mirror of
https://github.com/twitter/the-algorithm.git
synced 2025-01-05 00:51:55 +01:00
Merge branch 'twitter:main' into main
This commit is contained in:
commit
227e3d140a
20
README.md
20
README.md
@ -1,6 +1,6 @@
|
|||||||
# Twitter's Recommendation Algorithm
|
# Twitter's Recommendation Algorithm
|
||||||
|
|
||||||
Twitter's Recommendation Algorithm is a set of services and jobs that are responsible for serving feeds of Tweets and other content across all Twitter product surfaces (e.g. For You Timeline, Search, Explore). For an introduction to how the algorithm works, please refer to our [engineering blog](https://blog.twitter.com/engineering/en_us/topics/open-source/2023/twitter-recommendation-algorithm).
|
Twitter's Recommendation Algorithm is a set of services and jobs that are responsible for serving feeds of Tweets and other content across all Twitter product surfaces (e.g. For You Timeline, Search, Explore, Notifications). For an introduction to how the algorithm works, please refer to our [engineering blog](https://blog.twitter.com/engineering/en_us/topics/open-source/2023/twitter-recommendation-algorithm).
|
||||||
|
|
||||||
## Architecture
|
## Architecture
|
||||||
|
|
||||||
@ -8,7 +8,8 @@ Product surfaces at Twitter are built on a shared set of data, models, and softw
|
|||||||
|
|
||||||
| Type | Component | Description |
|
| Type | Component | Description |
|
||||||
|------------|------------|------------|
|
|------------|------------|------------|
|
||||||
| Data | [unified-user-actions](unified_user_actions/README.md) | Real-time stream of user actions on Twitter. |
|
| Data | [tweetypie](tweetypie/server/README.md) | Core Tweet service that handles the reading and writing of Tweet data. |
|
||||||
|
| | [unified-user-actions](unified_user_actions/README.md) | Real-time stream of user actions on Twitter. |
|
||||||
| | [user-signal-service](user-signal-service/README.md) | Centralized platform to retrieve explicit (e.g. likes, replies) and implicit (e.g. profile visits, tweet clicks) user signals. |
|
| | [user-signal-service](user-signal-service/README.md) | Centralized platform to retrieve explicit (e.g. likes, replies) and implicit (e.g. profile visits, tweet clicks) user signals. |
|
||||||
| Model | [SimClusters](src/scala/com/twitter/simclusters_v2/README.md) | Community detection and sparse embeddings into those communities. |
|
| Model | [SimClusters](src/scala/com/twitter/simclusters_v2/README.md) | Community detection and sparse embeddings into those communities. |
|
||||||
| | [TwHIN](https://github.com/twitter/the-algorithm-ml/blob/main/projects/twhin/README.md) | Dense knowledge graph embeddings for Users and Tweets. |
|
| | [TwHIN](https://github.com/twitter/the-algorithm-ml/blob/main/projects/twhin/README.md) | Dense knowledge graph embeddings for Users and Tweets. |
|
||||||
@ -18,11 +19,14 @@ Product surfaces at Twitter are built on a shared set of data, models, and softw
|
|||||||
| | [recos-injector](recos-injector/README.md) | Streaming event processor for building input streams for [GraphJet](https://github.com/twitter/GraphJet) based services. |
|
| | [recos-injector](recos-injector/README.md) | Streaming event processor for building input streams for [GraphJet](https://github.com/twitter/GraphJet) based services. |
|
||||||
| | [graph-feature-service](graph-feature-service/README.md) | Serves graph features for a directed pair of Users (e.g. how many of User A's following liked Tweets from User B). |
|
| | [graph-feature-service](graph-feature-service/README.md) | Serves graph features for a directed pair of Users (e.g. how many of User A's following liked Tweets from User B). |
|
||||||
| | [topic-social-proof](topic-social-proof/README.md) | Identifies topics related to individual Tweets. |
|
| | [topic-social-proof](topic-social-proof/README.md) | Identifies topics related to individual Tweets. |
|
||||||
|
| | [representation-scorer](representation-scorer/README.md) | Compute scores between pairs of entities (Users, Tweets, etc.) using embedding similarity. |
|
||||||
| Software framework | [navi](navi/README.md) | High performance, machine learning model serving written in Rust. |
|
| Software framework | [navi](navi/README.md) | High performance, machine learning model serving written in Rust. |
|
||||||
| | [product-mixer](product-mixer/README.md) | Software framework for building feeds of content. |
|
| | [product-mixer](product-mixer/README.md) | Software framework for building feeds of content. |
|
||||||
|
| | [timelines-aggregation-framework](timelines/data_processing/ml_util/aggregation_framework/README.md) | Framework for generating aggregate features in batch or real time. |
|
||||||
|
| | [representation-manager](representation-manager/README.md) | Service to retrieve embeddings (i.e. SimClusers and TwHIN). |
|
||||||
| | [twml](twml/README.md) | Legacy machine learning framework built on TensorFlow v1. |
|
| | [twml](twml/README.md) | Legacy machine learning framework built on TensorFlow v1. |
|
||||||
|
|
||||||
The product surface currently included in this repository is the For You Timeline.
|
The product surfaces currently included in this repository are the For You Timeline and Recommended Notifications.
|
||||||
|
|
||||||
### For You Timeline
|
### For You Timeline
|
||||||
|
|
||||||
@ -44,6 +48,16 @@ The core components of the For You Timeline included in this repository are list
|
|||||||
| | [visibility-filters](visibilitylib/README.md) | Responsible for filtering Twitter content to support legal compliance, improve product quality, increase user trust, protect revenue through the use of hard-filtering, visible product treatments, and coarse-grained downranking. |
|
| | [visibility-filters](visibilitylib/README.md) | Responsible for filtering Twitter content to support legal compliance, improve product quality, increase user trust, protect revenue through the use of hard-filtering, visible product treatments, and coarse-grained downranking. |
|
||||||
| | [timelineranker](timelineranker/README.md) | Legacy service which provides relevance-scored tweets from the Earlybird Search Index and UTEG service. |
|
| | [timelineranker](timelineranker/README.md) | Legacy service which provides relevance-scored tweets from the Earlybird Search Index and UTEG service. |
|
||||||
|
|
||||||
|
### Recommended Notifications
|
||||||
|
|
||||||
|
The core components of Recommended Notifications included in this repository are listed below:
|
||||||
|
|
||||||
|
| Type | Component | Description |
|
||||||
|
|------------|------------|------------|
|
||||||
|
| Service | [pushservice](pushservice/README.md) | Main recommendation service at Twitter used to surface recommendations to our users via notifications.
|
||||||
|
| Ranking | [pushservice-light-ranker](pushservice/src/main/python/models/light_ranking/README.md) | Light Ranker model used by pushservice to rank Tweets. Bridges candidate generation and heavy ranking by pre-selecting highly-relevant candidates from the initial huge candidate pool. |
|
||||||
|
| | [pushservice-heavy-ranker](pushservice/src/main/python/models/heavy_ranking/README.md) | Multi-task learning model to predict the probabilities that the target users will open and engage with the sent notifications. |
|
||||||
|
|
||||||
## Build and test code
|
## Build and test code
|
||||||
|
|
||||||
We include Bazel BUILD files for most components, but not a top-level BUILD or WORKSPACE file. We plan to add a more complete build and test system in the future.
|
We include Bazel BUILD files for most components, but not a top-level BUILD or WORKSPACE file. We plan to add a more complete build and test system in the future.
|
||||||
|
51
RETREIVAL_SIGNALS.md
Normal file
51
RETREIVAL_SIGNALS.md
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
# Signals for Candidate Sources
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
The candidate sourcing stage within the Twitter Recommendation algorithm serves to significantly narrow down the item size from approximately 1 billion to just a few thousand. This process utilizes Twitter user behavior as the primary input for the algorithm. This document comprehensively enumerates all the signals during the candidate sourcing phase.
|
||||||
|
|
||||||
|
| Signals | Description |
|
||||||
|
| :-------------------- | :-------------------------------------------------------------------- |
|
||||||
|
| Author Follow | The accounts which user explicit follows. |
|
||||||
|
| Author Unfollow | The accounts which user recently unfollows. |
|
||||||
|
| Author Mute | The accounts which user have muted. |
|
||||||
|
| Author Block | The accounts which user have blocked |
|
||||||
|
| Tweet Favorite | The tweets which user clicked the like botton. |
|
||||||
|
| Tweet Unfavorite | The tweets which user clicked the unlike botton. |
|
||||||
|
| Retweet | The tweets which user retweeted |
|
||||||
|
| Quote Tweet | The tweets which user retweeted with comments. |
|
||||||
|
| Tweet Reply | The tweets which user replied. |
|
||||||
|
| Tweet Share | The tweets which user clicked the share botton. |
|
||||||
|
| Tweet Bookmark | The tweets which user clicked the bookmark botton. |
|
||||||
|
| Tweet Click | The tweets which user clicked and viewed the tweet detail page. |
|
||||||
|
| Tweet Video Watch | The video tweets which user watched certain seconds or percentage. |
|
||||||
|
| Tweet Don't like | The tweets which user clicked "Not interested in this tweet" botton. |
|
||||||
|
| Tweet Report | The tweets which user clicked "Report Tweet" botton. |
|
||||||
|
| Notification Open | The push notification tweets which user opened. |
|
||||||
|
| Ntab click | The tweets which user click on the Notifications page. |
|
||||||
|
| User AddressBook | The author accounts identifiers of the user's addressbook. |
|
||||||
|
|
||||||
|
## Usage Details
|
||||||
|
|
||||||
|
Twitter uses these user signals as training labels and/or ML features in the each candidate sourcing algorithms. The following tables shows how they are used in the each components.
|
||||||
|
|
||||||
|
| Signals | USS | SimClusters | TwHin | UTEG | FRS | Light Ranking |
|
||||||
|
| :-------------------- | :----------------- | :----------------- | :----------------- | :----------------- | :----------------- | :----------------- |
|
||||||
|
| Author Follow | Features | Features / Labels | Features / Labels | Features | Features / Labels | N/A |
|
||||||
|
| Author Unfollow | Features | N/A | N/A | N/A | N/A | N/A |
|
||||||
|
| Author Mute | Features | N/A | N/A | N/A | Features | N/A |
|
||||||
|
| Author Block | Features | N/A | N/A | N/A | Features | N/A |
|
||||||
|
| Tweet Favorite | Features | Features | Features / Labels | Features | Features / Labels | Features / Labels |
|
||||||
|
| Tweet Unfavorite | Features | Features | N/A | N/A | N/A | N/A |
|
||||||
|
| Retweet | Features | N/A | Features / Labels | Features | Features / Labels | Features / Labels |
|
||||||
|
| Quote Tweet | Features | N/A | Features / Labels | Features | Features / Labels | Features / Labels |
|
||||||
|
| Tweet Reply | Features | N/A | Features | Features | Features / Labels | Features |
|
||||||
|
| Tweet Share | Features | N/A | N/A | N/A | Features | N/A |
|
||||||
|
| Tweet Bookmark | Features | N/A | N/A | N/A | N/A | N/A |
|
||||||
|
| Tweet Click | Features | N/A | N/A | N/A | Features | Labels |
|
||||||
|
| Tweet Video Watch | Features | Features | N/A | N/A | N/A | Labels |
|
||||||
|
| Tweet Don't like | Features | N/A | N/A | N/A | N/A | N/A |
|
||||||
|
| Tweet Report | Features | N/A | N/A | N/A | N/A | N/A |
|
||||||
|
| Notification Open | Features | Features | Features | N/A | Features | N/A |
|
||||||
|
| Ntab click | Features | Features | Features | N/A | Features | N/A |
|
||||||
|
| User AddressBook | N/A | N/A | N/A | N/A | Features | N/A |
|
@ -31,6 +31,11 @@ In navi/navi, you can run the following commands:
|
|||||||
- `scripts/run_onnx.sh` for [Onnx](https://onnx.ai/)
|
- `scripts/run_onnx.sh` for [Onnx](https://onnx.ai/)
|
||||||
|
|
||||||
Do note that you need to create a models directory and create some versions, preferably using epoch time, e.g., `1679693908377`.
|
Do note that you need to create a models directory and create some versions, preferably using epoch time, e.g., `1679693908377`.
|
||||||
|
so the models structure looks like:
|
||||||
|
models/
|
||||||
|
-web_click
|
||||||
|
- 1809000
|
||||||
|
- 1809010
|
||||||
|
|
||||||
## Build
|
## Build
|
||||||
You can adapt the above scripts to build using Cargo.
|
You can adapt the above scripts to build using Cargo.
|
||||||
|
@ -3,7 +3,6 @@ name = "dr_transform"
|
|||||||
version = "0.1.0"
|
version = "0.1.0"
|
||||||
edition = "2021"
|
edition = "2021"
|
||||||
|
|
||||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
|
||||||
[dependencies]
|
[dependencies]
|
||||||
serde = { version = "1.0", features = ["derive"] }
|
serde = { version = "1.0", features = ["derive"] }
|
||||||
serde_json = "1.0"
|
serde_json = "1.0"
|
||||||
@ -12,7 +11,6 @@ bpr_thrift = { path = "../thrift_bpr_adapter/thrift/"}
|
|||||||
segdense = { path = "../segdense/"}
|
segdense = { path = "../segdense/"}
|
||||||
thrift = "0.17.0"
|
thrift = "0.17.0"
|
||||||
ndarray = "0.15"
|
ndarray = "0.15"
|
||||||
ort = {git ="https://github.com/pykeio/ort.git", tag="v1.14.2"}
|
|
||||||
base64 = "0.20.0"
|
base64 = "0.20.0"
|
||||||
npyz = "0.7.2"
|
npyz = "0.7.2"
|
||||||
log = "0.4.17"
|
log = "0.4.17"
|
||||||
@ -21,6 +19,11 @@ prometheus = "0.13.1"
|
|||||||
once_cell = "1.17.0"
|
once_cell = "1.17.0"
|
||||||
rand = "0.8.5"
|
rand = "0.8.5"
|
||||||
itertools = "0.10.5"
|
itertools = "0.10.5"
|
||||||
|
anyhow = "1.0.70"
|
||||||
|
[target.'cfg(not(target_os="linux"))'.dependencies]
|
||||||
|
ort = {git ="https://github.com/pykeio/ort.git", features=["profiling"], tag="v1.14.6"}
|
||||||
|
[target.'cfg(target_os="linux")'.dependencies]
|
||||||
|
ort = {git ="https://github.com/pykeio/ort.git", features=["profiling", "tensorrt", "cuda", "copy-dylibs"], tag="v1.14.6"}
|
||||||
[dev-dependencies]
|
[dev-dependencies]
|
||||||
criterion = "0.3.0"
|
criterion = "0.3.0"
|
||||||
|
|
||||||
|
@ -44,5 +44,6 @@ pub struct RenamedFeatures {
|
|||||||
}
|
}
|
||||||
|
|
||||||
pub fn parse(json_str: &str) -> Result<AllConfig, Error> {
|
pub fn parse(json_str: &str) -> Result<AllConfig, Error> {
|
||||||
serde_json::from_str(json_str)
|
let all_config: AllConfig = serde_json::from_str(json_str)?;
|
||||||
|
Ok(all_config)
|
||||||
}
|
}
|
||||||
|
@ -2,6 +2,9 @@ use std::collections::BTreeSet;
|
|||||||
use std::fmt::{self, Debug, Display};
|
use std::fmt::{self, Debug, Display};
|
||||||
use std::fs;
|
use std::fs;
|
||||||
|
|
||||||
|
use crate::all_config;
|
||||||
|
use crate::all_config::AllConfig;
|
||||||
|
use anyhow::{bail, Context};
|
||||||
use bpr_thrift::data::DataRecord;
|
use bpr_thrift::data::DataRecord;
|
||||||
use bpr_thrift::prediction_service::BatchPredictionRequest;
|
use bpr_thrift::prediction_service::BatchPredictionRequest;
|
||||||
use bpr_thrift::tensor::GeneralTensor;
|
use bpr_thrift::tensor::GeneralTensor;
|
||||||
@ -16,8 +19,6 @@ use segdense::util;
|
|||||||
use thrift::protocol::{TBinaryInputProtocol, TSerializable};
|
use thrift::protocol::{TBinaryInputProtocol, TSerializable};
|
||||||
use thrift::transport::TBufferChannel;
|
use thrift::transport::TBufferChannel;
|
||||||
|
|
||||||
use crate::{all_config, all_config::AllConfig};
|
|
||||||
|
|
||||||
pub fn log_feature_match(
|
pub fn log_feature_match(
|
||||||
dr: &DataRecord,
|
dr: &DataRecord,
|
||||||
seg_dense_config: &DensificationTransformSpec,
|
seg_dense_config: &DensificationTransformSpec,
|
||||||
@ -28,20 +29,24 @@ pub fn log_feature_match(
|
|||||||
|
|
||||||
for (feature_id, feature_value) in dr.continuous_features.as_ref().unwrap() {
|
for (feature_id, feature_value) in dr.continuous_features.as_ref().unwrap() {
|
||||||
debug!(
|
debug!(
|
||||||
"{dr_type} - Continuous Datarecord => Feature ID: {feature_id}, Feature value: {feature_value}"
|
"{} - Continous Datarecord => Feature ID: {}, Feature value: {}",
|
||||||
|
dr_type, feature_id, feature_value
|
||||||
);
|
);
|
||||||
for input_feature in &seg_dense_config.cont.input_features {
|
for input_feature in &seg_dense_config.cont.input_features {
|
||||||
if input_feature.feature_id == *feature_id {
|
if input_feature.feature_id == *feature_id {
|
||||||
debug!("Matching input feature: {input_feature:?}")
|
debug!("Matching input feature: {:?}", input_feature)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for feature_id in dr.binary_features.as_ref().unwrap() {
|
for feature_id in dr.binary_features.as_ref().unwrap() {
|
||||||
debug!("{dr_type} - Binary Datarecord => Feature ID: {feature_id}");
|
debug!(
|
||||||
|
"{} - Binary Datarecord => Feature ID: {}",
|
||||||
|
dr_type, feature_id
|
||||||
|
);
|
||||||
for input_feature in &seg_dense_config.binary.input_features {
|
for input_feature in &seg_dense_config.binary.input_features {
|
||||||
if input_feature.feature_id == *feature_id {
|
if input_feature.feature_id == *feature_id {
|
||||||
debug!("Found input feature: {input_feature:?}")
|
debug!("Found input feature: {:?}", input_feature)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -90,18 +95,19 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
model_version: &str,
|
model_version: &str,
|
||||||
reporting_feature_ids: Vec<(i64, &str)>,
|
reporting_feature_ids: Vec<(i64, &str)>,
|
||||||
register_metric_fn: Option<impl Fn(&HistogramVec)>,
|
register_metric_fn: Option<impl Fn(&HistogramVec)>,
|
||||||
) -> BatchPredictionRequestToTorchTensorConverter {
|
) -> anyhow::Result<BatchPredictionRequestToTorchTensorConverter> {
|
||||||
let all_config_path = format!("{model_dir}/{model_version}/all_config.json");
|
let all_config_path = format!("{}/{}/all_config.json", model_dir, model_version);
|
||||||
let seg_dense_config_path =
|
let seg_dense_config_path = format!(
|
||||||
format!("{model_dir}/{model_version}/segdense_transform_spec_home_recap_2022.json");
|
"{}/{}/segdense_transform_spec_home_recap_2022.json",
|
||||||
let seg_dense_config = util::load_config(&seg_dense_config_path);
|
model_dir, model_version
|
||||||
|
);
|
||||||
|
let seg_dense_config = util::load_config(&seg_dense_config_path)?;
|
||||||
let all_config = all_config::parse(
|
let all_config = all_config::parse(
|
||||||
&fs::read_to_string(&all_config_path)
|
&fs::read_to_string(&all_config_path)
|
||||||
.unwrap_or_else(|error| panic!("error loading all_config.json - {error}")),
|
.with_context(|| "error loading all_config.json - ")?,
|
||||||
)
|
)?;
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
let feature_mapper = util::load_from_parsed_config_ref(&seg_dense_config);
|
let feature_mapper = util::load_from_parsed_config(seg_dense_config.clone())?;
|
||||||
|
|
||||||
let user_embedding_feature_id = Self::get_feature_id(
|
