wiiu-nanddumper-payload/ios_kernel/source/main.c
dimok789 b65b6c86cc - fixed bug with re-initialization of EEPROM and OTP dump on SD card
- added new feature which allows you to disable os full relaunch (only possible in combination with sysNAND, not redNAND)
- added new option which allows to return to HBL after executing the patches and not launch to System Menu (only in combination with disabled OS full relaunch)
- some clean ups

NOTE to the new feature:
The new feature to disable full OS reload behaves similar to the simple signature patcher except that it setups execution memory region from kernel for wupserver and iosuhax dev node code and starts those. So it's a fast simple signature patcher with the addition of wupserver and iosuhax dev node. Another addition to the simple sign patcher is that the patches reload themself when exiting settings. Launch image is disabled for this method though.
2016-12-14 14:14:12 +01:00

143 lines
5.5 KiB
C

/***************************************************************************
* Copyright (C) 2016
* by Dimok
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any
* damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any
* purpose, including commercial applications, and to alter it and
* redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you
* must not claim that you wrote the original software. If you use
* this software in a product, an acknowledgment in the product
* documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and
* must not be misrepresented as being the original software.
*
* 3. This notice may not be removed or altered from any source
* distribution.
***************************************************************************/
#include "types.h"
#include "config.h"
#include "utils.h"
#include "redirection_setup.h"
#include "ios_mcp_patches.h"
#include "ios_fs_patches.h"
#include "ios_bsp_patches.h"
#include "instant_patches.h"
#define USB_PHYS_CODE_BASE 0x101312D0
cfw_config_t cfw_config;
typedef struct
{
u32 size;
u8 data[0];
} payload_info_t;
static const char repairData_set_fault_behavior[] = {
0xE1,0x2F,0xFF,0x1E,0xE9,0x2D,0x40,0x30,0xE5,0x93,0x20,0x00,0xE1,0xA0,0x40,0x00,
0xE5,0x92,0x30,0x54,0xE1,0xA0,0x50,0x01,0xE3,0x53,0x00,0x01,0x0A,0x00,0x00,0x02,
0xE1,0x53,0x00,0x00,0xE3,0xE0,0x00,0x00,0x18,0xBD,0x80,0x30,0xE3,0x54,0x00,0x0D,
};
static const char repairData_set_panic_behavior[] = {
0x08,0x16,0x6C,0x00,0x00,0x00,0x18,0x0C,0x08,0x14,0x40,0x00,0x00,0x00,0x9D,0x70,
0x08,0x16,0x84,0x0C,0x00,0x00,0xB4,0x0C,0x00,0x00,0x01,0x01,0x08,0x14,0x40,0x00,
0x08,0x15,0x00,0x00,0x08,0x17,0x21,0x80,0x08,0x17,0x38,0x00,0x08,0x14,0x30,0xD4,
0x08,0x14,0x12,0x50,0x08,0x14,0x12,0x94,0xE3,0xA0,0x35,0x36,0xE5,0x93,0x21,0x94,
0xE3,0xC2,0x2E,0x21,0xE5,0x83,0x21,0x94,0xE5,0x93,0x11,0x94,0xE1,0x2F,0xFF,0x1E,
0xE5,0x9F,0x30,0x1C,0xE5,0x9F,0xC0,0x1C,0xE5,0x93,0x20,0x00,0xE1,0xA0,0x10,0x00,
0xE5,0x92,0x30,0x54,0xE5,0x9C,0x00,0x00,
};
static const char repairData_usb_root_thread[] = {
0xE5,0x8D,0xE0,0x04,0xE5,0x8D,0xC0,0x08,0xE5,0x8D,0x40,0x0C,0xE5,0x8D,0x60,0x10,
