip_Synth_
|
|
|
|
Blip_Synth_Fast_::Blip_Synth_Fast_()
|
|
{
|
|
buf = 0;
|
|
last_amp = 0;
|
|
delta_factor = 0;
|
|
}
|
|
|
|
void Blip_Synth_Fast_::volume_unit( double new_unit )
|
|
{
|
|
delta_factor = int (new_unit * (1L << blip_sample_bits) + 0.5);
|
|
}
|
|
|
|
#if !BLIP_BUFFER_FAST
|
|
|
|
Blip_Synth_::Blip_Synth_( short* p, int w ) :
|
|
impulses( p ),
|
|
width( w )
|
|
{
|
|
volume_unit_ = 0.0;
|
|
kernel_unit = 0;
|
|
buf = 0;
|
|
last_amp = 0;
|
|
delta_factor = 0;
|
|
}
|
|
|
|
#undef PI
|
|
#define PI 3.1415926535897932384626433832795029
|
|
|
|
static void gen_sinc( float* out, int count, double oversample, double treble, double cutoff )
|
|
{
|
|
if ( cutoff >= 0.999 )
|
|
cutoff = 0.999;
|
|
|
|
if ( treble < -300.0 )
|
|
treble = -300.0;
|
|
if ( treble > 5.0 )
|
|
treble = 5.0;
|
|
|
|
double const maxh = 4096.0;
|
|
double const rolloff = pow( 10.0, treble / (maxh * 20.0 * (1.0 - cutoff)) );
|
|
double const pow_a_n = pow( rolloff, maxh - maxh * cutoff );
|
|
double const to_angle = PI / (2.0 * maxh * oversample);
|
|
for ( int i = 0; i < count; i++ )
|
|
{
|
|
double angle = double(((i - count)<<1) + 1) * to_angle;
|
|
double maxhAngle = maxh * angle;
|
|
double c = rolloff * cos( maxhAngle - angle ) - cos( maxhAngle );
|
|
double cos_nc_angle = cos( maxhAngle * cutoff );
|
|
double cos_nc1_angle = cos( maxhAngle * cutoff - angle );
|
|
|
|
double cos_angle = cos( angle );
|
|
|
|
c = c * pow_a_n - rolloff * cos_nc1_angle + cos_nc_angle;
|
|
double d = 1.0 + rolloff * (rolloff - cos_angle - cos_angle);
|
|
double b = 2.0 - cos_angle - cos_angle;
|
|
double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle;
|
|
|
|
out [i] = (float) ((a * d + c * b) / (b * d)); // a / b + c / d
|
|
}
|
|
}
|
|
|
|
void blip_eq_t::generate( float* out, int count ) const
|
|
{
|
|
// lower cutoff freq for narrow kernels with their wider transition band
|
|
// (8 points->1.49, 16 points->1.15)
|
|
double oversample = blip_res * 2.25 / double(count) + 0.85;
|
|
double half_rate = sample_rate * 0.5;
|
|
if ( cutoff_freq )
|
|
oversample = half_rate / cutoff_freq;
|
|
double cutoff = rolloff_freq * oversample / half_rate;
|
|
|
|
gen_sinc( out, count, blip_res * oversample, treble, cutoff );
|
|
|
|
// apply (half of) hamming window
|
|
double to_fraction = PI / (count - 1);
|
|
for ( int i = count; i--; )
|
|
out [i] *= 0.54f - 0.46f * (float) cos( i * to_fraction );
|
|
}
|
|
|
|
void Blip_Synth_::adjust_impulse()
|
|
{
|
|
// sum pairs for each phase and add error correction to end of first half
|
|
int const size = impulses_size();
|
|
|
|
int blipRes2 = blip_res >> 1;
|
|
for ( int p = blip_res; p-- >= blipRes2; )
|
|
{
|
|
int p2 = blip_res - 2 - p;
|
|
long error = kernel_unit;
|
|
for ( int i = 1; i < size; i += blip_res )
|
|
{
|
|
error -= impulses [i + p ];
|
|
error -= impulses [i + p2];
|
|
}
|
|
if ( p == p2 )
|
|
error /= 2; // phase = 0.5 impulse uses same half for both sides
|
|
impulses [size - blip_res + p] += (short) error;
|
|
//printf( "error: %ld\n", error );
|
|
}
|
|
|
|
//for ( int i = blip_res; i--; printf( "\n" ) )
|
|
// for ( int j = 0; j < width / 2; j++ )
|
|
// printf( "%5ld,", impulses [j * blip_res + i + 1] );
|
|
}
|
|
|
|
void Blip_Synth_::treble_eq( blip_eq_t const& eq )
|
|
{
|
|
int blipRes2 = blip_res >> 1;
|
|
|
|
float fimpulse [blipRes2 * (blip_widest_impulse_ - 1) + blip_res * 2];
|
|
|
|
int const half_size = blipRes2 * (width - 1);
|
|
eq.generate( &fimpulse [blip_res], half_size );
|
|
|
|
int i;
|
|
|
|
// need mirror slightly past center for calculation
|
|
for ( i = blip_res; i--; )
|
|
fimpulse [blip_res + half_size + i] = fimpulse [blip_res + half_size - 1 - i];
|
|
|
|
// starts at 0
|
|
for ( i = 0; i < blip_res; ++i )
|
|
fimpulse [i] = 0.0f;
|
|
|
|
// find rescale factor
|
|
double total = 0.0;
|
|
for ( i = 0; i < half_size; ++i )
|
|
total += fimpulse [blip_res + i];
|
|
|
|
//double const base_unit = 44800.0 - 128 * 18; // allows treble up to +0 dB