let user_embedding_feature_id = Self::get_feature_id(
|
||||||
&all_config
|
&all_config
|
||||||
@ -131,11 +137,11 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
let (discrete_feature_metrics, continuous_feature_metrics) = METRICS.get_or_init(|| {
|
let (discrete_feature_metrics, continuous_feature_metrics) = METRICS.get_or_init(|| {
|
||||||
let discrete = HistogramVec::new(
|
let discrete = HistogramVec::new(
|
||||||
HistogramOpts::new(":navi:feature_id:discrete", "Discrete Feature ID values")
|
HistogramOpts::new(":navi:feature_id:discrete", "Discrete Feature ID values")
|
||||||
.buckets(Vec::from([
|
.buckets(Vec::from(&[
|
||||||
0.0f64, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0,
|
0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0,
|
||||||
120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0,
|
120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0,
|
||||||
300.0, 500.0, 1000.0, 10000.0, 100000.0,
|
300.0, 500.0, 1000.0, 10000.0, 100000.0,
|
||||||
])),
|
] as &'static [f64])),
|
||||||
&["feature_id"],
|
&["feature_id"],
|
||||||
)
|
)
|
||||||
.expect("metric cannot be created");
|
.expect("metric cannot be created");
|
||||||
@ -144,18 +150,18 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
":navi:feature_id:continuous",
|
":navi:feature_id:continuous",
|
||||||
"continuous Feature ID values",
|
"continuous Feature ID values",
|
||||||
)
|
)
|
||||||
.buckets(Vec::from([
|
.buckets(Vec::from(&[
|
||||||
0.0f64, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0,
|
0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0, 120.0,
|
||||||
120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0, 300.0,
|
130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0, 300.0, 500.0,
|
||||||
500.0, 1000.0, 10000.0, 100000.0,
|
1000.0, 10000.0, 100000.0,
|
||||||
])),
|
] as &'static [f64])),
|
||||||
&["feature_id"],
|
&["feature_id"],
|
||||||
)
|
)
|
||||||
.expect("metric cannot be created");
|
.expect("metric cannot be created");
|
||||||
if let Some(r) = register_metric_fn {
|
register_metric_fn.map(|r| {
|
||||||
r(&discrete);
|
r(&discrete);
|
||||||
r(&continuous);
|
r(&continuous);
|
||||||
}
|
});
|
||||||
(discrete, continuous)
|
(discrete, continuous)
|
||||||
});
|
});
|
||||||
|
|
||||||
@ -164,13 +170,16 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
|
|
||||||
for (feature_id, feature_type) in reporting_feature_ids.iter() {
|
for (feature_id, feature_type) in reporting_feature_ids.iter() {
|
||||||
match *feature_type {
|
match *feature_type {
|
||||||
"discrete" => discrete_features_to_report.insert(*feature_id),
|
"discrete" => discrete_features_to_report.insert(feature_id.clone()),
|
||||||
"continuous" => continuous_features_to_report.insert(*feature_id),
|
"continuous" => continuous_features_to_report.insert(feature_id.clone()),
|
||||||
_ => panic!("Invalid feature type {feature_type} for reporting metrics!"),
|
_ => bail!(
|
||||||
|
"Invalid feature type {} for reporting metrics!",
|
||||||
|
feature_type
|
||||||
|
),
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
BatchPredictionRequestToTorchTensorConverter {
|
Ok(BatchPredictionRequestToTorchTensorConverter {
|
||||||
all_config,
|
all_config,
|
||||||
seg_dense_config,
|
seg_dense_config,
|
||||||
all_config_path,
|
all_config_path,
|
||||||
@ -183,7 +192,7 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
continuous_features_to_report,
|
continuous_features_to_report,
|
||||||
discrete_feature_metrics,
|
discrete_feature_metrics,
|
||||||
continuous_feature_metrics,
|
continuous_feature_metrics,
|
||||||
}
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
fn get_feature_id(feature_name: &str, seg_dense_config: &Root) -> i64 {
|
fn get_feature_id(feature_name: &str, seg_dense_config: &Root) -> i64 {
|
||||||
@ -218,9 +227,9 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
let mut working_set = vec![0 as f32; total_size];
|
let mut working_set = vec![0 as f32; total_size];
|
||||||
let mut bpr_start = 0;
|
let mut bpr_start = 0;
|
||||||
for (bpr, &bpr_end) in bprs.iter().zip(batch_size) {
|
for (bpr, &bpr_end) in bprs.iter().zip(batch_size) {
|
||||||
if bpr.common_features.is_some()
|
if bpr.common_features.is_some() {
|
||||||
&& bpr.common_features.as_ref().unwrap().tensors.is_some()
|
if bpr.common_features.as_ref().unwrap().tensors.is_some() {
|
||||||
&& bpr
|
if bpr
|
||||||
.common_features
|
.common_features
|
||||||
.as_ref()
|
.as_ref()
|
||||||
.unwrap()
|
.unwrap()
|
||||||
@ -258,6 +267,8 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
// find the feature in individual feature list and add to corresponding batch.
|
// find the feature in individual feature list and add to corresponding batch.
|
||||||
for (index, datarecord) in bpr.individual_features_list.iter().enumerate() {
|
for (index, datarecord) in bpr.individual_features_list.iter().enumerate() {
|
||||||
if datarecord.tensors.is_some()
|
if datarecord.tensors.is_some()
|
||||||
@ -298,9 +309,9 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
// (INT64 --> INT64, DataRecord.discrete_feature)
|
// (INT64 --> INT64, DataRecord.discrete_feature)
|
||||||
fn get_continuous(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
|
fn get_continuous(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
|
||||||
// These need to be part of model schema
|
// These need to be part of model schema
|
||||||
let rows = batch_ends[batch_ends.len() - 1];
|
let rows: usize = batch_ends[batch_ends.len() - 1];
|
||||||
let cols = 5293;
|
let cols: usize = 5293;
|
||||||
let full_size = rows * cols;
|
let full_size: usize = rows * cols;
|
||||||
let default_val = f32::NAN;
|
let default_val = f32::NAN;
|
||||||
|
|
||||||
let mut tensor = vec![default_val; full_size];
|
let mut tensor = vec![default_val; full_size];
|
||||||
@ -325,16 +336,19 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
for feature in common_features {
|
for feature in common_features {
|
||||||
if let Some(f_info) = self.feature_mapper.get(feature.0) {
|
match self.feature_mapper.get(feature.0) {
|
||||||
|
Some(f_info) => {
|
||||||
let idx = f_info.index_within_tensor as usize;
|
let idx = f_info.index_within_tensor as usize;
|
||||||
if idx < cols {
|
if idx < cols {
|
||||||
// Set value in each row
|
// Set value in each row
|
||||||
for r in bpr_start..bpr_end {
|
for r in bpr_start..bpr_end {
|
||||||
let flat_index = r * cols + idx;
|
let flat_index: usize = r * cols + idx;
|
||||||
tensor[flat_index] = feature.1.into_inner() as f32;
|
tensor[flat_index] = feature.1.into_inner() as f32;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
None => (),
|
||||||
|
}
|
||||||
if self.continuous_features_to_report.contains(feature.0) {
|
if self.continuous_features_to_report.contains(feature.0) {
|
||||||
self.continuous_feature_metrics
|
self.continuous_feature_metrics
|
||||||
.with_label_values(&[feature.0.to_string().as_str()])
|
.with_label_values(&[feature.0.to_string().as_str()])
|
||||||
@ -349,24 +363,28 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
|
|
||||||
// Process the batch of datarecords
|
// Process the batch of datarecords
|
||||||
for r in bpr_start..bpr_end {
|
for r in bpr_start..bpr_end {
|
||||||
let dr: &DataRecord = &bpr.individual_features_list[r - bpr_start];
|
let dr: &DataRecord =
|
||||||
|
&bpr.individual_features_list[usize::try_from(r - bpr_start).unwrap()];
|
||||||
if dr.continuous_features.is_some() {
|
if dr.continuous_features.is_some() {
|
||||||
for feature in dr.continuous_features.as_ref().unwrap() {
|
for feature in dr.continuous_features.as_ref().unwrap() {
|
||||||
if let Some(f_info) = self.feature_mapper.get(feature.0) {
|
match self.feature_mapper.get(&feature.0) {
|
||||||
|
Some(f_info) => {
|
||||||
let idx = f_info.index_within_tensor as usize;
|
let idx = f_info.index_within_tensor as usize;
|
||||||
let flat_index = r * cols + idx;
|
let flat_index: usize = r * cols + idx;
|
||||||
if flat_index < tensor.len() && idx < cols {
|
if flat_index < tensor.len() && idx < cols {
|
||||||
tensor[flat_index] = feature.1.into_inner() as f32;
|
tensor[flat_index] = feature.1.into_inner() as f32;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
None => (),
|
||||||
|
}
|
||||||
if self.continuous_features_to_report.contains(feature.0) {
|
if self.continuous_features_to_report.contains(feature.0) {
|
||||||
self.continuous_feature_metrics
|
self.continuous_feature_metrics
|
||||||
.with_label_values(&[feature.0.to_string().as_str()])
|
.with_label_values(&[feature.0.to_string().as_str()])
|
||||||
.observe(feature.1.into_inner())
|
.observe(feature.1.into_inner() as f64)
|
||||||
} else if self.discrete_features_to_report.contains(feature.0) {
|
} else if self.discrete_features_to_report.contains(feature.0) {
|
||||||
self.discrete_feature_metrics
|
self.discrete_feature_metrics
|
||||||
.with_label_values(&[feature.0.to_string().as_str()])
|
.with_label_values(&[feature.0.to_string().as_str()])
|
||||||
.observe(feature.1.into_inner())
|
.observe(feature.1.into_inner() as f64)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -383,10 +401,10 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
|
|
||||||
fn get_binary(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
|
fn get_binary(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
|
||||||
// These need to be part of model schema
|
// These need to be part of model schema
|
||||||
let rows = batch_ends[batch_ends.len() - 1];
|
let rows: usize = batch_ends[batch_ends.len() - 1];
|
||||||
let cols = 149;
|
let cols: usize = 149;
|
||||||
let full_size = rows * cols;
|
let full_size: usize = rows * cols;
|
||||||
let default_val = 0;
|
let default_val: i64 = 0;
|
||||||
|
|
||||||
let mut v = vec![default_val; full_size];
|
let mut v = vec![default_val; full_size];
|
||||||
|
|
||||||
@ -410,16 +428,19 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
for feature in common_features {
|
for feature in common_features {
|
||||||
if let Some(f_info) = self.feature_mapper.get(feature) {
|
match self.feature_mapper.get(feature) {
|
||||||
|
Some(f_info) => {
|
||||||
let idx = f_info.index_within_tensor as usize;
|
let idx = f_info.index_within_tensor as usize;
|
||||||
if idx < cols {
|
if idx < cols {
|
||||||
// Set value in each row
|
// Set value in each row
|
||||||
for r in bpr_start..bpr_end {
|
for r in bpr_start..bpr_end {
|
||||||
let flat_index = r * cols + idx;
|
let flat_index: usize = r * cols + idx;
|
||||||
v[flat_index] = 1;
|
v[flat_index] = 1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
None => (),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -428,11 +449,14 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
let dr: &DataRecord = &bpr.individual_features_list[r - bpr_start];
|
let dr: &DataRecord = &bpr.individual_features_list[r - bpr_start];
|
||||||
if dr.binary_features.is_some() {
|
if dr.binary_features.is_some() {
|
||||||
for feature in dr.binary_features.as_ref().unwrap() {
|
for feature in dr.binary_features.as_ref().unwrap() {
|
||||||
if let Some(f_info) = self.feature_mapper.get(feature) {
|
match self.feature_mapper.get(&feature) {
|
||||||
|
Some(f_info) => {
|
||||||
let idx = f_info.index_within_tensor as usize;
|
let idx = f_info.index_within_tensor as usize;
|
||||||
let flat_index = r * cols + idx;
|
let flat_index: usize = r * cols + idx;
|
||||||
v[flat_index] = 1;
|
v[flat_index] = 1;
|
||||||
}
|
}
|
||||||
|
None => (),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -448,10 +472,10 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
#[allow(dead_code)]
|
#[allow(dead_code)]
|
||||||
fn get_discrete(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
|
fn get_discrete(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
|
||||||
// These need to be part of model schema
|
// These need to be part of model schema
|
||||||
let rows = batch_ends[batch_ends.len() - 1];
|
let rows: usize = batch_ends[batch_ends.len() - 1];
|
||||||
let cols = 320;
|
let cols: usize = 320;
|
||||||
let full_size = rows * cols;
|
let full_size: usize = rows * cols;
|
||||||
let default_val = 0;
|
let default_val: i64 = 0;
|
||||||
|
|
||||||
let mut v = vec![default_val; full_size];
|
let mut v = vec![default_val; full_size];
|
||||||
|
|
||||||
@ -475,16 +499,19 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
for feature in common_features {
|
for feature in common_features {
|
||||||
if let Some(f_info) = self.feature_mapper.get(feature.0) {
|
match self.feature_mapper.get(feature.0) {
|
||||||
|
Some(f_info) => {
|
||||||
let idx = f_info.index_within_tensor as usize;
|
let idx = f_info.index_within_tensor as usize;
|
||||||
if idx < cols {
|
if idx < cols {
|
||||||
// Set value in each row
|
// Set value in each row
|
||||||
for r in bpr_start..bpr_end {
|
for r in bpr_start..bpr_end {
|
||||||
let flat_index = r * cols + idx;
|
let flat_index: usize = r * cols + idx;
|
||||||
v[flat_index] = *feature.1;
|
v[flat_index] = *feature.1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
None => (),
|
||||||
|
}
|
||||||
if self.discrete_features_to_report.contains(feature.0) {
|
if self.discrete_features_to_report.contains(feature.0) {
|
||||||
self.discrete_feature_metrics
|
self.discrete_feature_metrics
|
||||||
.with_label_values(&[feature.0.to_string().as_str()])
|
.with_label_values(&[feature.0.to_string().as_str()])
|
||||||
@ -495,16 +522,19 @@ impl BatchPredictionRequestToTorchTensorConverter {
|
|||||||
|
|
||||||
// Process the batch of datarecords
|
// Process the batch of datarecords
|
||||||
for r in bpr_start..bpr_end {
|
for r in bpr_start..bpr_end {
|
||||||
let dr: &DataRecord = &bpr.individual_features_list[r];
|
let dr: &DataRecord = &bpr.individual_features_list[usize::try_from(r).unwrap()];
|
||||||
if dr.discrete_features.is_some() {
|
if dr.discrete_features.is_some() {
|
||||||
for feature in dr.discrete_features.as_ref().unwrap() {
|
for feature in dr.discrete_features.as_ref().unwrap() {
|
||||||
if let Some(f_info) = self.feature_mapper.get(feature.0) {
|
match self.feature_mapper.get(&feature.0) {
|
||||||
|
Some(f_info) => {
|
||||||
let idx = f_info.index_within_tensor as usize;
|
let idx = f_info.index_within_tensor as usize;
|
||||||
let flat_index = r * cols + idx;
|
let flat_index: usize = r * cols + idx;
|
||||||
if flat_index < v.len() && idx < cols {
|
if flat_index < v.len() && idx < cols {
|
||||||
v[flat_index] = *feature.1;
|
v[flat_index] = *feature.1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
None => (),
|
||||||
|
}
|
||||||
if self.discrete_features_to_report.contains(feature.0) {
|
if self.discrete_features_to_report.contains(feature.0) {
|
||||||
self.discrete_feature_metrics
|
self.discrete_feature_metrics
|
||||||
.with_label_values(&[feature.0.to_string().as_str()])
|
.with_label_values(&[feature.0.to_string().as_str()])
|
||||||
@ -569,7 +599,7 @@ impl Converter for BatchPredictionRequestToTorchTensorConverter {
|
|||||||
.map(|bpr| bpr.individual_features_list.len())
|
.map(|bpr| bpr.individual_features_list.len())
|
||||||
.scan(0usize, |acc, e| {
|
.scan(0usize, |acc, e| {
|
||||||
//running total
|
//running total
|
||||||
*acc += e;
|
*acc = *acc + e;
|
||||||
Some(*acc)
|
Some(*acc)
|
||||||
})
|
})
|
||||||
.collect::<Vec<_>>();
|
.collect::<Vec<_>>();
|
||||||
|
@ -3,3 +3,4 @@ pub mod converter;
|
|||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod test;
|
mod test;
|
||||||
pub mod util;
|
pub mod util;
|
||||||
|
pub extern crate ort;
|
||||||
|
@ -1,8 +1,7 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "navi"
|
name = "navi"
|
||||||
version = "2.0.42"
|
version = "2.0.45"
|
||||||
edition = "2021"
|
edition = "2021"
|
||||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
|
||||||
|
|
||||||
[[bin]]
|
[[bin]]
|
||||||
name = "navi"
|
name = "navi"
|
||||||
@ -16,12 +15,19 @@ required-features=["torch"]
|
|||||||
name = "navi_onnx"
|
name = "navi_onnx"
|
||||||
path = "src/bin/navi_onnx.rs"
|
path = "src/bin/navi_onnx.rs"
|
||||||
required-features=["onnx"]
|
required-features=["onnx"]
|
||||||
|
[[bin]]
|
||||||
|
name = "navi_onnx_test"
|
||||||
|
path = "src/bin/bin_tests/navi_onnx_test.rs"
|
||||||
|
[[bin]]
|
||||||
|
name = "navi_torch_test"
|
||||||
|
path = "src/bin/bin_tests/navi_torch_test.rs"
|
||||||
|
required-features=["torch"]
|
||||||
|
|
||||||
[features]
|
[features]
|
||||||
default=[]
|
default=[]
|
||||||
navi_console=[]
|
navi_console=[]
|
||||||
torch=["tch"]
|
torch=["tch"]
|
||||||
onnx=["ort"]
|
onnx=[]
|
||||||
tf=["tensorflow"]
|
tf=["tensorflow"]
|
||||||
[dependencies]
|
[dependencies]
|
||||||
itertools = "0.10.5"
|
itertools = "0.10.5"
|
||||||
@ -47,6 +53,7 @@ parking_lot = "0.12.1"
|
|||||||
rand = "0.8.5"
|
rand = "0.8.5"
|
||||||
rand_pcg = "0.3.1"
|
rand_pcg = "0.3.1"
|
||||||
random = "0.12.2"
|
random = "0.12.2"
|
||||||
|
x509-parser = "0.15.0"
|
||||||
sha256 = "1.0.3"
|
sha256 = "1.0.3"
|
||||||
tonic = { version = "0.6.2", features=['compression', 'tls'] }
|
tonic = { version = "0.6.2", features=['compression', 'tls'] }
|
||||||
tokio = { version = "1.17.0", features = ["macros", "rt-multi-thread", "fs", "process"] }
|
tokio = { version = "1.17.0", features = ["macros", "rt-multi-thread", "fs", "process"] }
|
||||||
@ -55,16 +62,12 @@ npyz = "0.7.3"
|
|||||||
base64 = "0.21.0"
|
base64 = "0.21.0"
|
||||||
histogram = "0.6.9"
|
histogram = "0.6.9"
|
||||||
tch = {version = "0.10.3", optional = true}
|
tch = {version = "0.10.3", optional = true}
|
||||||
tensorflow = { version = "0.20.0", optional = true }
|
tensorflow = { version = "0.18.0", optional = true }
|
||||||
once_cell = {version = "1.17.1"}
|
once_cell = {version = "1.17.1"}
|
||||||
ndarray = "0.15"
|
ndarray = "0.15"
|
||||||
serde = "1.0.154"
|
serde = "1.0.154"
|
||||||
serde_json = "1.0.94"
|
serde_json = "1.0.94"
|
||||||
dr_transform = { path = "../dr_transform"}
|
dr_transform = { path = "../dr_transform"}
|
||||||
[target.'cfg(not(target_os="linux"))'.dependencies]
|
|
||||||
ort = {git ="https://github.com/pykeio/ort.git", features=["profiling"], optional = true, tag="v1.14.2"}
|
|
||||||
[target.'cfg(target_os="linux")'.dependencies]
|
|
||||||
ort = {git ="https://github.com/pykeio/ort.git", features=["profiling", "tensorrt", "cuda", "copy-dylibs"], optional = true, tag="v1.14.2"}
|
|
||||||
[build-dependencies]
|
[build-dependencies]
|
||||||
tonic-build = {version = "0.6.2", features=['prost', "compression"] }
|
tonic-build = {version = "0.6.2", features=['prost', "compression"] }
|
||||||
[profile.release]
|
[profile.release]
|
||||||
@ -74,3 +77,5 @@ ndarray-rand = "0.14.0"
|
|||||||
tokio-test = "*"
|
tokio-test = "*"
|
||||||
assert_cmd = "2.0"
|
assert_cmd = "2.0"
|
||||||
criterion = "0.4.0"
|
criterion = "0.4.0"
|
||||||
|
|
||||||
|
|
||||||
|
@ -122,7 +122,7 @@ enum FullTypeId {
|
|||||||
// TFT_TENSOR[TFT_INT32, TFT_UNKNOWN]
|
// TFT_TENSOR[TFT_INT32, TFT_UNKNOWN]
|
||||||
// is a Tensor of int32 element type and unknown shape.
