2008-10-18 06:49:04 +00:00

395 lines
9.0 KiB
C++

// Gb_Snd_Emu 0.2.0. http://www.slack.net/~ant/
#include "Gb_Apu.h"
/* Copyright (C) 2003-2007 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
unsigned const vol_reg = 0xFF24;
unsigned const stereo_reg = 0xFF25;
unsigned const status_reg = 0xFF26;
unsigned const wave_ram = 0xFF30;
int const power_mask = 0x80;
void Gb_Apu::treble_eq( blip_eq_t const& eq )
{
good_synth.treble_eq( eq );
med_synth .treble_eq( eq );
}
inline int Gb_Apu::calc_output( int osc ) const
{
int bits = regs [stereo_reg - start_addr] >> osc;
return (bits >> 3 & 2) | (bits & 1);
}
void Gb_Apu::set_output( Blip_Buffer* center, Blip_Buffer* left, Blip_Buffer* right, int osc )
{
// Must be silent (all NULL), mono (left and right NULL), or stereo (none NULL)
require( !center || (center && !left && !right) || (center && left && right) );
require( (unsigned) osc <= osc_count ); // fails if you pass invalid osc index
if ( !center || !left || !right )
{
left = center;
right = center;
}
int i = (unsigned) osc % osc_count;
do
{
Gb_Osc& o = *oscs [i];
o.outputs [1] = right;
o.outputs [2] = left;
o.outputs [3] = center;
o.output = o.outputs [calc_output( i )];
}
while ( ++i < osc );
}
void Gb_Apu::synth_volume( int iv )
{
double v = volume_ * 0.60 / osc_count / 15 /*steps*/ / 8 /*master vol range*/ * iv;
good_synth.volume( v );
med_synth .volume( v );
}
void Gb_Apu::apply_volume()
{
// TODO: Doesn't handle differing left and right volumes (panning).
// Not worth the complexity.
int data = regs [vol_reg - start_addr];
int left = data >> 4 & 7;
int right = data & 7;
//if ( data & 0x88 ) dprintf( "Vin: %02X\n", data & 0x88 );
//if ( left != right ) dprintf( "l: %d r: %d\n", left, right );
synth_volume( max( left, right ) + 1 );
}
void Gb_Apu::volume( double v )
{
if ( volume_ != v )
{
volume_ = v;
apply_volume();
}
}
void Gb_Apu::reset_regs()
{
for ( int i = 0; i < 0x20; i++ )
regs [i] = 0;
square1.reset();
square2.reset();
wave .reset();
noise .reset();
apply_volume();
}
void Gb_Apu::reset_lengths()
{
square1.length_ctr = 64;
square2.length_ctr = 64;
wave .length_ctr = 256;
noise .length_ctr = 64;
}
void Gb_Apu::reduce_clicks( bool reduce )
{
reduce_clicks_ = reduce;
// Click reduction makes DAC off generate same output as volume 0
int dac_off_amp = 0;
if ( reduce && wave.mode != mode_agb ) // AGB already eliminates clicks
dac_off_amp = -Gb_Osc::dac_bias;
for ( int i = 0; i < osc_count; i++ )
oscs [i]->dac_off_amp = dac_off_amp;
// AGB always eliminates clicks on wave channel using same method
if ( wave.mode == mode_agb )
wave.dac_off_amp = -Gb_Osc::dac_bias;
}
void Gb_Apu::reset( mode_t mode, bool agb_wave )
{
// Hardware mode
if ( agb_wave )
mode = mode_agb; // using AGB wave features implies AGB hardware
wave.agb_mask = agb_wave ? 0xFF : 0;
for ( int i = 0; i < osc_count; i++ )
oscs [i]->mode = mode;
reduce_clicks( reduce_clicks_ );
// Reset state
frame_time = 0;
last_time = 0;
frame_phase = 0;
reset_regs();
reset_lengths();
// Load initial wave RAM
static byte const initial_wave [2] [16] = {
{0x84,0x40,0x43,0xAA,0x2D,0x78,0x92,0x3C,0x60,0x59,0x59,0xB0,0x34,0xB8,0x2E,0xDA},
{0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF},
};
for ( int b = 2; --b >= 0; )
{
// Init both banks (does nothing if not in AGB mode)
// TODO: verify that this works
write_register( 0, 0xFF1A, b * 0x40 );
for ( unsigned i = 0; i < sizeof initial_wave [0]; i++ )
write_register( 0, i + wave_ram, initial_wave [(mode != mode_dmg)] [i] );
}
}
void Gb_Apu::set_tempo( double t )
{
frame_period = 4194304 / 512; // 512 Hz
if ( t != 1.0 )
frame_period = blip_time_t (frame_period / t);
}
Gb_Apu::Gb_Apu()
{
wave.wave_ram = &regs [wave_ram - start_addr];
oscs [0] = &square1;
oscs [1] = &square2;
oscs [2] = &wave;
oscs [3] = &noise;
for ( int i = osc_count; --i >= 0; )