0xEB,0x00,0xB2,0xFD,0xEA,0xFF,0xFF,0xC9,0x10,0x14,0x03,0xF8,0x10,0x62,0x4D,0xD3,
0x10,0x14,0x50,0x00,0x10,0x14,0x50,0x20,0x10,0x14,0x00,0x00,0x10,0x14,0x00,0x90,
0x10,0x14,0x00,0x70,0x10,0x14,0x00,0x98,0x10,0x14,0x00,0x84,0x10,0x14,0x03,0xE8,
0x10,0x14,0x00,0x3C,0x00,0x00,0x01,0x73,0x00,0x00,0x01,0x76,0xE9,0x2D,0x4F,0xF0,
0xE2,0x4D,0xDE,0x17,0xEB,0x00,0xB9,0x92,0xE3,0xA0,0x10,0x00,0xE3,0xA0,0x20,0x03,
0xE5,0x9F,0x0E,0x68,0xEB,0x00,0xB3,0x20,
};
int _main()
{
void(*invalidate_icache)() = (void(*)())0x0812DCF0;
void(*invalidate_dcache)(unsigned int, unsigned int) = (void(*)())0x08120164;
void(*flush_dcache)(unsigned int, unsigned int) = (void(*)())0x08120160;
flush_dcache(0x081200F0, 0x4001); // giving a size >= 0x4000 flushes all cache
int level = disable_interrupts();
unsigned int control_register = disable_mmu();
/* Save the request handle so we can reply later */
*(volatile u32*)0x0012F000 = *(volatile u32*)0x1016AD18;
/* Patch kernel_error_handler to BX LR immediately */
*(volatile u32*)0x08129A24 = 0xE12FFF1E;
void * pset_fault_behavior = (void*)0x081298BC;
kernel_memcpy(pset_fault_behavior, (void*)repairData_set_fault_behavior, sizeof(repairData_set_fault_behavior));
void * pset_panic_behavior = (void*)0x081296E4;
kernel_memcpy(pset_panic_behavior, (void*)repairData_set_panic_behavior, sizeof(repairData_set_panic_behavior));
void * pusb_root_thread = (void*)0x10100174;
kernel_memcpy(pusb_root_thread, (void*)repairData_usb_root_thread, sizeof(repairData_usb_root_thread));
payload_info_t *payloads = (payload_info_t*)0x00148000;
kernel_memcpy((void*)&cfw_config, payloads->data, payloads->size);
payloads = (payload_info_t*)( ((char*)payloads) + ALIGN4(sizeof(payload_info_t) + payloads->size) );
kernel_memcpy((void*)USB_PHYS_CODE_BASE, payloads->data, payloads->size);
payloads = (payload_info_t*)( ((char*)payloads) + ALIGN4(sizeof(payload_info_t) + payloads->size) );
if(cfw_config.redNAND)
{
kernel_memcpy((void*)fs_get_phys_code_base(), payloads->data, payloads->size);
payloads = (payload_info_t*)( ((char*)payloads) + ALIGN4(sizeof(payload_info_t) + payloads->size) );
if(cfw_config.seeprom_red)
{
kernel_memcpy((void*)bsp_get_phys_code_base(), payloads->data, payloads->size);
payloads = (payload_info_t*)( ((char*)payloads) + ALIGN4(sizeof(payload_info_t) + payloads->size) );
}
}
kernel_memcpy((void*)mcp_get_phys_code_base(), payloads->data, payloads->size);
payloads = (payload_info_t*)( ((char*)payloads) + ALIGN4(sizeof(payload_info_t) + payloads->size) );
if(cfw_config.launchImage)
{
kernel_memcpy((void*)MCP_LAUNCH_IMG_PHYS_ADDR, payloads->data, payloads->size);
payloads = (payload_info_t*)( ((char*)payloads) + ALIGN4(sizeof(payload_info_t) + payloads->size) );
}
// run all instant patches as necessary
instant_patches_setup();
*(volatile u32*)(0x1555500) = 0;
/* REENABLE MMU */
restore_mmu(control_register);
invalidate_dcache(0x081298BC, 0x4001); // giving a size >= 0x4000 invalidates all cache
invalidate_icache();
enable_interrupts(level);
if(cfw_config.redNAND)
{
redirection_setup();
}
return 0;
}