|
// is a Tensor of int32 element type and unknown shape.
|
||||||
//
|
//
|
||||||
// TODO: Define TFT_SHAPE and add more examples.
|
// TODO(mdan): Define TFT_SHAPE and add more examples.
|
||||||
TFT_TENSOR = 1000;
|
TFT_TENSOR = 1000;
|
||||||
|
|
||||||
// Array (or tensorflow::TensorList in the variant type registry).
|
// Array (or tensorflow::TensorList in the variant type registry).
|
||||||
@ -178,7 +178,7 @@ enum FullTypeId {
|
|||||||
// object (for now).
|
// object (for now).
|
||||||
|
|
||||||
// The bool element type.
|
// The bool element type.
|
||||||
// TODO
|
// TODO(mdan): Quantized types, legacy representations (e.g. ref)
|
||||||
TFT_BOOL = 200;
|
TFT_BOOL = 200;
|
||||||
// Integer element types.
|
// Integer element types.
|
||||||
TFT_UINT8 = 201;
|
TFT_UINT8 = 201;
|
||||||
@ -195,7 +195,7 @@ enum FullTypeId {
|
|||||||
TFT_DOUBLE = 211;
|
TFT_DOUBLE = 211;
|
||||||
TFT_BFLOAT16 = 215;
|
TFT_BFLOAT16 = 215;
|
||||||
// Complex element types.
|
// Complex element types.
|
||||||
// TODO: Represent as TFT_COMPLEX[TFT_DOUBLE] instead?
|
// TODO(mdan): Represent as TFT_COMPLEX[TFT_DOUBLE] instead?
|
||||||
TFT_COMPLEX64 = 212;
|
TFT_COMPLEX64 = 212;
|
||||||
TFT_COMPLEX128 = 213;
|
TFT_COMPLEX128 = 213;
|
||||||
// The string element type.
|
// The string element type.
|
||||||
@ -240,7 +240,7 @@ enum FullTypeId {
|
|||||||
// ownership is in the true sense: "the op argument representing the lock is
|
// ownership is in the true sense: "the op argument representing the lock is
|
||||||
// available".
|
// available".
|
||||||
// Mutex locks are the dynamic counterpart of control dependencies.
|
// Mutex locks are the dynamic counterpart of control dependencies.
|
||||||
// TODO: Properly document this thing.
|
// TODO(mdan): Properly document this thing.
|
||||||
//
|
//
|
||||||
// Parametrization: TFT_MUTEX_LOCK[].
|
// Parametrization: TFT_MUTEX_LOCK[].
|
||||||
TFT_MUTEX_LOCK = 10202;
|
TFT_MUTEX_LOCK = 10202;
|
||||||
@ -271,6 +271,6 @@ message FullTypeDef {
|
|||||||
oneof attr {
|
oneof attr {
|
||||||
string s = 3;
|
string s = 3;
|
||||||
int64 i = 4;
|
int64 i = 4;
|
||||||
// TODO: list/tensor, map? Need to reconcile with TFT_RECORD, etc.
|
// TODO(mdan): list/tensor, map? Need to reconcile with TFT_RECORD, etc.
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -23,7 +23,7 @@ message FunctionDefLibrary {
|
|||||||
// with a value. When a GraphDef has a call to a function, it must
|
// with a value. When a GraphDef has a call to a function, it must
|
||||||
// have binding for every attr defined in the signature.
|
// have binding for every attr defined in the signature.
|
||||||
//
|
//
|
||||||
// TODO:
|
// TODO(zhifengc):
|
||||||
// * device spec, etc.
|
// * device spec, etc.
|
||||||
message FunctionDef {
|
message FunctionDef {
|
||||||
// The definition of the function's name, arguments, return values,
|
// The definition of the function's name, arguments, return values,
|
||||||
|
@ -61,7 +61,7 @@ message NodeDef {
|
|||||||
// one of the names from the corresponding OpDef's attr field).
|
// one of the names from the corresponding OpDef's attr field).
|
||||||
// The values must have a type matching the corresponding OpDef
|
// The values must have a type matching the corresponding OpDef
|
||||||
// attr's type field.
|
// attr's type field.
|
||||||
// TODO: Add some examples here showing best practices.
|
// TODO(josh11b): Add some examples here showing best practices.
|
||||||
map<string, AttrValue> attr = 5;
|
map<string, AttrValue> attr = 5;
|
||||||
|
|
||||||
message ExperimentalDebugInfo {
|
message ExperimentalDebugInfo {
|
||||||
|
@ -96,7 +96,7 @@ message OpDef {
|
|||||||
// Human-readable description.
|
// Human-readable description.
|
||||||
string description = 4;
|
string description = 4;
|
||||||
|
|
||||||
// TODO: bool is_optional?
|
// TODO(josh11b): bool is_optional?
|
||||||
|
|
||||||
// --- Constraints ---
|
// --- Constraints ---
|
||||||
// These constraints are only in effect if specified. Default is no
|
// These constraints are only in effect if specified. Default is no
|
||||||
@ -139,7 +139,7 @@ message OpDef {
|
|||||||
// taking input from multiple devices with a tree of aggregate ops
|
// taking input from multiple devices with a tree of aggregate ops
|
||||||
// that aggregate locally within each device (and possibly within
|
// that aggregate locally within each device (and possibly within
|
||||||
// groups of nearby devices) before communicating.
|
// groups of nearby devices) before communicating.
|
||||||
// TODO: Implement that optimization.
|
// TODO(josh11b): Implement that optimization.
|
||||||
bool is_aggregate = 16; // for things like add
|
bool is_aggregate = 16; // for things like add
|
||||||
|
|
||||||
// Other optimizations go here, like
|
// Other optimizations go here, like
|
||||||
|
@ -53,7 +53,7 @@ message MemoryStats {
|
|||||||
|
|
||||||
// Time/size stats recorded for a single execution of a graph node.
|
// Time/size stats recorded for a single execution of a graph node.
|
||||||
message NodeExecStats {
|
message NodeExecStats {
|
||||||
// TODO: Use some more compact form of node identity than
|
// TODO(tucker): Use some more compact form of node identity than
|
||||||
// the full string name. Either all processes should agree on a
|
// the full string name. Either all processes should agree on a
|
||||||
// global id (cost_id?) for each node, or we should use a hash of
|
// global id (cost_id?) for each node, or we should use a hash of
|
||||||
// the name.
|
// the name.
|
||||||
|
@ -16,7 +16,7 @@ option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framewo
|
|||||||
message TensorProto {
|
message TensorProto {
|
||||||
DataType dtype = 1;
|
DataType dtype = 1;
|
||||||
|
|
||||||
// Shape of the tensor. TODO: sort out the 0-rank issues.
|
// Shape of the tensor. TODO(touts): sort out the 0-rank issues.
|
||||||
TensorShapeProto tensor_shape = 2;
|
TensorShapeProto tensor_shape = 2;
|
||||||
|
|
||||||
// Only one of the representations below is set, one of "tensor_contents" and
|
// Only one of the representations below is set, one of "tensor_contents" and
|
||||||
|
@ -532,7 +532,7 @@ message ConfigProto {
|
|||||||
|
|
||||||
// We removed the flag client_handles_error_formatting. Marking the tag
|
// We removed the flag client_handles_error_formatting. Marking the tag
|
||||||
// number as reserved.
|
// number as reserved.
|
||||||
// TODO: Should we just remove this tag so that it can be
|
// TODO(shikharagarwal): Should we just remove this tag so that it can be
|
||||||
// used in future for other purpose?
|
// used in future for other purpose?
|
||||||
reserved 2;
|
reserved 2;
|
||||||
|
|
||||||
@ -576,7 +576,7 @@ message ConfigProto {
|
|||||||
// - If isolate_session_state is true, session states are isolated.
|
// - If isolate_session_state is true, session states are isolated.
|
||||||
// - If isolate_session_state is false, session states are shared.
|
// - If isolate_session_state is false, session states are shared.
|
||||||
//
|
//
|
||||||
// TODO: Add a single API that consistently treats
|
// TODO(b/129330037): Add a single API that consistently treats
|
||||||
// isolate_session_state and ClusterSpec propagation.
|
// isolate_session_state and ClusterSpec propagation.
|
||||||
bool share_session_state_in_clusterspec_propagation = 8;
|
bool share_session_state_in_clusterspec_propagation = 8;
|
||||||
|
|
||||||
@ -704,7 +704,7 @@ message ConfigProto {
|
|||||||
|
|
||||||
// Options for a single Run() call.
|
// Options for a single Run() call.
|
||||||
message RunOptions {
|
message RunOptions {
|
||||||
// TODO Turn this into a TraceOptions proto which allows
|
// TODO(pbar) Turn this into a TraceOptions proto which allows
|
||||||
// tracing to be controlled in a more orthogonal manner?
|
// tracing to be controlled in a more orthogonal manner?
|
||||||
enum TraceLevel {
|
enum TraceLevel {
|
||||||
NO_TRACE = 0;
|
NO_TRACE = 0;
|
||||||
@ -781,7 +781,7 @@ message RunMetadata {
|
|||||||
repeated GraphDef partition_graphs = 3;
|
repeated GraphDef partition_graphs = 3;
|
||||||
|
|
||||||
message FunctionGraphs {
|
message FunctionGraphs {
|
||||||
// TODO: Include some sort of function/cache-key identifier?
|
// TODO(nareshmodi): Include some sort of function/cache-key identifier?
|
||||||
repeated GraphDef partition_graphs = 1;
|
repeated GraphDef partition_graphs = 1;
|
||||||
|
|
||||||
GraphDef pre_optimization_graph = 2;
|
GraphDef pre_optimization_graph = 2;
|
||||||
|
@ -194,7 +194,7 @@ service CoordinationService {
|
|||||||
|
|
||||||
// Report error to the task. RPC sets the receiving instance of coordination
|
// Report error to the task. RPC sets the receiving instance of coordination
|
||||||
// service agent to error state permanently.
|
// service agent to error state permanently.
|
||||||
// TODO: Consider splitting this into a different RPC service.
|
// TODO(b/195990880): Consider splitting this into a different RPC service.
|
||||||
rpc ReportErrorToAgent(ReportErrorToAgentRequest)
|
rpc ReportErrorToAgent(ReportErrorToAgentRequest)
|
||||||
returns (ReportErrorToAgentResponse);
|
returns (ReportErrorToAgentResponse);
|
||||||
|
|
||||||
|
@ -46,7 +46,7 @@ message DebugTensorWatch {
|
|||||||
// are to be debugged, the callers of Session::Run() must use distinct
|
// are to be debugged, the callers of Session::Run() must use distinct
|
||||||
// debug_urls to make sure that the streamed or dumped events do not overlap
|
// debug_urls to make sure that the streamed or dumped events do not overlap
|
||||||
// among the invocations.
|
// among the invocations.
|
||||||
// TODO: More visible documentation of this in g3docs.
|
// TODO(cais): More visible documentation of this in g3docs.
|
||||||
repeated string debug_urls = 4;
|
repeated string debug_urls = 4;
|
||||||
|
|
||||||
// Do not error out if debug op creation fails (e.g., due to dtype
|
// Do not error out if debug op creation fails (e.g., due to dtype
|
||||||
|
@ -12,7 +12,7 @@ option java_package = "org.tensorflow.util";
|
|||||||
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/protobuf/for_core_protos_go_proto";
|
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/protobuf/for_core_protos_go_proto";
|
||||||
|
|
||||||
// Available modes for extracting debugging information from a Tensor.
|
// Available modes for extracting debugging information from a Tensor.
|
||||||
// TODO: Document the detailed column names and semantics in a separate
|
// TODO(cais): Document the detailed column names and semantics in a separate
|
||||||
// markdown file once the implementation settles.
|
// markdown file once the implementation settles.
|
||||||
enum TensorDebugMode {
|
enum TensorDebugMode {
|
||||||
UNSPECIFIED = 0;
|
UNSPECIFIED = 0;
|
||||||
@ -223,7 +223,7 @@ message DebuggedDevice {
|
|||||||
// A debugger-generated ID for the device. Guaranteed to be unique within
|
// A debugger-generated ID for the device. Guaranteed to be unique within
|
||||||
// the scope of the debugged TensorFlow program, including single-host and
|
// the scope of the debugged TensorFlow program, including single-host and
|
||||||
// multi-host settings.
|
// multi-host settings.
|
||||||
// TODO: Test the uniqueness guarantee in multi-host settings.
|
// TODO(cais): Test the uniqueness guarantee in multi-host settings.
|
||||||
int32 device_id = 2;
|
int32 device_id = 2;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -264,7 +264,7 @@ message Execution {
|
|||||||
// field with the DebuggedDevice messages.
|
// field with the DebuggedDevice messages.
|
||||||
repeated int32 output_tensor_device_ids = 9;
|
repeated int32 output_tensor_device_ids = 9;
|
||||||
|
|
||||||
// TODO support, add more fields
|
// TODO(cais): When backporting to V1 Session.run() support, add more fields
|
||||||
// such as fetches and feeds.
|
// such as fetches and feeds.
