the-algorithm/twml/twml/layers/sequential.py

161 lines
3.9 KiB
Python
Raw Normal View History

"""
Implementing Sequential Layer container
"""
from .layer import Layer
from tensorflow import keras
from tensorflow.python.layers import base
class Sequential(Layer):
"""
A sequential stack of layers.
Arguments:
layers: list of layers to add to the model.
Output:
the output of the sequential layers
"""
def __init__(self, layers=None, **kwargs):
self._layers = [] # Stack of layers.
self._layer_names = [] # Stack of layers names
self._layer_outputs = []
# Add to the model any layers passed to the constructor.
if layers:
for layer in layers:
self.add(layer)
super(Sequential, self).__init__(**kwargs)
def add(self, layer):
"""Adds a layer instance on top of the layer stack.
Arguments:
layer:
layer instance.
Raises:
TypeError:
if the layer argument is not instance of base.Layer
"""
if not isinstance(layer, base.Layer) and not isinstance(layer, keras.layers.Layer):
raise TypeError('The added layer must be an instance of class Layer')
if layer.name in self._layer_names:
raise ValueError('Layer with name %s already exists in sequential layer' % layer.name)
self._layers.append(layer)
self._layer_names.append(layer.name)
def pop(self):
"""Removes the last layer in the model.
Raises:
TypeError:
if there are no layers in the model.
"""
if not self._layers or not self._layer_names:
raise TypeError('There are no layers in the model.')
self._layers.pop()
self._layer_names.pop()
def call(self, inputs, **kwargs): # pylint: disable=unused-argument
"""The logic of the layer lives here.
Arguments:
inputs:
input tensor(s).
Returns:
The output of the sequential layers
"""
self._layer_outputs = []
for layer in self._layers:
# don't use layer.call because you want to build individual layers
inputs = layer(inputs) # overwrites the current input after it has been processed
self._layer_outputs.append(inputs)
return inputs
@property
def layers(self):
""" Return the layers in the sequential layer """
return self._layers
@property
def layer_names(self):
""" Return the layer names in the sequential layer """
return self._layer_names
@property
def layer_outputs(self):
""" Return the layer outputs in the sequential layer """
return self._layer_outputs
def get(self, key):
"""Retrieves the n-th layer.
Arguments:
key:
index of the layer
Output:
The n-th layer where n is equal to the key.
"""
return self._layers[key]
def get_output(self, key):
"""Retrieves the n-th layer output.
Arguments:
key:
index of the layer
Output:
The intermediary output equivalent to the nth layer, where n is equal to the key.
"""
return self._layer_outputs[key]
def get_layer_by_name(self, name):
"""Retrieves the layer corresponding to the name.
Arguments:
name:
name of the layer
Output:
list of layers that have the name desired
"""
return self._layers[self._layer_names.index(name)]
def get_layer_output_by_name(self, name):
"""Retrieves the layer output corresponding to the name.
Arguments:
name:
name of the layer
Output:
list of the output of the layers that have the desired name
"""
return self._layer_outputs[self._layer_names.index(name)]
@property
def init(self):
""" returns a list of initialization ops (one per layer) """
return [layer.init for layer in self._layers]
def compute_output_shape(self, input_shape):
"""Computes the output shape of the layer given the input shape.
Args:
input_shape: A (possibly nested tuple of) `TensorShape`. It need not
be fully defined (e.g. the batch size may be unknown).
Raise NotImplementedError.
"""
raise NotImplementedError