|
|
//double const base_unit = 37888.0; // allows treble to +5 dB
|
|
double const base_unit = 32768.0; // necessary for blip_unscaled to work
|
|
double rescale = base_unit / (2 * total);
|
|
kernel_unit = (long) base_unit;
|
|
|
|
// integrate, first difference, rescale, convert to int
|
|
double sum = 0.0;
|
|
double next = 0.0;
|
|
int const size = this->impulses_size();
|
|
for ( i = 0; i < size; ++i )
|
|
{
|
|
impulses [i] = (short) (int) floor( (next - sum) * rescale + 0.5 );
|
|
sum += fimpulse [i];
|
|
next += fimpulse [i + blip_res];
|
|
}
|
|
adjust_impulse();
|
|
|
|
// volume might require rescaling
|
|
double vol = volume_unit_;
|
|
if ( vol )
|
|
{
|
|
volume_unit_ = 0.0;
|
|
volume_unit( vol );
|
|
}
|
|
}
|
|
|
|
void Blip_Synth_::volume_unit( double new_unit )
|
|
{
|
|
if ( new_unit != volume_unit_ )
|
|
{
|
|
// use default eq if it hasn't been set yet
|
|
if ( !kernel_unit )
|
|
treble_eq( -8.0 );
|
|
|
|
volume_unit_ = new_unit;
|
|
double factor = new_unit * (1L << blip_sample_bits) / kernel_unit;
|
|
|
|
if ( factor > 0.0 )
|
|
{
|
|
int shift = 0;
|
|
|
|
// if unit is really small, might need to attenuate kernel
|
|
while ( factor < 2.0 )
|
|
{
|
|
++shift;
|
|
factor *= 2.0;
|
|
}
|
|
|
|
if ( shift )
|
|
{
|
|
kernel_unit >>= shift;
|
|
assert( kernel_unit > 0 ); // fails if volume unit is too low
|
|
|
|
// keep values positive to avoid round-towards-zero of sign-preserving
|
|
// right shift for negative values
|
|
long offset = 0x8000 + (1 << (shift - 1));
|
|
long offset2 = 0x8000 >> shift;
|
|
for ( int i = impulses_size(); i--; )
|
|
impulses [i] = (short) (int) (((impulses [i] + offset) >> shift) - offset2);
|
|
adjust_impulse();
|
|
}
|
|
}
|
|
delta_factor = (int) floor( factor + 0.5 );
|
|
//printf( "delta_factor: %d, kernel_unit: %d\n", delta_factor, kernel_unit );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
long Blip_Buffer::read_samples( blip_sample_t* out_, long max_samples, int stereo )
|
|
{
|
|
long count = samples_avail();
|
|
if ( count > max_samples )
|
|
count = max_samples;
|
|
|
|
if ( count )
|
|
{
|
|
int const bass = BLIP_READER_BASS( *this );
|
|
BLIP_READER_BEGIN( reader, *this );
|
|
BLIP_READER_ADJ_( reader, count );
|
|
blip_sample_t* BLIP_RESTRICT out = out_ + count;
|
|
blip_long offset = (blip_long) -count;
|
|
|
|
if ( !stereo )
|
|
{
|
|
do
|
|
{
|
|
blip_long s = BLIP_READER_READ( reader );
|
|
BLIP_READER_NEXT_IDX_( reader, bass, offset );
|
|
BLIP_CLAMP( s, s );
|
|
out [offset] = (blip_sample_t) s;
|
|
}
|
|
while ( ++offset );
|
|
}
|
|
else
|
|
{
|
|
do
|
|
{
|
|
blip_long s = BLIP_READER_READ( reader );
|
|
BLIP_READER_NEXT_IDX_( reader, bass, offset );
|
|
BLIP_CLAMP( s, s );
|
|
out [offset << 1] = (blip_sample_t) s;
|
|
}
|
|
while ( ++offset );
|
|
}
|
|
|
|
BLIP_READER_END( reader, *this );
|
|
|
|
remove_samples( count );
|
|
}
|
|
return count;
|
|
}
|
|
|
|
void Blip_Buffer::mix_samples( blip_sample_t const* in, long count )
|
|
{
|
|
if ( buffer_size_ == silent_buf_size )
|
|
{
|
|
assert( 0 );
|
|
return;
|
|
}
|
|
|
|
buf_t_* out = buffer_ + (offset_ >> BLIP_BUFFER_ACCURACY) + blip_widest_impulse_ / 2;
|
|
|
|
int const sample_shift = blip_sample_bits - 16;
|
|
int prev = 0;
|
|
while ( count-- )
|
|
{
|
|
blip_long s = (blip_long) *in++ << sample_shift;
|
|
*out += s - prev;
|
|
prev = s;
|
|
++out;
|
|
}
|
|
*out -= prev;
|
|
}
|
|
|
|
blip_ulong const subsample_mask = (1L << BLIP_BUFFER_ACCURACY) - 1;
|
|
|
|
void Blip_Buffer::save_state( blip_buffer_state_t* out )
|
|
{
|
|
assert( samples_avail() == 0 );
|
|
out->offset_ = offset_;
|
|
out->reader_accum_ = reader_accum_;
|
|
memcpy( out->buf, &buffer_ [offset_ >> BLIP_BUFFER_ACCURACY], sizeof out->buf );
|
|
}
|
|
|
|
void Blip_Buffer::load_state( blip_buffer_state_t const& in )
|
|
{
|
|
clear( false );
|
|
|
|
offset_ = in.offset_;
|
|
reader_accum_ = in.reader_accum_;
|
|
memcpy( buffer_, in.buf, sizeof in.buf );
|
|
}
|