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -7,7 +7,7 @@ option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/protobu
|
|||||||
|
|
||||||
// Used to serialize and transmit tensorflow::Status payloads through
|
// Used to serialize and transmit tensorflow::Status payloads through
|
||||||
// grpc::Status `error_details` since grpc::Status lacks payload API.
|
// grpc::Status `error_details` since grpc::Status lacks payload API.
|
||||||
// TODO: Use GRPC API once supported.
|
// TODO(b/204231601): Use GRPC API once supported.
|
||||||
message GrpcPayloadContainer {
|
message GrpcPayloadContainer {
|
||||||
map<string, bytes> payloads = 1;
|
map<string, bytes> payloads = 1;
|
||||||
}
|
}
|
||||||
|
@ -172,7 +172,7 @@ message WaitQueueDoneRequest {
|
|||||||
}
|
}
|
||||||
|
|
||||||
message WaitQueueDoneResponse {
|
message WaitQueueDoneResponse {
|
||||||
// TODO: Consider adding NodeExecStats here to be able to
|
// TODO(nareshmodi): Consider adding NodeExecStats here to be able to
|
||||||
// propagate some stats.
|
// propagate some stats.
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -94,7 +94,7 @@ message ExtendSessionRequest {
|
|||||||
}
|
}
|
||||||
|
|
||||||
message ExtendSessionResponse {
|
message ExtendSessionResponse {
|
||||||
// TODO: Return something about the operation?
|
// TODO(mrry): Return something about the operation?
|
||||||
|
|
||||||
// The new version number for the extended graph, to be used in the next call
|
// The new version number for the extended graph, to be used in the next call
|
||||||
// to ExtendSession.
|
// to ExtendSession.
|
||||||
|
@ -176,7 +176,7 @@ message SavedBareConcreteFunction {
|
|||||||
// allows the ConcreteFunction to be called with nest structure inputs. This
|
// allows the ConcreteFunction to be called with nest structure inputs. This
|
||||||
// field may not be populated. If this field is absent, the concrete function
|
// field may not be populated. If this field is absent, the concrete function
|
||||||
// can only be called with flat inputs.
|
// can only be called with flat inputs.
|
||||||
// TODO: support calling saved ConcreteFunction with structured
|
// TODO(b/169361281): support calling saved ConcreteFunction with structured
|
||||||
// inputs in C++ SavedModel API.
|
// inputs in C++ SavedModel API.
|
||||||
FunctionSpec function_spec = 4;
|
FunctionSpec function_spec = 4;
|
||||||
}
|
}
|
||||||
|
@ -17,7 +17,7 @@ option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/protobu
|
|||||||
|
|
||||||
// Special header that is associated with a bundle.
|
// Special header that is associated with a bundle.
|
||||||
//
|
//
|
||||||
// TODO: maybe in the future, we can add information about
|
// TODO(zongheng,zhifengc): maybe in the future, we can add information about
|
||||||
// which binary produced this checkpoint, timestamp, etc. Sometime, these can be
|
// which binary produced this checkpoint, timestamp, etc. Sometime, these can be
|
||||||
// valuable debugging information. And if needed, these can be used as defensive
|
// valuable debugging information. And if needed, these can be used as defensive
|
||||||
// information ensuring reader (binary version) of the checkpoint and the writer
|
// information ensuring reader (binary version) of the checkpoint and the writer
|
||||||
|
@ -188,7 +188,7 @@ message DeregisterGraphRequest {
|
|||||||
}
|
}
|
||||||
|
|
||||||
message DeregisterGraphResponse {
|
message DeregisterGraphResponse {
|
||||||
// TODO: Optionally add summary stats for the graph.
|
// TODO(mrry): Optionally add summary stats for the graph.
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
@ -294,7 +294,7 @@ message RunGraphResponse {
|
|||||||
|
|
||||||
// If the request asked for execution stats, the cost graph, or the partition
|
// If the request asked for execution stats, the cost graph, or the partition
|
||||||
// graphs, these are returned here.
|
// graphs, these are returned here.
|
||||||
// TODO: Package these in a RunMetadata instead.
|
// TODO(suharshs): Package these in a RunMetadata instead.
|
||||||
StepStats step_stats = 2;
|
StepStats step_stats = 2;
|
||||||
CostGraphDef cost_graph = 3;
|
CostGraphDef cost_graph = 3;
|
||||||
repeated GraphDef partition_graph = 4;
|
repeated GraphDef partition_graph = 4;
|
||||||
|
@ -13,5 +13,5 @@ message LogMetadata {
|
|||||||
SamplingConfig sampling_config = 2;
|
SamplingConfig sampling_config = 2;
|
||||||
// List of tags used to load the relevant MetaGraphDef from SavedModel.
|
// List of tags used to load the relevant MetaGraphDef from SavedModel.
|
||||||
repeated string saved_model_tags = 3;
|
repeated string saved_model_tags = 3;
|
||||||
// TODO: Add more metadata as mentioned in the bug.
|
// TODO(b/33279154): Add more metadata as mentioned in the bug.
|
||||||
}
|
}
|
||||||
|
@ -58,7 +58,7 @@ message FileSystemStoragePathSourceConfig {
|
|||||||
|
|
||||||
// A single servable name/base_path pair to monitor.
|
// A single servable name/base_path pair to monitor.
|
||||||
// DEPRECATED: Use 'servables' instead.
|
// DEPRECATED: Use 'servables' instead.
|
||||||
// TODO: Stop using these fields, and ultimately remove them here.
|
// TODO(b/30898016): Stop using these fields, and ultimately remove them here.
|
||||||
string servable_name = 1 [deprecated = true];
|
string servable_name = 1 [deprecated = true];
|
||||||
string base_path = 2 [deprecated = true];
|
string base_path = 2 [deprecated = true];
|
||||||
|
|
||||||
@ -76,7 +76,7 @@ message FileSystemStoragePathSourceConfig {
|
|||||||
// check for a version to appear later.)
|
// check for a version to appear later.)
|
||||||
// DEPRECATED: Use 'servable_versions_always_present' instead, which includes
|
// DEPRECATED: Use 'servable_versions_always_present' instead, which includes
|
||||||
// this behavior.
|
// this behavior.
|
||||||
// TODO: Remove 2019-10-31 or later.
|
// TODO(b/30898016): Remove 2019-10-31 or later.
|
||||||
bool fail_if_zero_versions_at_startup = 4 [deprecated = true];
|
bool fail_if_zero_versions_at_startup = 4 [deprecated = true];
|
||||||
|
|
||||||
// If true, the servable is always expected to exist on the underlying
|
// If true, the servable is always expected to exist on the underlying
|
||||||
|
@ -9,7 +9,7 @@ import "tensorflow_serving/config/logging_config.proto";
|
|||||||
option cc_enable_arenas = true;
|
option cc_enable_arenas = true;
|
||||||
|
|
||||||
// The type of model.
|
// The type of model.
|
||||||
// TODO: DEPRECATED.
|
// TODO(b/31336131): DEPRECATED.
|
||||||
enum ModelType {
|
enum ModelType {
|
||||||
MODEL_TYPE_UNSPECIFIED = 0 [deprecated = true];
|
MODEL_TYPE_UNSPECIFIED = 0 [deprecated = true];
|
||||||
TENSORFLOW = 1 [deprecated = true];
|
TENSORFLOW = 1 [deprecated = true];
|
||||||
@ -31,7 +31,7 @@ message ModelConfig {
|
|||||||
string base_path = 2;
|
string base_path = 2;
|
||||||
|
|
||||||
// Type of model.
|
// Type of model.
|
||||||
// TODO: DEPRECATED. Please use 'model_platform' instead.
|
// TODO(b/31336131): DEPRECATED. Please use 'model_platform' instead.
|
||||||
ModelType model_type = 3 [deprecated = true];
|
ModelType model_type = 3 [deprecated = true];
|
||||||
|
|
||||||
// Type of model (e.g. "tensorflow").
|
// Type of model (e.g. "tensorflow").
|
||||||
|
@ -1,10 +1,9 @@
|
|||||||
#!/bin/sh
|
#!/bin/sh
|
||||||
#RUST_LOG=debug LD_LIBRARY_PATH=so/onnx/lib target/release/navi_onnx --port 30 --num-worker-threads 8 --intra-op-parallelism 8 --inter-op-parallelism 8 \
|
#RUST_LOG=debug LD_LIBRARY_PATH=so/onnx/lib target/release/navi_onnx --port 30 --num-worker-threads 8 --intra-op-parallelism 8 --inter-op-parallelism 8 \
|
||||||
RUST_LOG=info LD_LIBRARY_PATH=so/onnx/lib cargo run --bin navi_onnx --features onnx -- \
|
RUST_LOG=info LD_LIBRARY_PATH=so/onnx/lib cargo run --bin navi_onnx --features onnx -- \
|
||||||
--port 30 --num-worker-threads 8 --intra-op-parallelism 8 --inter-op-parallelism 8 \
|
--port 8030 --num-worker-threads 8 \
|
||||||
--model-check-interval-secs 30 \
|
--model-check-interval-secs 30 \
|
||||||
--model-dir models/int8 \
|
|
||||||
--output caligrated_probabilities \
|
|
||||||
--input "" \
|
|
||||||
--modelsync-cli "echo" \
|
--modelsync-cli "echo" \
|
||||||
--onnx-ep-options use_arena=true
|
--onnx-ep-options use_arena=true \
|
||||||
|
--model-dir models/prod_home --output caligrated_probabilities --input "" --intra-op-parallelism 8 --inter-op-parallelism 8 --max-batch-size 1 --batch-time-out-millis 1 \
|
||||||
|
--model-dir models/prod_home1 --output caligrated_probabilities --input "" --intra-op-parallelism 8 --inter-op-parallelism 8 --max-batch-size 1 --batch-time-out-millis 1 \
|
||||||
|
@ -1,11 +1,24 @@
|
|||||||
use anyhow::Result;
|
use anyhow::Result;
|
||||||
|
use log::info;
|
||||||
use navi::cli_args::{ARGS, MODEL_SPECS};
|
use navi::cli_args::{ARGS, MODEL_SPECS};
|
||||||
use navi::onnx_model::onnx::OnnxModel;
|
use navi::onnx_model::onnx::OnnxModel;
|
||||||
use navi::{bootstrap, metrics};
|
use navi::{bootstrap, metrics};
|
||||||
|
|
||||||
fn main() -> Result<()> {
|
fn main() -> Result<()> {
|
||||||
env_logger::init();
|
env_logger::init();
|
||||||
assert_eq!(MODEL_SPECS.len(), ARGS.inter_op_parallelism.len());
|
info!("global: {:?}", ARGS.onnx_global_thread_pool_options);
|
||||||
|
let assert_session_params = if ARGS.onnx_global_thread_pool_options.is_empty() {
|
||||||
|
// std::env::set_var("OMP_NUM_THREADS", "1");
|
||||||
|
info!("now we use per session thread pool");
|
||||||
|
MODEL_SPECS.len()
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
info!("now we use global thread pool");
|
||||||
|
0
|
||||||
|
};
|
||||||
|
assert_eq!(assert_session_params, ARGS.inter_op_parallelism.len());
|
||||||
|
assert_eq!(assert_session_params, ARGS.inter_op_parallelism.len());
|
||||||
|
|
||||||
metrics::register_custom_metrics();
|
metrics::register_custom_metrics();
|
||||||
bootstrap::bootstrap(OnnxModel::new)
|
bootstrap::bootstrap(OnnxModel::new)
|
||||||
}
|
}
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
use anyhow::Result;
|
use anyhow::Result;
|
||||||
use log::{info, warn};
|
use log::{info, warn};
|
||||||
|
use x509_parser::{prelude::{parse_x509_pem}, parse_x509_certificate};
|
||||||
use std::collections::HashMap;
|
use std::collections::HashMap;
|
||||||
use tokio::time::Instant;
|
use tokio::time::Instant;
|
||||||
use tonic::{
|
use tonic::{
|
||||||
@ -27,6 +28,7 @@ use crate::cli_args::{ARGS, INPUTS, OUTPUTS};
|
|||||||
use crate::metrics::{
|
use crate::metrics::{
|
||||||
NAVI_VERSION, NUM_PREDICTIONS, NUM_REQUESTS_FAILED, NUM_REQUESTS_FAILED_BY_MODEL,
|
NAVI_VERSION, NUM_PREDICTIONS, NUM_REQUESTS_FAILED, NUM_REQUESTS_FAILED_BY_MODEL,
|
||||||
NUM_REQUESTS_RECEIVED, NUM_REQUESTS_RECEIVED_BY_MODEL, RESPONSE_TIME_COLLECTOR,
|
NUM_REQUESTS_RECEIVED, NUM_REQUESTS_RECEIVED_BY_MODEL, RESPONSE_TIME_COLLECTOR,
|
||||||
|
CERT_EXPIRY_EPOCH
|
||||||
};
|
};
|
||||||
use crate::predict_service::{Model, PredictService};
|
use crate::predict_service::{Model, PredictService};
|
||||||
use crate::tf_proto::tensorflow_serving::model_spec::VersionChoice::Version;
|
use crate::tf_proto::tensorflow_serving::model_spec::VersionChoice::Version;
|
||||||
@ -207,6 +209,9 @@ impl<T: Model> PredictionService for PredictService<T> {
|
|||||||
PredictResult::DropDueToOverload => Err(Status::resource_exhausted("")),
|
PredictResult::DropDueToOverload => Err(Status::resource_exhausted("")),
|
||||||
PredictResult::ModelNotFound(idx) => {
|
PredictResult::ModelNotFound(idx) => {
|
||||||
Err(Status::not_found(format!("model index {}", idx)))
|
Err(Status::not_found(format!("model index {}", idx)))
|
||||||
|
},
|
||||||
|
PredictResult::ModelNotReady(idx) => {
|
||||||
|
Err(Status::unavailable(format!("model index {}", idx)))
|
||||||
}
|
}
|
||||||
PredictResult::ModelVersionNotFound(idx, version) => Err(
|
PredictResult::ModelVersionNotFound(idx, version) => Err(
|
||||||
Status::not_found(format!("model index:{}, version {}", idx, version)),
|
Status::not_found(format!("model index:{}, version {}", idx, version)),
|
||||||
@ -230,6 +235,12 @@ impl<T: Model> PredictionService for PredictService<T> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// A function that takes a timestamp as input and returns a ticker stream
|
||||||
|
fn report_expiry(expiry_time: i64) {
|
||||||
|
info!("Certificate expires at epoch: {:?}", expiry_time);
|
||||||
|
CERT_EXPIRY_EPOCH.set(expiry_time as i64);
|
||||||
|
}
|
||||||
|
|
||||||
pub fn bootstrap<T: Model>(model_factory: ModelFactory<T>) -> Result<()> {
|
pub fn bootstrap<T: Model>(model_factory: ModelFactory<T>) -> Result<()> {
|
||||||
info!("package: {}, version: {}, args: {:?}", NAME, VERSION, *ARGS);
|
info!("package: {}, version: {}, args: {:?}", NAME, VERSION, *ARGS);
|
||||||
//we follow SemVer. So here we assume MAJOR.MINOR.PATCH
|
//we follow SemVer. So here we assume MAJOR.MINOR.PATCH
|
||||||
@ -246,6 +257,7 @@ pub fn bootstrap<T: Model>(model_factory: ModelFactory<T>) -> Result<()> {
|
|||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
tokio::runtime::Builder::new_multi_thread()
|
tokio::runtime::Builder::new_multi_thread()
|
||||||
.thread_name("async worker")
|
.thread_name("async worker")
|
||||||
.worker_threads(ARGS.num_worker_threads)
|
.worker_threads(ARGS.num_worker_threads)
|
||||||
@ -263,6 +275,21 @@ pub fn bootstrap<T: Model>(model_factory: ModelFactory<T>) -> Result<()> {
|
|||||||
let mut builder = if ARGS.ssl_dir.is_empty() {
|
let mut builder = if ARGS.ssl_dir.is_empty() {
|
||||||
Server::builder()
|
Server::builder()
|
||||||
} else {
|
} else {
|
||||||
|
// Read the pem file as a string
|
||||||
|
let pem_str = std::fs::read_to_string(format!("{}/server.crt", ARGS.ssl_dir)).unwrap();
|
||||||
|
let res = parse_x509_pem(&pem_str.as_bytes());
|
||||||
|
match res {
|
||||||
|
Ok((rem, pem_2)) => {
|
||||||
|
assert!(rem.is_empty());
|
||||||
|
assert_eq!(pem_2.label, String::from("CERTIFICATE"));
|
||||||
|
let res_x509 = parse_x509_certificate(&pem_2.contents);
|
||||||
|
info!("Certificate label: {}", pem_2.label);
|
||||||
|
assert!(res_x509.is_ok());
|
||||||
|
report_expiry(res_x509.unwrap().1.validity().not_after.timestamp());
|
||||||
|
},
|
||||||
|
_ => panic!("PEM parsing failed: {:?}", res),
|
||||||
|
}
|
||||||
|
|
||||||
let key = tokio::fs::read(format!("{}/server.key", ARGS.ssl_dir))
|
let key = tokio::fs::read(format!("{}/server.key", ARGS.ssl_dir))
|
||||||
.await
|
.await
|
||||||
.expect("can't find key file");
|
.expect("can't find key file");
|
||||||
|
@ -87,13 +87,11 @@ pub struct Args {
|
|||||||
pub intra_op_parallelism: Vec<String>,
|
pub intra_op_parallelism: Vec<String>,
|
||||||
#[clap(
|
#[clap(
|
||||||
long,
|
long,
|
||||||
default_value = "14",
|
|
||||||
help = "number of threads to parallelize computations of the graph"
|
help = "number of threads to parallelize computations of the graph"
|
||||||
)]
|
)]
|
||||||
pub inter_op_parallelism: Vec<String>,
|
pub inter_op_parallelism: Vec<String>,
|
||||||
#[clap(
|
#[clap(
|
||||||
long,
|
long,
|
||||||
default_value = "serving_default",
|
|
||||||
help = "signature of a serving. only TF"
|
help = "signature of a serving. only TF"
|
||||||
)]
|
)]
|
||||||
pub serving_sig: Vec<String>,
|
pub serving_sig: Vec<String>,
|
||||||
@ -107,6 +105,8 @@ pub struct Args {
|
|||||||
help = "max warmup records to use. warmup only implemented for TF"
|
help = "max warmup records to use. warmup only implemented for TF"
|
||||||
)]
|
)]
|
||||||
pub max_warmup_records: usize,
|
pub max_warmup_records: usize,
|
||||||
|
#[clap(long, value_parser = Args::parse_key_val::<String, String>, value_delimiter=',')]
|
||||||
|
pub onnx_global_thread_pool_options: Vec<(String, String)>,
|
||||||
#[clap(
|
#[clap(
|
||||||
long,
|
long,
|
||||||
default_value = "true",
|
default_value = "true",
|
||||||
|
@ -146,6 +146,7 @@ pub enum PredictResult {
|
|||||||
Ok(Vec<TensorScores>, i64),
|
Ok(Vec<TensorScores>, i64),
|
||||||
DropDueToOverload,
|
DropDueToOverload,
|
||||||
ModelNotFound(usize),
|
ModelNotFound(usize),
|
||||||
|
ModelNotReady(usize),
|
||||||
ModelVersionNotFound(usize, i64),
|
ModelVersionNotFound(usize, i64),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -171,6 +171,9 @@ lazy_static! {
|
|||||||
&["model_name"]
|
&["model_name"]
|
||||||
)
|
)
|
||||||
.expect("metric can be created");
|
.expect("metric can be created");
|
||||||
|
pub static ref CERT_EXPIRY_EPOCH: IntGauge =
|
||||||
|
IntGauge::new(":navi:cert_expiry_epoch", "Timestamp when the current cert expires")
|
||||||
|
.expect("metric can be created");
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn register_custom_metrics() {
|
pub fn register_custom_metrics() {
|
||||||
@ -249,6 +252,10 @@ pub fn register_custom_metrics() {
|
|||||||
REGISTRY
|
REGISTRY
|
||||||
.register(Box::new(CONVERTER_TIME_COLLECTOR.clone()))
|
.register(Box::new(CONVERTER_TIME_COLLECTOR.clone()))
|
||||||
.expect("collector can be registered");
|
.expect("collector can be registered");
|
||||||
|
REGISTRY
|
||||||
|
.register(Box::new(CERT_EXPIRY_EPOCH.clone()))
|
||||||
|
.expect("collector can be registered");
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn register_dynamic_metrics(c: &HistogramVec) {
|
pub fn register_dynamic_metrics(c: &HistogramVec) {
|
||||||
|
@ -13,21 +13,22 @@ pub mod onnx {
|
|||||||
use dr_transform::converter::{BatchPredictionRequestToTorchTensorConverter, Converter};
|
use dr_transform::converter::{BatchPredictionRequestToTorchTensorConverter, Converter};
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
use log::{debug, info};
|
use log::{debug, info};
|
||||||
use ort::environment::Environment;
|
use dr_transform::ort::environment::Environment;
|
||||||
use ort::session::Session;
|
use dr_transform::ort::session::Session;
|
||||||
use ort::tensor::InputTensor;
|
use dr_transform::ort::tensor::InputTensor;
|
||||||
use ort::{ExecutionProvider, GraphOptimizationLevel, SessionBuilder};
|
use dr_transform::ort::{ExecutionProvider, GraphOptimizationLevel, SessionBuilder};
|
||||||
|
use dr_transform::ort::LoggingLevel;
|
||||||
use serde_json::Value;
|
use serde_json::Value;
|
||||||
use std::fmt::{Debug, Display};
|
use std::fmt::{Debug, Display};
|
||||||
use std::sync::Arc;
|
use std::sync::Arc;
|
||||||
use std::{fmt, fs};
|
use std::{fmt, fs};
|
||||||
use tokio::time::Instant;
|
use tokio::time::Instant;
|
||||||
|
|
||||||
lazy_static! {
|
lazy_static! {
|
||||||
pub static ref ENVIRONMENT: Arc<Environment> = Arc::new(
|
pub static ref ENVIRONMENT: Arc<Environment> = Arc::new(
|
||||||
Environment::builder()
|
Environment::builder()
|
||||||
.with_name("onnx home")
|
.with_name("onnx home")
|
||||||
.with_log_level(ort::LoggingLevel::Error)
|
.with_log_level(LoggingLevel::Error)
|
||||||
|
.with_global_thread_pool(ARGS.onnx_global_thread_pool_options.clone())
|
||||||
.build()
|
.build()
|
||||||
.unwrap()
|
.unwrap()
|
||||||
);
|
);
|
||||||
@ -101,7 +102,9 @@ pub mod onnx {
|
|||||||
let meta_info = format!("{}/{}/{}", ARGS.model_dir[idx], version, META_INFO);
|
let meta_info = format!("{}/{}/{}", ARGS.model_dir[idx], version, META_INFO);
|
||||||
let mut builder = SessionBuilder::new(&ENVIRONMENT)?
