mirror of
https://github.com/twitter/the-algorithm.git
synced 2025-01-08 10:20:42 +01:00
ef4c5eb65e
Please note we have force-pushed a new initial commit in order to remove some publicly-available Twitter user information. Note that this process may be required in the future.
161 lines
3.9 KiB
Python
161 lines
3.9 KiB
Python
"""
|
|
Implementing Sequential Layer container
|
|
"""
|
|
|
|
|
|
from .layer import Layer
|
|
|
|
from tensorflow import keras
|
|
from tensorflow.python.layers import base
|
|
|
|
|
|
class Sequential(Layer):
|
|
"""
|
|
A sequential stack of layers.
|
|
|
|
Arguments:
|
|
layers: list of layers to add to the model.
|
|
|
|
Output:
|
|
the output of the sequential layers
|
|
"""
|
|
|
|
def __init__(self, layers=None, **kwargs):
|
|
self._layers = [] # Stack of layers.
|
|
self._layer_names = [] # Stack of layers names
|
|
self._layer_outputs = []
|
|
# Add to the model any layers passed to the constructor.
|
|
if layers:
|
|
for layer in layers:
|
|
self.add(layer)
|
|
super(Sequential, self).__init__(**kwargs)
|
|
|
|
def add(self, layer):
|
|
"""Adds a layer instance on top of the layer stack.
|
|
|
|
Arguments:
|
|
layer:
|
|
layer instance.
|
|
|
|
Raises:
|
|
TypeError:
|
|
if the layer argument is not instance of base.Layer
|
|
"""
|
|
if not isinstance(layer, base.Layer) and not isinstance(layer, keras.layers.Layer):
|
|
raise TypeError('The added layer must be an instance of class Layer')
|
|
|
|
if layer.name in self._layer_names:
|
|
raise ValueError('Layer with name %s already exists in sequential layer' % layer.name)
|
|
|
|
self._layers.append(layer)
|
|
self._layer_names.append(layer.name)
|
|
|
|
def pop(self):
|
|
"""Removes the last layer in the model.
|
|
|
|
Raises:
|
|
TypeError:
|
|
if there are no layers in the model.
|
|
"""
|
|
if not self._layers or not self._layer_names:
|
|
raise TypeError('There are no layers in the model.')
|
|
self._layers.pop()
|
|
self._layer_names.pop()
|
|
|
|
def call(self, inputs, **kwargs): # pylint: disable=unused-argument
|
|
"""The logic of the layer lives here.
|
|
|
|
Arguments:
|
|
inputs:
|
|
input tensor(s).
|
|
|
|
Returns:
|
|
The output of the sequential layers
|
|
"""
|
|
self._layer_outputs = []
|
|
for layer in self._layers:
|
|
# don't use layer.call because you want to build individual layers
|
|
inputs = layer(inputs) # overwrites the current input after it has been processed
|
|
self._layer_outputs.append(inputs)
|
|
return inputs
|
|
|
|
@property
|
|
def layers(self):
|
|
""" Return the layers in the sequential layer """
|
|
return self._layers
|
|
|
|
@property
|
|
def layer_names(self):
|
|
""" Return the layer names in the sequential layer """
|
|
return self._layer_names
|
|
|
|
@property
|
|
def layer_outputs(self):
|
|
""" Return the layer outputs in the sequential layer """
|
|
return self._layer_outputs
|
|
|
|
def get(self, key):
|
|
"""Retrieves the n-th layer.
|
|
|
|
Arguments:
|
|
key:
|
|
index of the layer
|
|
|
|
Output:
|
|
The n-th layer where n is equal to the key.
|
|
"""
|
|
return self._layers[key]
|
|
|
|
def get_output(self, key):
|
|
"""Retrieves the n-th layer output.
|
|
|
|
Arguments:
|
|
key:
|
|
index of the layer
|
|
|
|
Output:
|
|
The intermediary output equivalent to the nth layer, where n is equal to the key.
|
|
"""
|
|
return self._layer_outputs[key]
|
|
|
|
def get_layer_by_name(self, name):
|
|
"""Retrieves the layer corresponding to the name.
|
|
|
|
Arguments:
|
|
name:
|
|
name of the layer
|
|
|
|
Output:
|
|
list of layers that have the name desired
|
|
"""
|
|
return self._layers[self._layer_names.index(name)]
|
|
|
|
def get_layer_output_by_name(self, name):
|
|
"""Retrieves the layer output corresponding to the name.
|
|
|
|
Arguments:
|
|
name:
|
|
name of the layer
|
|
|
|
Output:
|
|
list of the output of the layers that have the desired name
|
|
"""
|
|
return self._layer_outputs[self._layer_names.index(name)]
|
|
|
|
@property
|
|
def init(self):
|
|
""" returns a list of initialization ops (one per layer) """
|
|
return [layer.init for layer in self._layers]
|
|
|
|
def compute_output_shape(self, input_shape):
|
|
"""Computes the output shape of the layer given the input shape.
|
|
|
|
Args:
|
|
input_shape: A (possibly nested tuple of) `TensorShape`. It need not
|
|
be fully defined (e.g. the batch size may be unknown).
|
|
|
|
Raise NotImplementedError.
|
|
|
|
"""
|
|
raise NotImplementedError
|