{
Gb_Osc& o = *oscs [i];
o.regs = &regs [i * 5];
o.output = 0;
o.outputs [0] = 0;
o.outputs [1] = 0;
o.outputs [2] = 0;
o.outputs [3] = 0;
o.good_synth = &good_synth;
o.med_synth = &med_synth;
}
reduce_clicks_ = false;
set_tempo( 1.0 );
volume_ = 1.0;
reset();
}
void Gb_Apu::run_until_( blip_time_t end_time )
{
while ( true )
{
// run oscillators
blip_time_t time = end_time;
if ( time > frame_time )
time = frame_time;
square1.run( last_time, time );
square2.run( last_time, time );
wave .run( last_time, time );
noise .run( last_time, time );
last_time = time;
if ( time == end_time )
break;
// run frame sequencer
frame_time += frame_period * Gb_Osc::clk_mul;
switch ( frame_phase++ )
{
case 2:
case 6:
// 128 Hz
square1.clock_sweep();
case 0:
case 4:
// 256 Hz
square1.clock_length();
square2.clock_length();
wave .clock_length();
noise .clock_length();
break;
case 7:
// 64 Hz
frame_phase = 0;
square1.clock_envelope();
square2.clock_envelope();
noise .clock_envelope();
}
}
}
inline void Gb_Apu::run_until( blip_time_t time )
{
require( time >= last_time ); // end_time must not be before previous time
if ( time > last_time )
run_until_( time );
}
void Gb_Apu::end_frame( blip_time_t end_time )
{
if ( end_time > last_time )
run_until( end_time );
frame_time -= end_time;
assert( frame_time >= 0 );
last_time -= end_time;
assert( last_time >= 0 );
}
void Gb_Apu::silence_osc( Gb_Osc& o )
{
int delta = -o.last_amp;
if ( delta )
{
o.last_amp = 0;
if ( o.output )
{
o.output->set_modified();
med_synth.offset( last_time, delta, o.output );
}
}
}
void Gb_Apu::apply_stereo()
{
for ( int i = osc_count; --i >= 0; )
{
Gb_Osc& o = *oscs [i];
Blip_Buffer* out = o.outputs [calc_output( i )];
if ( o.output != out )
{
silence_osc( o );
o.output = out;
}
}
}
void Gb_Apu::write_register( blip_time_t time, unsigned addr, int data )
{
require( (unsigned) data < 0x100 );
int reg = addr - start_addr;
if ( (unsigned) reg >= register_count )
{
require( false );
return;
}
if ( addr < status_reg && !(regs [status_reg - start_addr] & power_mask) )
{
// Power is off
// length counters can only be written in DMG mode
if ( wave.mode != mode_dmg || (reg != 1 && reg != 5+1 && reg != 10+1 && reg != 15+1) )
return;
if ( reg < 10 )
data &= 0x3F; // clear square duty
}
run_until( time );
if ( addr >= wave_ram )
{
wave.write( addr, data );
}
else
{
int old_data = regs [reg];
regs [reg] = data;
if ( addr < vol_reg )
{
// Oscillator
write_osc( reg / 5, reg, old_data, data );
}
else if ( addr == vol_reg && data != old_data )
{
// Master volume
for ( int i = osc_count; --i >= 0; )
silence_osc( *oscs [i] );
apply_volume();
}
else if ( addr == stereo_reg )
{
// Stereo panning
apply_stereo();
}
else if ( addr == status_reg && (data ^ old_data) & power_mask )
{
// Power control
frame_phase = 0;
for ( int i = osc_count; --i >= 0; )
silence_osc( *oscs [i] );
reset_regs();
if ( wave.mode != mode_dmg )
reset_lengths();
regs [status_reg - start_addr] = data;
}
}
}
int Gb_Apu::read_register( blip_time_t time, unsigned addr )
{
run_until( time );
int reg = addr - start_addr;
if ( (unsigned) reg >= register_count )
{
require( false );
return 0;
}
if ( addr >= wave_ram )
return wave.read( addr );
// Value read back has some bits always set
static byte const masks [] = {
0x80,0x3F,0x00,0xFF,0xBF,
0xFF,0x3F,0x00,0xFF,0xBF,
0x7F,0xFF,0x9F,0xFF,0xBF,
0xFF,0xFF,0x00,0x00,0xBF,
0x00,0x00,0x70,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF
};
int mask = masks [reg];
if ( wave.agb_mask && (reg == 10 || reg == 12) )
mask = 0x1F; // extra implemented bits in wave regs on AGB
int data = regs [reg] | mask;
// Status register
if ( addr == status_reg )
{
data &= 0xF0;
data |= (int) square1.enabled << 0;
data |= (int) square2.enabled << 1;
data |= (int) wave .enabled << 2;
data |= (int) noise .enabled << 3;
}
return data;
}