|
let mut builder = SessionBuilder::new(&ENVIRONMENT)?
|
||||||
.with_optimization_level(GraphOptimizationLevel::Level3)?
|
.with_optimization_level(GraphOptimizationLevel::Level3)?
|
||||||
.with_parallel_execution(ARGS.onnx_use_parallel_mode == "true")?
|
.with_parallel_execution(ARGS.onnx_use_parallel_mode == "true")?;
|
||||||
|
if ARGS.onnx_global_thread_pool_options.is_empty() {
|
||||||
|
builder = builder
|
||||||
.with_inter_threads(
|
.with_inter_threads(
|
||||||
utils::get_config_or(
|
utils::get_config_or(
|
||||||
model_config,
|
model_config,
|
||||||
@ -117,7 +120,12 @@ pub mod onnx {
|
|||||||
&ARGS.intra_op_parallelism[idx],
|
&ARGS.intra_op_parallelism[idx],
|
||||||
)
|
)
|
||||||
.parse()?,
|
.parse()?,
|
||||||
)?
|
)?;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
builder = builder.with_disable_per_session_threads()?;
|
||||||
|
}
|
||||||
|
builder = builder
|
||||||
.with_memory_pattern(ARGS.onnx_use_memory_pattern == "true")?
|
.with_memory_pattern(ARGS.onnx_use_memory_pattern == "true")?
|
||||||
.with_execution_providers(&OnnxModel::ep_choices())?;
|
.with_execution_providers(&OnnxModel::ep_choices())?;
|
||||||
match &ARGS.profiling {
|
match &ARGS.profiling {
|
||||||
@ -181,7 +189,7 @@ pub mod onnx {
|
|||||||
&version,
|
&version,
|
||||||
reporting_feature_ids,
|
reporting_feature_ids,
|
||||||
Some(metrics::register_dynamic_metrics),
|
Some(metrics::register_dynamic_metrics),
|
||||||
)),
|
)?),
|
||||||
};
|
};
|
||||||
onnx_model.warmup()?;
|
onnx_model.warmup()?;
|
||||||
Ok(onnx_model)
|
Ok(onnx_model)
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
use anyhow::{anyhow, Result};
|
use anyhow::{anyhow, Result};
|
||||||
use arrayvec::ArrayVec;
|
use arrayvec::ArrayVec;
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
use log::{error, info, warn};
|
use log::{error, info};
|
||||||
use std::fmt::{Debug, Display};
|
use std::fmt::{Debug, Display};
|
||||||
use std::string::String;
|
use std::string::String;
|
||||||
use std::sync::Arc;
|
use std::sync::Arc;
|
||||||
@ -24,7 +24,7 @@ use serde_json::{self, Value};
|
|||||||
|
|
||||||
pub trait Model: Send + Sync + Display + Debug + 'static {
|
pub trait Model: Send + Sync + Display + Debug + 'static {
|
||||||
fn warmup(&self) -> Result<()>;
|
fn warmup(&self) -> Result<()>;
|
||||||
//TODO: refactor this to return Vec<Vec<TensorScores>>, i.e.
|
//TODO: refactor this to return vec<vec<TensorScores>>, i.e.
|
||||||
//we have the underlying runtime impl to split the response to each client.
|
//we have the underlying runtime impl to split the response to each client.
|
||||||
//It will eliminate some inefficient memory copy in onnx_model.rs as well as simplify code
|
//It will eliminate some inefficient memory copy in onnx_model.rs as well as simplify code
|
||||||
fn do_predict(
|
fn do_predict(
|
||||||
@ -179,17 +179,17 @@ impl<T: Model> PredictService<T> {
|
|||||||
//initialize the latest version array
|
//initialize the latest version array
|
||||||
let mut cur_versions = vec!["".to_owned(); MODEL_SPECS.len()];
|
let mut cur_versions = vec!["".to_owned(); MODEL_SPECS.len()];
|
||||||
loop {
|
loop {
|
||||||
let config = utils::read_config(&meta_file).unwrap_or_else(|e| {
|
|
||||||
warn!("config file {} not found due to: {}", meta_file, e);
|
|
||||||
Value::Null
|
|
||||||
});
|
|
||||||
info!("***polling for models***"); //nice deliminter
|
info!("***polling for models***"); //nice deliminter
|
||||||
info!("config:{}", config);
|
|
||||||
if let Some(ref cli) = ARGS.modelsync_cli {
|
if let Some(ref cli) = ARGS.modelsync_cli {
|
||||||
if let Err(e) = call_external_modelsync(cli, &cur_versions).await {
|
if let Err(e) = call_external_modelsync(cli, &cur_versions).await {
|
||||||
error!("model sync cli running error:{}", e)
|
error!("model sync cli running error:{}", e)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
let config = utils::read_config(&meta_file).unwrap_or_else(|e| {
|
||||||
|
info!("config file {} not found due to: {}", meta_file, e);
|
||||||
|
Value::Null
|
||||||
|
});
|
||||||
|
info!("config:{}", config);
|
||||||
for (idx, cur_version) in cur_versions.iter_mut().enumerate() {
|
for (idx, cur_version) in cur_versions.iter_mut().enumerate() {
|
||||||
let model_dir = &ARGS.model_dir[idx];
|
let model_dir = &ARGS.model_dir[idx];
|
||||||
PredictService::scan_load_latest_model_from_model_dir(
|
PredictService::scan_load_latest_model_from_model_dir(
|
||||||
@ -222,13 +222,18 @@ impl<T: Model> PredictService<T> {
|
|||||||
.map(|b| b.parse().unwrap())
|
.map(|b| b.parse().unwrap())
|
||||||
.collect::<Vec<u64>>();
|
.collect::<Vec<u64>>();
|
||||||
let no_msg_wait_millis = *batch_time_out_millis.iter().min().unwrap();
|
let no_msg_wait_millis = *batch_time_out_millis.iter().min().unwrap();
|
||||||
let mut all_model_predictors =
|
let mut all_model_predictors: ArrayVec::<ArrayVec<BatchPredictor<T>, MAX_VERSIONS_PER_MODEL>, MAX_NUM_MODELS> =
|
||||||
ArrayVec::<ArrayVec<BatchPredictor<T>, MAX_VERSIONS_PER_MODEL>, MAX_NUM_MODELS>::new();
|
(0 ..MAX_NUM_MODELS).map( |_| ArrayVec::<BatchPredictor<T>, MAX_VERSIONS_PER_MODEL>::new()).collect();
|
||||||
loop {
|
loop {
|
||||||
let msg = rx.try_recv();
|
let msg = rx.try_recv();
|
||||||
let no_more_msg = match msg {
|
let no_more_msg = match msg {
|
||||||
Ok(PredictMessage::Predict(model_spec_at, version, val, resp, ts)) => {
|
Ok(PredictMessage::Predict(model_spec_at, version, val, resp, ts)) => {
|
||||||
if let Some(model_predictors) = all_model_predictors.get_mut(model_spec_at) {
|
if let Some(model_predictors) = all_model_predictors.get_mut(model_spec_at) {
|
||||||
|
if model_predictors.is_empty() {
|
||||||
|
resp.send(PredictResult::ModelNotReady(model_spec_at))
|
||||||
|
.unwrap_or_else(|e| error!("cannot send back model not ready error: {:?}", e));
|
||||||
|
}
|
||||||
|
else {
|
||||||
match version {
|
match version {
|
||||||
None => model_predictors[0].push(val, resp, ts),
|
None => model_predictors[0].push(val, resp, ts),
|
||||||
Some(the_version) => match model_predictors
|
Some(the_version) => match model_predictors
|
||||||
@ -246,9 +251,10 @@ impl<T: Model> PredictService<T> {
|
|||||||
Some(predictor) => predictor.push(val, resp, ts),
|
Some(predictor) => predictor.push(val, resp, ts),
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
resp.send(PredictResult::ModelNotFound(model_spec_at))
|
resp.send(PredictResult::ModelNotFound(model_spec_at))
|
||||||
.unwrap_or_else(|e| error!("cannot send back model error: {:?}", e))
|
.unwrap_or_else(|e| error!("cannot send back model not found error: {:?}", e))
|
||||||
}
|
}
|
||||||
MPSC_CHANNEL_SIZE.dec();
|
MPSC_CHANNEL_SIZE.dec();
|
||||||
false
|
false
|
||||||
@ -266,27 +272,23 @@ impl<T: Model> PredictService<T> {
|
|||||||
queue_reset_ts: Instant::now(),
|
queue_reset_ts: Instant::now(),
|
||||||
queue_earliest_rq_ts: Instant::now(),
|
queue_earliest_rq_ts: Instant::now(),
|
||||||
};
|
};
|
||||||
if idx < all_model_predictors.len() {
|
assert!(idx < all_model_predictors.len());
|
||||||
metrics::NEW_MODEL_SNAPSHOT
|
metrics::NEW_MODEL_SNAPSHOT
|
||||||
.with_label_values(&[&MODEL_SPECS[idx]])
|
.with_label_values(&[&MODEL_SPECS[idx]])
|
||||||
.inc();
|
.inc();
|
||||||
|
|
||||||
info!("now we serve updated model: {}", predictor.model);
|
|
||||||
//we can do this since the vector is small
|
//we can do this since the vector is small
|
||||||
let predictors = &mut all_model_predictors[idx];
|
let predictors = &mut all_model_predictors[idx];
|
||||||
|
if predictors.len() == 0 {
|
||||||
|
info!("now we serve new model: {}", predictor.model);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
info!("now we serve updated model: {}", predictor.model);
|
||||||
|
}
|
||||||
if predictors.len() == ARGS.versions_per_model {
|
if predictors.len() == ARGS.versions_per_model {
|
||||||
predictors.remove(predictors.len() - 1);
|
predictors.remove(predictors.len() - 1);
|
||||||
}
|
}
|
||||||
predictors.insert(0, predictor);
|
predictors.insert(0, predictor);
|
||||||
} else {
|
|
||||||
info!("now we serve new model: {:}", predictor.model);
|
|
||||||
let mut predictors =
|
|
||||||
ArrayVec::<BatchPredictor<T>, MAX_VERSIONS_PER_MODEL>::new();
|
|
||||||
predictors.push(predictor);
|
|
||||||
all_model_predictors.push(predictors);
|
|
||||||
//check the invariant that we always push the last model to the end
|
|
||||||
assert_eq!(all_model_predictors.len(), idx + 1)
|
|
||||||
}
|
|
||||||
false
|
false
|
||||||
}
|
}
|
||||||
Err(TryRecvError::Empty) => true,
|
Err(TryRecvError::Empty) => true,
|
||||||
|
@ -3,9 +3,9 @@ name = "segdense"
|
|||||||
version = "0.1.0"
|
version = "0.1.0"
|
||||||
edition = "2021"
|
edition = "2021"
|
||||||
|
|
||||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
|
||||||
|
|
||||||
[dependencies]
|
[dependencies]
|
||||||
|
env_logger = "0.10.0"
|
||||||
serde = { version = "1.0.104", features = ["derive"] }
|
serde = { version = "1.0.104", features = ["derive"] }
|
||||||
serde_json = "1.0.48"
|
serde_json = "1.0.48"
|
||||||
log = "0.4.17"
|
log = "0.4.17"
|
||||||
|
@ -19,11 +19,21 @@ impl Display for SegDenseError {
|
|||||||
match self {
|
match self {
|
||||||
SegDenseError::IoError(io_error) => write!(f, "{}", io_error),
|
SegDenseError::IoError(io_error) => write!(f, "{}", io_error),
|
||||||
SegDenseError::Json(serde_json) => write!(f, "{}", serde_json),
|
SegDenseError::Json(serde_json) => write!(f, "{}", serde_json),
|
||||||
SegDenseError::JsonMissingRoot => write!(f, "{}", "SegDense JSON: Root Node note found!"),
|
SegDenseError::JsonMissingRoot => {
|
||||||
SegDenseError::JsonMissingObject => write!(f, "{}", "SegDense JSON: Object note found!"),
|
write!(f, "{}", "SegDense JSON: Root Node note found!")
|
||||||
SegDenseError::JsonMissingArray => write!(f, "{}", "SegDense JSON: Array Node note found!"),
|
}
|
||||||
SegDenseError::JsonArraySize => write!(f, "{}", "SegDense JSON: Array size not as expected!"),
|
SegDenseError::JsonMissingObject => {
|
||||||
SegDenseError::JsonMissingInputFeature => write!(f, "{}", "SegDense JSON: Missing input feature!"),
|
write!(f, "{}", "SegDense JSON: Object note found!")
|
||||||
|
}
|
||||||
|
SegDenseError::JsonMissingArray => {
|
||||||
|
write!(f, "{}", "SegDense JSON: Array Node note found!")
|
||||||
|
}
|
||||||
|
SegDenseError::JsonArraySize => {
|
||||||
|
write!(f, "{}", "SegDense JSON: Array size not as expected!")
|
||||||
|
}
|
||||||
|
SegDenseError::JsonMissingInputFeature => {
|
||||||
|
write!(f, "{}", "SegDense JSON: Missing input feature!")
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
pub mod error;
|
pub mod error;
|
||||||
pub mod segdense_transform_spec_home_recap_2022;
|
|
||||||
pub mod mapper;
|
pub mod mapper;
|
||||||
|
pub mod segdense_transform_spec_home_recap_2022;
|
||||||
pub mod util;
|
pub mod util;
|
@ -20,4 +20,3 @@ fn main() -> Result<(), SegDenseError> {
|
|||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -19,7 +19,7 @@ pub struct FeatureMapper {
|
|||||||
impl FeatureMapper {
|
impl FeatureMapper {
|
||||||
pub fn new() -> FeatureMapper {
|
pub fn new() -> FeatureMapper {
|
||||||
FeatureMapper {
|
FeatureMapper {
|
||||||
map: HashMap::new()
|
map: HashMap::new(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -164,7 +164,6 @@ pub struct ComplexFeatureTypeTransformSpec {
|
|||||||
pub tensor_shape: Vec<i64>,
|
pub tensor_shape: Vec<i64>,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
|
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
|
||||||
#[serde(rename_all = "camelCase")]
|
#[serde(rename_all = "camelCase")]
|
||||||
pub struct InputFeatureMapRecord {
|
pub struct InputFeatureMapRecord {
|
||||||
|
@ -1,23 +1,23 @@
|
|||||||
|
use log::debug;
|
||||||
use std::fs;
|
use std::fs;
|
||||||
use log::{debug};
|
|
||||||
|
|
||||||
use serde_json::{Value, Map};
|
use serde_json::{Map, Value};
|
||||||
|
|
||||||
use crate::error::SegDenseError;
|
use crate::error::SegDenseError;
|
||||||
use crate::mapper::{FeatureMapper, FeatureInfo, MapWriter};
|
use crate::mapper::{FeatureInfo, FeatureMapper, MapWriter};
|
||||||
use crate::segdense_transform_spec_home_recap_2022::{self as seg_dense, InputFeature};
|
use crate::segdense_transform_spec_home_recap_2022::{self as seg_dense, InputFeature};
|
||||||
|
|
||||||
pub fn load_config(file_name: &str) -> seg_dense::Root {
|
pub fn load_config(file_name: &str) -> Result<seg_dense::Root, SegDenseError> {
|
||||||
let json_str = fs::read_to_string(file_name).expect(
|
let json_str = fs::read_to_string(file_name)?;
|
||||||
&format!("Unable to load segdense file {}", file_name));
|
// &format!("Unable to load segdense file {}", file_name));
|
||||||
let seg_dense_config = parse(&json_str).expect(
|
let seg_dense_config = parse(&json_str)?;
|
||||||
&format!("Unable to parse segdense file {}", file_name));
|
// &format!("Unable to parse segdense file {}", file_name));
|
||||||
return seg_dense_config;
|
Ok(seg_dense_config)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn parse(json_str: &str) -> Result<seg_dense::Root, SegDenseError> {
|
pub fn parse(json_str: &str) -> Result<seg_dense::Root, SegDenseError> {
|
||||||
let root: seg_dense::Root = serde_json::from_str(json_str)?;
|
let root: seg_dense::Root = serde_json::from_str(json_str)?;
|
||||||
return Ok(root);
|
Ok(root)
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -44,15 +44,8 @@ pub fn safe_load_config(json_str: &str) -> Result<FeatureMapper, SegDenseError>
|
|||||||
load_from_parsed_config(root)
|
load_from_parsed_config(root)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn load_from_parsed_config_ref(root: &seg_dense::Root) -> FeatureMapper {
|
|
||||||
load_from_parsed_config(root.clone()).unwrap_or_else(
|
|
||||||
|error| panic!("Error loading all_config.json - {}", error))
|
|
||||||
}
|
|
||||||
|
|
||||||
// Perf note : make 'root' un-owned
|
// Perf note : make 'root' un-owned
|
||||||
pub fn load_from_parsed_config(root: seg_dense::Root) ->
|
pub fn load_from_parsed_config(root: seg_dense::Root) -> Result<FeatureMapper, SegDenseError> {
|
||||||
Result<FeatureMapper, SegDenseError> {
|
|
||||||
|
|
||||||
let v = root.input_features_map;
|
let v = root.input_features_map;
|
||||||
|
|
||||||
// Do error check
|
// Do error check
|
||||||
@ -86,7 +79,7 @@ pub fn load_from_parsed_config(root: seg_dense::Root) ->
|
|||||||
Some(info) => {
|
Some(info) => {
|
||||||
debug!("{:?}", info);
|
debug!("{:?}", info);
|
||||||
fm.set(feature_id, info)
|
fm.set(feature_id, info)
|
||||||
},
|
}
|
||||||
None => (),
|
None => (),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -94,7 +87,10 @@ pub fn load_from_parsed_config(root: seg_dense::Root) ->
|
|||||||
Ok(fm)
|
Ok(fm)
|
||||||
}
|
}
|
||||||
#[allow(dead_code)]
|
#[allow(dead_code)]
|
||||||
fn add_feature_info_to_mapper(feature_mapper: &mut FeatureMapper, input_features: &Vec<InputFeature>) {
|
fn add_feature_info_to_mapper(
|
||||||
|
feature_mapper: &mut FeatureMapper,
|
||||||
|
input_features: &Vec<InputFeature>,
|
||||||
|
) {
|
||||||
for input_feature in input_features.iter() {
|
for input_feature in input_features.iter() {
|
||||||
let feature_id = input_feature.feature_id;
|
let feature_id = input_feature.feature_id;
|
||||||
let feature_info = to_feature_info(input_feature);
|
let feature_info = to_feature_info(input_feature);
|
||||||
@ -103,7 +99,7 @@ fn add_feature_info_to_mapper(feature_mapper: &mut FeatureMapper, input_features
|
|||||||
Some(info) => {
|
Some(info) => {
|
||||||
debug!("{:?}", info);
|
debug!("{:?}", info);
|
||||||
feature_mapper.set(feature_id, info)
|
feature_mapper.set(feature_id, info)
|
||||||
},
|
}
|
||||||
None => (),
|
None => (),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -139,7 +135,7 @@ pub fn to_feature_info(input_feature: &seg_dense::InputFeature) -> Option<Featur
|
|||||||
2 => 0,
|
2 => 0,
|
||||||
3 => 2,
|
3 => 2,
|
||||||
_ => -1,
|
_ => -1,
|
||||||
}
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
if input_feature.index < 0 {
|
if input_feature.index < 0 {
|
||||||
@ -156,4 +152,3 @@ pub fn to_feature_info(input_feature: &seg_dense::InputFeature) -> Option<Featur
|
|||||||
index_within_tensor: input_feature.index,
|
index_within_tensor: input_feature.index,
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
48
pushservice/BUILD.bazel
Normal file
48
pushservice/BUILD.bazel
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
alias(
|
||||||
|
name = "frigate-pushservice",
|
||||||
|
target = ":frigate-pushservice_lib",
|
||||||
|
)
|
||||||
|
|
||||||
|
target(
|
||||||
|
name = "frigate-pushservice_lib",
|
||||||
|
dependencies = [
|
||||||
|
"frigate/frigate-pushservice-opensource/src/main/scala/com/twitter/frigate/pushservice",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
jvm_binary(
|
||||||
|
name = "bin",
|
||||||
|
basename = "frigate-pushservice",
|
||||||
|
main = "com.twitter.frigate.pushservice.PushServiceMain",
|
||||||
|
runtime_platform = "java11",
|
||||||
|
tags = ["bazel-compatible"],
|
||||||
|
dependencies = [
|
||||||
|
"3rdparty/jvm/ch/qos/logback:logback-classic",
|
||||||
|
"finatra/inject/inject-logback/src/main/scala",
|
||||||
|
"frigate/frigate-pushservice-opensource/src/main/scala/com/twitter/frigate/pushservice",
|
||||||
|
"loglens/loglens-logback/src/main/scala/com/twitter/loglens/logback",
|
||||||
|
"twitter-server/logback-classic/src/main/scala",
|
||||||
|
],
|
||||||
|
excludes = [
|
||||||
|
exclude("com.twitter.translations", "translations-twitter"),
|
||||||
|
exclude("org.apache.hadoop", "hadoop-aws"),
|
||||||
|
exclude("org.tensorflow"),
|
||||||
|
scala_exclude("com.twitter", "ckoia-scala"),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
jvm_app(
|
||||||
|
name = "bundle",
|
||||||
|
basename = "frigate-pushservice-package-dist",
|
||||||
|
archive = "zip",
|
||||||
|
binary = ":bin",
|
||||||
|
tags = ["bazel-compatible"],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "mr_model_constants",
|
||||||
|
sources = [
|
||||||
|
"config/deepbird/constants.py",
|
||||||
|
],
|
||||||
|
tags = ["bazel-compatible"],
|
||||||
|
)
|
45
pushservice/README.md
Normal file
45
pushservice/README.md
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
# Pushservice
|
||||||
|
|
||||||
|
Pushservice is the main push recommendation service at Twitter used to generate recommendation-based notifications for users. It currently powers two functionalities:
|
||||||
|
|
||||||
|
- RefreshForPushHandler: This handler determines whether to send a recommendation push to a user based on their ID. It generates the best push recommendation item and coordinates with downstream services to deliver it
|
||||||
|
- SendHandler: This handler determines and manage whether send the push to users based on the given target user details and the provided push recommendation item
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
### RefreshForPushHandler
|
||||||
|
|
||||||
|
RefreshForPushHandler follows these steps:
|
||||||
|
|
||||||
|
- Building Target and checking eligibility
|
||||||
|
- Builds a target user object based on the given user ID
|
||||||
|
- Performs target-level filterings to determine if the target is eligible for a recommendation push
|
||||||
|
- Fetch Candidates
|
||||||
|
- Retrieves a list of potential candidates for the push by querying various candidate sources using the target
|
||||||
|
- Candidate Hydration
|
||||||
|
- Hydrates the candidate details with batch calls to different downstream services
|
||||||
|
- Pre-rank Filtering, also called Light Filtering
|
||||||
|
- Filters the hydrated candidates with lightweight RPC calls
|
||||||
|
- Rank
|
||||||
|
- Perform feature hydration for candidates and target user
|
||||||
|
- Performs light ranking on candidates
|
||||||
|
- Performs heavy ranking on candidates
|
||||||
|
- Take Step, also called Heavy Filtering
|
||||||
|
- Takes the top-ranked candidates one by one and applies heavy filtering until one candidate passes all filter steps
|
||||||
|
- Send
|
||||||
|
- Calls the appropriate downstream service to deliver the eligible candidate as a push and in-app notification to the target user
|
||||||
|
|
||||||
|
### SendHandler
|
||||||
|
|
||||||
|
SendHandler follows these steps:
|
||||||
|
|
||||||
|
- Building Target
|
||||||
|
- Builds a target user object based on the given user ID
|
||||||
|
- Candidate Hydration
|
||||||
|
- Hydrates the candidate details with batch calls to different downstream services
|
||||||
|
- Feature Hydration
|
||||||
|
- Perform feature hydration for candidates and target user
|
||||||
|
- Take Step, also called Heavy Filtering
|
||||||
|
- Perform filterings and validation checking for the given candidate
|
||||||
|
- Send
|
||||||
|
- Calls the appropriate downstream service to deliver the given candidate as a push and/or in-app notification to the target user
|
169
pushservice/src/main/python/models/heavy_ranking/BUILD
Normal file
169
pushservice/src/main/python/models/heavy_ranking/BUILD
Normal file
@ -0,0 +1,169 @@
|
|||||||
|
python37_binary(
|
||||||
|
name = "update_warm_start_checkpoint",
|
||||||
|
source = "update_warm_start_checkpoint.py",
|
||||||
|
tags = ["no-mypy"],
|
||||||
|
dependencies = [
|
||||||
|
":deep_norm_lib",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/heavy_ranking:update_warm_start_checkpoint",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "params_lib",
|
||||||
|
sources = ["params.py"],
|
||||||
|
tags = ["no-mypy"],
|
||||||
|
dependencies = [
|
||||||
|
"3rdparty/python/pydantic:default",
|
||||||
|
"src/python/twitter/deepbird/projects/magic_recs/v11/lib:params_lib",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "features_lib",
|
||||||
|
sources = ["features.py"],
|
||||||
|
tags = ["no-mypy"],
|
||||||
|
dependencies = [
|
||||||
|
":params_lib",
|
||||||
|
"src/python/twitter/deepbird/projects/magic_recs/libs",
|
||||||
|
"twml:twml-nodeps",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "model_pools_lib",
|
||||||
|
sources = ["model_pools.py"],
|
||||||
|
tags = ["no-mypy"],
|
||||||
|
dependencies = [
|
||||||
|
":features_lib",
|
||||||
|
":params_lib",
|
||||||
|
"src/python/twitter/deepbird/projects/magic_recs/v11/lib:model_lib",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "graph_lib",
|
||||||
|
sources = ["graph.py"],
|
||||||
|
tags = ["no-mypy"],
|
||||||
|
dependencies = [
|
||||||
|
":params_lib",
|
||||||
|
"src/python/twitter/deepbird/projects/magic_recs/libs",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "run_args_lib",
|
||||||
|
sources = ["run_args.py"],
|
||||||
|
tags = ["no-mypy"],
|
||||||
|
dependencies = [
|
||||||
|
":features_lib",
|
||||||
|
":params_lib",
|
||||||
|
"twml:twml-nodeps",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "deep_norm_lib",
|
||||||
|
sources = ["deep_norm.py"],
|
||||||
|
tags = ["no-mypy"],
|
||||||
|
dependencies = [
|
||||||
|
":features_lib",
|
||||||
|
":graph_lib",
|
||||||
|
":model_pools_lib",
|
||||||
|
":params_lib",
|
||||||
|
":run_args_lib",
|
||||||
|
"src/python/twitter/deepbird/projects/magic_recs/libs",
|
||||||
|
"src/python/twitter/deepbird/util/data",
|
||||||
|
"twml:twml-nodeps",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "eval_lib",
|
||||||
|
sources = ["eval.py"],
|
||||||
|
tags = ["no-mypy"],
|
||||||
|
dependencies = [
|
||||||
|
":features_lib",
|
||||||
|
":graph_lib",
|
||||||
|
":model_pools_lib",
|
||||||
|
":params_lib",
|
||||||
|
":run_args_lib",
|
||||||
|
"src/python/twitter/deepbird/projects/magic_recs/libs",
|
||||||
|
"twml:twml-nodeps",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "deep_norm",
|
||||||
|
source = "deep_norm.py",
|
||||||
|
dependencies = [
|
||||||
|
":deep_norm_lib",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/heavy_ranking:deep_norm",
|
||||||
|
"twml",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "eval",
|
||||||
|
source = "eval.py",
|
||||||
|
dependencies = [
|
||||||
|
":eval_lib",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/heavy_ranking:eval",
|
||||||
|
"twml",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "mlwf_libs",
|
||||||
|
tags = ["no-mypy"],
|
||||||
|
dependencies = [
|
||||||
|
":deep_norm_lib",
|
||||||
|
"twml",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "train_model",
|
||||||
|
source = "deep_norm.py",
|
||||||
|
dependencies = [
|
||||||
|
":deep_norm_lib",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/heavy_ranking:train_model",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "train_model_local",
|
||||||
|
source = "deep_norm.py",
|
||||||
|
dependencies = [
|
||||||
|
":deep_norm_lib",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/heavy_ranking:train_model_local",
|
||||||
|
"twml",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "eval_model_local",
|
||||||
|
source = "eval.py",
|
||||||
|
dependencies = [
|
||||||
|
":eval_lib",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/heavy_ranking:eval_model_local",
|
||||||
|
"twml",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "eval_model",
|
||||||
|
source = "eval.py",
|
||||||
|
dependencies = [
|
||||||
|
":eval_lib",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/heavy_ranking:eval_model",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "mlwf_model",
|
||||||
|
source = "deep_norm.py",
|
||||||
|
dependencies = [
|
||||||
|
":mlwf_libs",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/heavy_ranking:mlwf_model",
|
||||||
|
],
|
||||||
|
)
|
20
pushservice/src/main/python/models/heavy_ranking/README.md
Normal file
20
pushservice/src/main/python/models/heavy_ranking/README.md
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
# Notification Heavy Ranker Model
|
||||||
|
|
||||||
|
## Model Context
|
||||||
|
There are 4 major components of Twitter notifications recommendation system: 1) candidate generation 2) light ranking 3) heavy ranking & 4) quality control. This notification heavy ranker model is the core ranking model for the personalised notifications recommendation. It's a multi-task learning model to predict the probabilities that the target users will open and engage with the sent notifications.
|
||||||
|
|
||||||
|
|
||||||
|
## Directory Structure
|
||||||
|
- BUILD: this file defines python library dependencies
|
||||||
|
- deep_norm.py: this file contains how to set up continuous training, model evaluation and model exporting for the notification heavy ranker model
|
||||||
|
- eval.py: the main python entry file to set up the overall model evaluation pipeline
|
||||||
|
- features.py: this file contains importing feature list and support functions for feature engineering
|
||||||
|
- graph.py: this file defines how to build the tensorflow graph with specified model architecture, loss function and training configuration
|
||||||
|
- model_pools.py: this file defines the available model types for the heavy ranker
|
||||||
|
- params.py: this file defines hyper-parameters used in the notification heavy ranker
|
||||||
|
- run_args.py: this file defines command line parameters to run model training & evaluation
|
||||||
|
- update_warm_start_checkpoint.py: this file contains the support to modify checkpoints of the given saved heavy ranker model
|
||||||
|
- lib/BUILD: this file defines python library dependencies for tensorflow model architecture
|
||||||
|
- lib/layers.py: this file defines different type of convolution layers to be used in the heavy ranker model
|
||||||
|
- lib/model.py: this file defines the module containing ClemNet, the heavy ranker model type
|
||||||
|
- lib/params.py: this file defines parameters used in the heavy ranker model
|
136
pushservice/src/main/python/models/heavy_ranking/deep_norm.py
Normal file
136
pushservice/src/main/python/models/heavy_ranking/deep_norm.py
Normal file
@ -0,0 +1,136 @@
|
|||||||
|
"""
|
||||||
|
Training job for the heavy ranker of the push notification service.
|
||||||
|
"""
|
||||||
|
from datetime import datetime
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
|
||||||
|
import twml
|
||||||
|
|
||||||
|
from ..libs.metric_fn_utils import flip_disliked_labels, get_metric_fn
|
||||||
|
from ..libs.model_utils import read_config
|
||||||
|
from ..libs.warm_start_utils import get_feature_list_for_heavy_ranking, warm_start_checkpoint
|
||||||
|
from .features import get_feature_config
|
||||||
|
from .model_pools import ALL_MODELS
|
||||||
|
from .params import load_graph_params
|
||||||
|
from .run_args import get_training_arg_parser
|
||||||
|
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
from tensorflow.compat.v1 import logging
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
args, _ = get_training_arg_parser().parse_known_args()
|
||||||
|
logging.info(f"Parsed args: {args}")
|
||||||
|
|
||||||
|
params = load_graph_params(args)
|
||||||
|
logging.info(f"Loaded graph params: {params}")
|
||||||
|
|
||||||
|
param_file = os.path.join(args.save_dir, "params.json")
|
||||||
|
logging.info(f"Saving graph params to: {param_file}")
|
||||||
|
with tf.io.gfile.GFile(param_file, mode="w") as file:
|
||||||
|
json.dump(params.json(), file, ensure_ascii=False, indent=4)
|
||||||
|
|
||||||
|
logging.info(f"Get Feature Config: {args.feature_list}")
|
||||||
|
feature_list = read_config(args.feature_list).items()
|
||||||
|
feature_config = get_feature_config(
|
||||||
|
data_spec_path=args.data_spec,
|
||||||
|
params=params,
|
||||||
|
feature_list_provided=feature_list,
|
||||||
|
)
|
||||||
|
feature_list_path = args.feature_list
|
||||||
|
|
||||||
|
warm_start_from = args.warm_start_from
|
||||||
|
if args.warm_start_base_dir:
|
||||||
|
logging.info(f"Get warm started model from: {args.warm_start_base_dir}.")
|
||||||
|
|
||||||
|
continuous_binary_feat_list_save_path = os.path.join(
|
||||||
|
args.warm_start_base_dir, "continuous_binary_feat_list.json"
|
||||||
|
)
|
||||||
|
warm_start_folder = os.path.join(args.warm_start_base_dir, "best_checkpoint")
|
||||||
|
job_name = os.path.basename(args.save_dir)
|
||||||
|
ws_output_ckpt_folder = os.path.join(args.warm_start_base_dir, f"warm_start_for_{job_name}")
|
||||||
|
if tf.io.gfile.exists(ws_output_ckpt_folder):
|
||||||
|
tf.io.gfile.rmtree(ws_output_ckpt_folder)
|
||||||
|
|
||||||
|
tf.io.gfile.mkdir(ws_output_ckpt_folder)
|
||||||
|
|
||||||
|
warm_start_from = warm_start_checkpoint(
|
||||||
|
warm_start_folder,
|
||||||
|
continuous_binary_feat_list_save_path,
|
||||||
|
feature_list_path,
|
||||||
|
args.data_spec,
|
||||||
|
ws_output_ckpt_folder,
|
||||||
|
)
|
||||||
|
logging.info(f"Created warm_start_from_ckpt {warm_start_from}.")
|
||||||
|
|
||||||
|
logging.info("Build Trainer.")
|
||||||
|
metric_fn = get_metric_fn("OONC_Engagement" if len(params.tasks) == 2 else "OONC", False)
|
||||||
|
|
||||||
|
trainer = twml.trainers.DataRecordTrainer(
|
||||||
|
name="magic_recs",
|
||||||
|
params=args,
|
||||||
|
build_graph_fn=lambda *args: ALL_MODELS[params.model.name](params=params)(*args),
|
||||||
|
save_dir=args.save_dir,
|
||||||
|
run_config=None,
|
||||||
|
feature_config=feature_config,
|
||||||
|
metric_fn=flip_disliked_labels(metric_fn),
|
||||||
|
warm_start_from=warm_start_from,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Build train and eval input functions.")
|
||||||
|
train_input_fn = trainer.get_train_input_fn(shuffle=True)
|
||||||
|
eval_input_fn = trainer.get_eval_input_fn(repeat=False, shuffle=False)
|
||||||
|
|
||||||
|
learn = trainer.learn
|
||||||
|
if args.distributed or args.num_workers is not None:
|
||||||
|
learn = trainer.train_and_evaluate
|
||||||
|
|
||||||
|
if not args.directly_export_best:
|
||||||
|
logging.info("Starting training")
|
||||||
|
start = datetime.now()
|
||||||
|
learn(
|
||||||
|
early_stop_minimize=False,
|
||||||
|
early_stop_metric="pr_auc_unweighted_OONC",
|
||||||
|
early_stop_patience=args.early_stop_patience,
|
||||||
|
early_stop_tolerance=args.early_stop_tolerance,
|
||||||
|
eval_input_fn=eval_input_fn,
|
||||||
|
train_input_fn=train_input_fn,
|
||||||
|
)
|
||||||
|
logging.info(f"Total training time: {datetime.now() - start}")
|
||||||
|
else:
|
||||||
|
logging.info("Directly exporting the model")
|
||||||
|
|
||||||
|
if not args.export_dir:
|
||||||
|
args.export_dir = os.path.join(args.save_dir, "exported_models")
|
||||||
|
|
||||||
|
logging.info(f"Exporting the model to {args.export_dir}.")
|
||||||
|
start = datetime.now()
|
||||||
|
twml.contrib.export.export_fn.export_all_models(
|
||||||
|
trainer=trainer,
|
||||||
|
export_dir=args.export_dir,
|
||||||
|
parse_fn=feature_config.get_parse_fn(),
|
||||||
|
serving_input_receiver_fn=feature_config.get_serving_input_receiver_fn(),
|
||||||
|
export_output_fn=twml.export_output_fns.batch_prediction_continuous_output_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"Total model export time: {datetime.now() - start}")
|
||||||
|
logging.info(f"The MLP directory is: {args.save_dir}")
|
||||||
|
|
||||||
|
continuous_binary_feat_list_save_path = os.path.join(
|
||||||
|
args.save_dir, "continuous_binary_feat_list.json"
|
||||||
|
)
|
||||||
|
logging.info(
|
||||||
|
f"Saving the list of continuous and binary features to {continuous_binary_feat_list_save_path}."
|
||||||
|
)
|
||||||
|
continuous_binary_feat_list = get_feature_list_for_heavy_ranking(
|
||||||
|
feature_list_path, args.data_spec
|
||||||
|
)
|
||||||
|
twml.util.write_file(
|
||||||
|
continuous_binary_feat_list_save_path, continuous_binary_feat_list, encode="json"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
logging.info("Done.")
|
59
pushservice/src/main/python/models/heavy_ranking/eval.py
Normal file
59
pushservice/src/main/python/models/heavy_ranking/eval.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
"""
|
||||||
|
Evaluation job for the heavy ranker of the push notification service.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
import twml
|
||||||
|
|
||||||
|
from ..libs.metric_fn_utils import get_metric_fn
|
||||||
|
from ..libs.model_utils import read_config
|
||||||
|
from .features import get_feature_config
|
||||||
|
from .model_pools import ALL_MODELS
|
||||||
|
from .params import load_graph_params
|
||||||
|
from .run_args import get_eval_arg_parser
|
||||||
|
|
||||||
|
from tensorflow.compat.v1 import logging
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args, _ = get_eval_arg_parser().parse_known_args()
|
||||||
|
logging.info(f"Parsed args: {args}")
|
||||||
|
|
||||||
|
params = load_graph_params(args)
|
||||||
|
logging.info(f"Loaded graph params: {params}")
|
||||||
|
|
||||||
|
logging.info(f"Get Feature Config: {args.feature_list}")
|
||||||
|
feature_list = read_config(args.feature_list).items()
|
||||||
|
feature_config = get_feature_config(
|
||||||
|
data_spec_path=args.data_spec,
|
||||||
|
params=params,
|
||||||
|
feature_list_provided=feature_list,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Build DataRecordTrainer.")
|
||||||
|
metric_fn = get_metric_fn("OONC_Engagement" if len(params.tasks) == 2 else "OONC", False)
|
||||||
|
|
||||||
|
trainer = twml.trainers.DataRecordTrainer(
|
||||||
|
name="magic_recs",
|
||||||
|
params=args,
|
||||||
|
build_graph_fn=lambda *args: ALL_MODELS[params.model.name](params=params)(*args),
|
||||||
|
save_dir=args.save_dir,
|
||||||
|
run_config=None,
|
||||||
|
feature_config=feature_config,
|
||||||
|
metric_fn=metric_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Run the evaluation.")
|
||||||
|
start = datetime.now()
|
||||||
|
trainer._estimator.evaluate(
|
||||||
|
input_fn=trainer.get_eval_input_fn(repeat=False, shuffle=False),
|
||||||
|
steps=None if (args.eval_steps is not None and args.eval_steps < 0) else args.eval_steps,
|
||||||
|
checkpoint_path=args.eval_checkpoint,
|
||||||
|
)
|
||||||
|
logging.info(f"Evaluating time: {datetime.now() - start}.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
logging.info("Job done.")
|
138
pushservice/src/main/python/models/heavy_ranking/features.py
Normal file
138
pushservice/src/main/python/models/heavy_ranking/features.py
Normal file
@ -0,0 +1,138 @@
|
|||||||
|
import os
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
|
from twitter.deepbird.projects.magic_recs.libs.model_utils import filter_nans_and_infs
|
||||||
|
import twml
|
||||||
|
from twml.layers import full_sparse, sparse_max_norm
|
||||||
|
|
||||||
|
from .params import FeaturesParams, GraphParams, SparseFeaturesParams
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow import Tensor
|
||||||
|
import tensorflow.compat.v1 as tf1
|
||||||
|
|
||||||
|
|
||||||
|
FEAT_CONFIG_DEFAULT_VAL = 0
|
||||||
|
DEFAULT_FEATURE_LIST_PATH = "./feature_list_default.yaml"
|
||||||
|
FEATURE_LIST_DEFAULT_PATH = os.path.join(
|
||||||
|
os.path.dirname(os.path.realpath(__file__)), DEFAULT_FEATURE_LIST_PATH
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_feature_config(data_spec_path=None, feature_list_provided=[], params: GraphParams = None):
|
||||||
|
|
||||||
|
a_string_feat_list = [feat for feat, feat_type in feature_list_provided if feat_type != "S"]
|
||||||
|
|
||||||
|
builder = twml.contrib.feature_config.FeatureConfigBuilder(
|
||||||
|
data_spec_path=data_spec_path, debug=False
|
||||||
|
)
|
||||||
|
|
||||||
|
builder = builder.extract_feature_group(
|
||||||
|
feature_regexes=a_string_feat_list,
|
||||||
|
group_name="continuous_features",
|
||||||
|
default_value=FEAT_CONFIG_DEFAULT_VAL,
|
||||||
|
type_filter=["CONTINUOUS"],
|
||||||
|
)
|
||||||
|
|
||||||
|
builder = builder.extract_feature_group(
|
||||||
|
feature_regexes=a_string_feat_list,
|
||||||
|
group_name="binary_features",
|
||||||
|
type_filter=["BINARY"],
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.model.features.sparse_features:
|
||||||
|
builder = builder.extract_features_as_hashed_sparse(
|
||||||
|
feature_regexes=a_string_feat_list,
|
||||||
|
hash_space_size_bits=params.model.features.sparse_features.bits,
|
||||||
|
type_filter=["DISCRETE", "STRING", "SPARSE_BINARY"],
|
||||||
|
output_tensor_name="sparse_not_continuous",
|
||||||
|
)
|
||||||
|
|
||||||
|
builder = builder.extract_features_as_hashed_sparse(
|
||||||
|
feature_regexes=[feat for feat, feat_type in feature_list_provided if feat_type == "S"],
|
||||||
|
hash_space_size_bits=params.model.features.sparse_features.bits,
|
||||||
|
type_filter=["SPARSE_CONTINUOUS"],
|
||||||
|
output_tensor_name="sparse_continuous",
|
||||||
|
)
|
||||||
|
|
||||||
|
builder = builder.add_labels([task.label for task in params.tasks] + ["label.ntabDislike"])
|
||||||
|
|
||||||
|
if params.weight:
|
||||||
|
builder = builder.define_weight(params.weight)
|
||||||
|
|
||||||
|
return builder.build()
|
||||||
|
|
||||||
|
|
||||||
|
def dense_features(features: Dict[str, Tensor], training: bool) -> Tensor:
|
||||||
|
"""
|
||||||
|
Performs feature transformations on the raw dense features (continuous and binary).
|
||||||
|
"""
|
||||||
|
with tf.name_scope("dense_features"):
|
||||||
|
x = filter_nans_and_infs(features["continuous_features"])
|
||||||
|
|
||||||
|
x = tf.sign(x) * tf.math.log(tf.abs(x) + 1)
|
||||||
|
x = tf1.layers.batch_normalization(
|
||||||
|
x, momentum=0.9999, training=training, renorm=training, axis=1
|
||||||
|
)
|
||||||
|
x = tf.clip_by_value(x, -5, 5)
|
||||||
|
|
||||||
|
transformed_continous_features = tf.where(tf.math.is_nan(x), tf.zeros_like(x), x)
|
||||||
|
|
||||||
|
binary_features = filter_nans_and_infs(features["binary_features"])
|
||||||
|
binary_features = tf.dtypes.cast(binary_features, tf.float32)
|
||||||
|
|
||||||
|
output = tf.concat([transformed_continous_features, binary_features], axis=1)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def sparse_features(
|
||||||
|
features: Dict[str, Tensor], training: bool, params: SparseFeaturesParams
|
||||||
|
) -> Tensor:
|
||||||
|
"""
|
||||||
|
Performs feature transformations on the raw sparse features.
|
||||||
|
"""
|
||||||
|
|
||||||
|
with tf.name_scope("sparse_features"):
|
||||||
|
with tf.name_scope("sparse_not_continuous"):
|
||||||
|
sparse_not_continuous = full_sparse(
|
||||||
|
inputs=features["sparse_not_continuous"],
|
||||||
|
output_size=params.embedding_size,
|
||||||
|
use_sparse_grads=training,
|
||||||
|
use_binary_values=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
with tf.name_scope("sparse_continuous"):
|
||||||
|
shape_enforced_input = twml.util.limit_sparse_tensor_size(
|
||||||
|
sparse_tf=features["sparse_continuous"], input_size_bits=params.bits, mask_indices=False
|
||||||
|
)
|
||||||
|
|
||||||
|
normalized_continuous_sparse = sparse_max_norm(
|
||||||
|
inputs=shape_enforced_input, is_training=training
|
||||||
|
)
|
||||||
|
|
||||||
|
sparse_continuous = full_sparse(
|
||||||
|
inputs=normalized_continuous_sparse,
|
||||||
|
output_size=params.embedding_size,
|
||||||
|
use_sparse_grads=training,
|
||||||
|
use_binary_values=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
output = tf.concat([sparse_not_continuous, sparse_continuous], axis=1)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def get_features(features: Dict[str, Tensor], training: bool, params: FeaturesParams) -> Tensor:
|
||||||
|
"""
|
||||||
|
Performs feature transformations on the dense and sparse features and combine the resulting
|
||||||
|
tensors into a single one.
|
||||||
|
"""
|
||||||
|
with tf.name_scope("features"):
|
||||||
|
x = dense_features(features, training)
|
||||||
|
tf1.logging.info(f"Dense features: {x.shape}")
|
||||||
|
|
||||||
|
if params.sparse_features:
|
||||||
|
x = tf.concat([x, sparse_features(features, training, params.sparse_features)], axis=1)
|
||||||
|
|
||||||
|
return x
|
129
pushservice/src/main/python/models/heavy_ranking/graph.py
Normal file
129
pushservice/src/main/python/models/heavy_ranking/graph.py
Normal file
@ -0,0 +1,129 @@
|
|||||||
|
"""
|
||||||
|
Graph class defining methods to obtain key quantities such as:
|
||||||
|
* the logits
|
||||||
|
* the probabilities
|
||||||
|
* the final score
|
||||||
|
* the loss function
|
||||||
|
* the training operator
|
||||||
|
"""
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from typing import Any, Dict
|
||||||
|
|
||||||
|
from twitter.deepbird.hparam import HParams
|
||||||
|
import twml
|
||||||
|
|
||||||
|
from ..libs.model_utils import generate_disliked_mask
|
||||||
|
from .params import GraphParams
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
import tensorflow.compat.v1 as tf1
|
||||||
|
|
||||||
|
|
||||||
|
class Graph(ABC):
|
||||||
|
def __init__(self, params: GraphParams):
|
||||||
|
self.params = params
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def get_logits(self, features: Dict[str, tf.Tensor], mode: tf.estimator.ModeKeys) -> tf.Tensor:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_probabilities(self, logits: tf.Tensor) -> tf.Tensor:
|
||||||
|
return tf.math.cumprod(tf.nn.sigmoid(logits), axis=1, name="probabilities")
|
||||||
|
|
||||||
|
def get_task_weights(self, labels: tf.Tensor) -> tf.Tensor:
|
||||||
|
oonc_label = tf.reshape(labels[:, 0], shape=(-1, 1))
|
||||||
|
task_weights = tf.concat([tf.ones_like(oonc_label), oonc_label], axis=1)
|
||||||
|
|
||||||
|
n_labels = len(self.params.tasks)
|
||||||
|
task_weights = tf.reshape(task_weights[:, 0:n_labels], shape=(-1, n_labels))
|
||||||
|
|
||||||
|
return task_weights
|
||||||
|
|
||||||
|
def get_loss(self, labels: tf.Tensor, logits: tf.Tensor, **kwargs: Any) -> tf.Tensor:
|
||||||
|
with tf.name_scope("weights"):
|
||||||
|
disliked_mask = generate_disliked_mask(labels)
|
||||||
|
|
||||||
|
labels = tf.reshape(labels[:, 0:2], shape=[-1, 2])
|
||||||
|
|
||||||
|
labels = labels * tf.cast(tf.logical_not(disliked_mask), dtype=labels.dtype)
|
||||||
|
|
||||||
|
with tf.name_scope("task_weight"):
|
||||||
|
task_weights = self.get_task_weights(labels)
|
||||||
|
|
||||||
|
with tf.name_scope("batch_size"):
|
||||||
|
batch_size = tf.cast(tf.shape(labels)[0], dtype=tf.float32, name="batch_size")
|
||||||
|
|
||||||
|
weights = task_weights / batch_size
|
||||||
|
|
||||||
|
with tf.name_scope("loss"):
|
||||||
|
loss = tf.reduce_sum(
|
||||||
|
tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits) * weights,
|
||||||
|
)
|
||||||
|
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def get_score(self, probabilities: tf.Tensor) -> tf.Tensor:
|
||||||
|
with tf.name_scope("score_weight"):
|
||||||
|
score_weights = tf.constant([task.score_weight for task in self.params.tasks])
|
||||||
|
score_weights = score_weights / tf.reduce_sum(score_weights, axis=0)
|
||||||
|
|
||||||
|
with tf.name_scope("score"):
|
||||||
|
score = tf.reshape(tf.reduce_sum(probabilities * score_weights, axis=1), shape=[-1, 1])
|
||||||
|
|
||||||
|
return score
|
||||||
|
|
||||||
|
def get_train_op(self, loss: tf.Tensor, twml_params) -> Any:
|
||||||
|
with tf.name_scope("optimizer"):
|
||||||
|
learning_rate = twml_params.learning_rate
|
||||||
|
optimizer = tf1.train.GradientDescentOptimizer(learning_rate=learning_rate)
|
||||||
|
|
||||||
|
update_ops = set(tf1.get_collection(tf1.GraphKeys.UPDATE_OPS))
|
||||||
|
with tf.control_dependencies(update_ops):
|
||||||
|
train_op = twml.optimizers.optimize_loss(
|
||||||
|
loss=loss,
|
||||||
|
variables=tf1.trainable_variables(),
|
||||||
|
global_step=tf1.train.get_global_step(),
|
||||||
|
optimizer=optimizer,
|
||||||
|
learning_rate=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_op
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
features: Dict[str, tf.Tensor],
|
||||||
|
labels: tf.Tensor,
|
||||||
|
mode: tf.estimator.ModeKeys,
|
||||||
|
params: HParams,
|
||||||
|
config=None,
|
||||||
|
) -> Dict[str, tf.Tensor]:
|
||||||
|
training = mode == tf.estimator.ModeKeys.TRAIN
|
||||||
|
logits = self.get_logits(features=features, training=training)
|
||||||
|
probabilities = self.get_probabilities(logits=logits)
|
||||||
|
score = None
|
||||||
|
loss = None
|
||||||
|
train_op = None
|
||||||
|
|
||||||
|
if mode == tf.estimator.ModeKeys.PREDICT:
|
||||||
|
score = self.get_score(probabilities=probabilities)
|
||||||
|
output = {"loss": loss, "train_op": train_op, "prediction": score}
|
||||||
|
|
||||||
|
elif mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
|
||||||
|
loss = self.get_loss(labels=labels, logits=logits)
|
||||||
|
|
||||||
|
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||||
|
train_op = self.get_train_op(loss=loss, twml_params=params)
|
||||||
|
|
||||||
|
output = {"loss": loss, "train_op": train_op, "output": probabilities}
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"""
|
||||||
|
Invalid mode. Possible values are: {tf.estimator.ModeKeys.PREDICT}, {tf.estimator.ModeKeys.TRAIN}, and {tf.estimator.ModeKeys.EVAL}
|
||||||
|
. Passed: {mode}
|
||||||
|
"""
|
||||||
|
)
|
||||||
|
|
||||||
|
return output
|
42
pushservice/src/main/python/models/heavy_ranking/lib/BUILD
Normal file
42
pushservice/src/main/python/models/heavy_ranking/lib/BUILD
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
python3_library(
|
||||||
|
name = "params_lib",
|
||||||
|
sources = [
|
||||||
|
"params.py",
|
||||||
|
],
|
||||||
|
tags = [
|
||||||
|
"bazel-compatible",
|
||||||
|
"no-mypy",
|
||||||
|
],
|
||||||
|
dependencies = [
|
||||||
|
"3rdparty/python/pydantic:default",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "layers_lib",
|
||||||
|
sources = [
|
||||||
|
"layers.py",
|
||||||
|
],
|
||||||
|
tags = [
|
||||||
|
"bazel-compatible",
|
||||||
|
"no-mypy",
|
||||||
|
],
|
||||||
|
dependencies = [
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "model_lib",
|
||||||
|
sources = [
|
||||||
|
"model.py",
|
||||||
|
],
|
||||||
|
tags = [
|
||||||
|
"bazel-compatible",
|
||||||
|
"no-mypy",
|
||||||
|
],
|
||||||
|
dependencies = [
|
||||||
|
":layers_lib",
|
||||||
|
":params_lib",
|
||||||
|
"3rdparty/python/absl-py:default",
|
||||||
|
],
|
||||||
|
)
|
128
pushservice/src/main/python/models/heavy_ranking/lib/layers.py
Normal file
128
pushservice/src/main/python/models/heavy_ranking/lib/layers.py
Normal file
@ -0,0 +1,128 @@
|
|||||||
|
"""
|
||||||
|
Different type of convolution layers to be used in the ClemNet.
|
||||||
|
"""
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
|
||||||
|
class KerasConv1D(tf.keras.layers.Layer):
|
||||||
|
"""
|
||||||
|
Basic Conv1D layer in a wrapper to be compatible with ClemNet.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
kernel_size: int,
|
||||||
|
filters: int,
|
||||||
|
strides: int,
|
||||||
|
padding: str,
|
||||||
|
use_bias: bool = True,
|
||||||
|
kernel_initializer: str = "glorot_uniform",
|
||||||
|
bias_initializer: str = "zeros",
|
||||||
|
**kwargs: Any,
|
||||||
|
):
|
||||||
|
super(KerasConv1D, self).__init__(**kwargs)
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.filters = filters
|
||||||
|
self.use_bias = use_bias
|
||||||
|
self.kernel_initializer = kernel_initializer
|
||||||
|
self.bias_initializer = bias_initializer
|
||||||
|
self.strides = strides
|
||||||
|
self.padding = padding
|
||||||
|
|
||||||
|
def build(self, input_shape: tf.TensorShape) -> None:
|
||||||
|
assert (
|
||||||
|
len(input_shape) == 3
|
||||||
|
), f"Tensor shape must be of length 3. Passed tensor of shape {input_shape}."
|
||||||
|
|
||||||
|
self.features = input_shape[1]
|
||||||
|
|
||||||
|
self.w = tf.keras.layers.Conv1D(
|
||||||
|
kernel_size=self.kernel_size,
|
||||||
|
filters=self.filters,
|
||||||
|
strides=self.strides,
|
||||||
|
padding=self.padding,
|
||||||
|
use_bias=self.use_bias,
|
||||||
|
kernel_initializer=self.kernel_initializer,
|
||||||
|
bias_initializer=self.bias_initializer,
|
||||||
|
name=self.name,
|
||||||
|
)
|
||||||
|
|
||||||
|
def call(self, inputs: tf.Tensor, **kwargs: Any) -> tf.Tensor:
|
||||||
|
return self.w(inputs)
|
||||||
|
|
||||||
|
|
||||||
|
class ChannelWiseDense(tf.keras.layers.Layer):
|
||||||
|
"""
|
||||||
|
Dense layer is applied to each channel separately. This is more memory and computationally
|
||||||
|
efficient than flattening the channels and performing single dense layers over it which is the
|
||||||
|
default behavior in tf1.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
output_size: int,
|
||||||
|
use_bias: bool,
|
||||||
|
kernel_initializer: str = "uniform_glorot",
|
||||||
|
bias_initializer: str = "zeros",
|
||||||
|
**kwargs: Any,
|
||||||
|
):
|
||||||
|
super(ChannelWiseDense, self).__init__(**kwargs)
|
||||||
|
self.output_size = output_size
|
||||||
|
self.use_bias = use_bias
|
||||||
|
self.kernel_initializer = kernel_initializer
|
||||||
|
self.bias_initializer = bias_initializer
|
||||||
|
|
||||||
|
def build(self, input_shape: tf.TensorShape) -> None:
|
||||||
|
assert (
|
||||||
|
len(input_shape) == 3
|
||||||
|
), f"Tensor shape must be of length 3. Passed tensor of shape {input_shape}."
|
||||||
|
|
||||||
|
input_size = input_shape[1]
|
||||||
|
channels = input_shape[2]
|
||||||
|
|
||||||
|
self.kernel = self.add_weight(
|
||||||
|
name="kernel",
|
||||||
|
shape=(channels, input_size, self.output_size),
|
||||||
|
initializer=self.kernel_initializer,
|
||||||
|
trainable=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.bias = self.add_weight(
|
||||||
|
name="bias",
|
||||||
|
shape=(channels, self.output_size),
|
||||||
|
initializer=self.bias_initializer,
|
||||||
|
trainable=self.use_bias,
|
||||||
|
)
|
||||||
|
|
||||||
|
def call(self, inputs: tf.Tensor, **kwargs: Any) -> tf.Tensor:
|
||||||
|
x = inputs
|
||||||
|
|
||||||
|
transposed_x = tf.transpose(x, perm=[2, 0, 1])
|
||||||
|
transposed_residual = (
|
||||||
|
tf.transpose(tf.matmul(transposed_x, self.kernel), perm=[1, 0, 2]) + self.bias
|
||||||
|
)
|
||||||
|
output = tf.transpose(transposed_residual, perm=[0, 2, 1])
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class ResidualLayer(tf.keras.layers.Layer):
|
||||||
|
"""
|
||||||
|
Layer implementing a 3D-residual connection.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def build(self, input_shape: tf.TensorShape) -> None:
|
||||||
|
assert (
|
||||||
|
len(input_shape) == 3
|
||||||
|
), f"Tensor shape must be of length 3. Passed tensor of shape {input_shape}."
|
||||||
|
|
||||||
|
def call(self, inputs: tf.Tensor, residual: tf.Tensor, **kwargs: Any) -> tf.Tensor:
|
||||||
|
shortcut = tf.keras.layers.Conv1D(
|
||||||
|
filters=int(residual.shape[2]), strides=1, kernel_size=1, padding="SAME", use_bias=False
|
||||||
|
)(inputs)
|
||||||
|
|
||||||
|
output = tf.add(shortcut, residual)
|
||||||
|
|
||||||
|
return output
|
@ -0,0 +1,76 @@
|
|||||||
|
"""
|
||||||
|
Module containing ClemNet.
|
||||||
|
"""
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from .layers import ChannelWiseDense, KerasConv1D, ResidualLayer
|
||||||
|
from .params import BlockParams, ClemNetParams
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
import tensorflow.compat.v1 as tf1
|
||||||
|
|
||||||
|
|
||||||
|
class Block2(tf.keras.layers.Layer):
|
||||||
|
"""
|
||||||
|
Possible ClemNet block. Architecture is as follow:
|
||||||
|
Optional(DenseLayer + BN + Act)
|
||||||
|
Optional(ConvLayer + BN + Act)
|
||||||
|
Optional(Residual Layer)
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, params: BlockParams, **kwargs: Any):
|
||||||
|
super(Block2, self).__init__(**kwargs)
|
||||||
|
self.params = params
|
||||||
|
|
||||||
|
def build(self, input_shape: tf.TensorShape) -> None:
|
||||||
|
assert (
|
||||||
|
len(input_shape) == 3
|
||||||
|
), f"Tensor shape must be of length 3. Passed tensor of shape {input_shape}."
|
||||||
|
|
||||||
|
def call(self, inputs: tf.Tensor, training: bool) -> tf.Tensor:
|
||||||
|
x = inputs
|
||||||
|
if self.params.dense:
|
||||||
|
x = ChannelWiseDense(**self.params.dense.dict())(inputs=x, training=training)
|
||||||
|
x = tf1.layers.batch_normalization(x, momentum=0.9999, training=training, axis=1)
|
||||||
|
x = tf.keras.layers.Activation(self.params.activation)(x)
|
||||||
|
|
||||||
|
if self.params.conv:
|
||||||
|
x = KerasConv1D(**self.params.conv.dict())(inputs=x, training=training)
|
||||||
|
x = tf1.layers.batch_normalization(x, momentum=0.9999, training=training, axis=1)
|
||||||
|
x = tf.keras.layers.Activation(self.params.activation)(x)
|
||||||
|
|
||||||
|
if self.params.residual:
|
||||||
|
x = ResidualLayer()(inputs=inputs, residual=x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ClemNet(tf.keras.layers.Layer):
|
||||||
|
"""
|
||||||
|
A residual network stacking residual blocks composed of dense layers and convolutions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, params: ClemNetParams, **kwargs: Any):
|
||||||
|
super(ClemNet, self).__init__(**kwargs)
|
||||||
|
self.params = params
|
||||||
|
|
||||||
|
def build(self, input_shape: tf.TensorShape) -> None:
|
||||||
|
assert len(input_shape) in (
|
||||||
|
2,
|
||||||
|
3,
|
||||||
|
), f"Tensor shape must be of length 3. Passed tensor of shape {input_shape}."
|
||||||
|
|
||||||
|
def call(self, inputs: tf.Tensor, training: bool) -> tf.Tensor:
|
||||||
|
if len(inputs.shape) < 3:
|
||||||
|
inputs = tf.expand_dims(inputs, axis=-1)
|
||||||
|
|
||||||
|
x = inputs
|
||||||
|
for block_params in self.params.blocks:
|
||||||
|
x = Block2(block_params)(inputs=x, training=training)
|
||||||
|
|
||||||
|
x = tf.keras.layers.Flatten(name="flattened")(x)
|
||||||
|
if self.params.top:
|
||||||
|
x = tf.keras.layers.Dense(units=self.params.top.n_labels, name="logits")(x)
|
||||||
|
|
||||||
|
return x
|
@ -0,0 +1,49 @@
|
|||||||
|
"""
|
||||||
|
Parameters used in ClemNet.
|
||||||
|
"""
|
||||||
|
from typing import List, Optional
|
||||||
|
|
||||||
|
from pydantic import BaseModel, Extra, Field, PositiveInt
|
||||||
|
|
||||||
|
|
||||||
|
# checkstyle: noqa
|
||||||
|
|
||||||
|
|
||||||
|
class ExtendedBaseModel(BaseModel):
|
||||||
|
class Config:
|
||||||
|
extra = Extra.forbid
|
||||||
|
|
||||||
|
|
||||||
|
class DenseParams(ExtendedBaseModel):
|
||||||
|
name: Optional[str]
|
||||||
|
bias_initializer: str = "zeros"
|
||||||
|
kernel_initializer: str = "glorot_uniform"
|
||||||
|
output_size: PositiveInt
|
||||||
|
use_bias: bool = Field(True)
|
||||||
|
|
||||||
|
|
||||||
|
class ConvParams(ExtendedBaseModel):
|
||||||
|
name: Optional[str]
|
||||||
|
bias_initializer: str = "zeros"
|
||||||
|
filters: PositiveInt
|
||||||
|
kernel_initializer: str = "glorot_uniform"
|
||||||
|
kernel_size: PositiveInt
|
||||||
|
padding: str = "SAME"
|
||||||
|
strides: PositiveInt = 1
|
||||||
|
use_bias: bool = Field(True)
|
||||||
|
|
||||||
|
|
||||||
|
class BlockParams(ExtendedBaseModel):
|
||||||
|
activation: Optional[str]
|
||||||
|
conv: Optional[ConvParams]
|
||||||
|
dense: Optional[DenseParams]
|
||||||
|
residual: Optional[bool]
|
||||||
|
|
||||||
|
|
||||||
|
class TopLayerParams(ExtendedBaseModel):
|
||||||
|
n_labels: PositiveInt
|
||||||
|
|
||||||
|
|
||||||
|
class ClemNetParams(ExtendedBaseModel):
|
||||||
|
blocks: List[BlockParams] = []
|
||||||
|
top: Optional[TopLayerParams]
|
@ -0,0 +1,34 @@
|
|||||||
|
"""
|
||||||
|
Candidate architectures for each task's.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
|
from .features import get_features
|
||||||
|
from .graph import Graph
|
||||||
|
from .lib.model import ClemNet
|
||||||
|
from .params import ModelTypeEnum
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
|
||||||
|
class MagicRecsClemNet(Graph):
|
||||||
|
def get_logits(self, features: Dict[str, tf.Tensor], training: bool) -> tf.Tensor:
|
||||||
|
|
||||||
|
with tf.name_scope("logits"):
|
||||||
|
inputs = get_features(features=features, training=training, params=self.params.model.features)
|
||||||
|
|
||||||
|
with tf.name_scope("OONC_logits"):
|
||||||
|
model = ClemNet(params=self.params.model.architecture)
|
||||||
|
oonc_logit = model(inputs=inputs, training=training)
|
||||||
|
|
||||||
|
with tf.name_scope("EngagementGivenOONC_logits"):
|
||||||
|
model = ClemNet(params=self.params.model.architecture)
|
||||||
|
eng_logits = model(inputs=inputs, training=training)
|
||||||
|
|
||||||
|
return tf.concat([oonc_logit, eng_logits], axis=1)
|
||||||
|
|
||||||
|
|
||||||
|
ALL_MODELS = {ModelTypeEnum.clemnet: MagicRecsClemNet}
|
89
pushservice/src/main/python/models/heavy_ranking/params.py
Normal file
89
pushservice/src/main/python/models/heavy_ranking/params.py
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
import enum
|
||||||
|
import json
|
||||||
|
from typing import List, Optional
|
||||||
|
|
||||||
|
from .lib.params import BlockParams, ClemNetParams, ConvParams, DenseParams, TopLayerParams
|
||||||
|
|
||||||
|
from pydantic import BaseModel, Extra, NonNegativeFloat
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
|
||||||
|
|
||||||
|
# checkstyle: noqa
|
||||||
|
|
||||||
|
|
||||||
|
class ExtendedBaseModel(BaseModel):
|
||||||
|
class Config:
|
||||||
|
extra = Extra.forbid
|
||||||
|
|
||||||
|
|
||||||
|
class SparseFeaturesParams(ExtendedBaseModel):
|
||||||
|
bits: int
|
||||||
|
embedding_size: int
|
||||||
|
|
||||||
|
|
||||||
|
class FeaturesParams(ExtendedBaseModel):
|
||||||
|
sparse_features: Optional[SparseFeaturesParams]
|
||||||
|
|
||||||
|
|
||||||
|
class ModelTypeEnum(str, enum.Enum):
|
||||||
|
clemnet: str = "clemnet"
|
||||||
|
|
||||||
|
|
||||||
|
class ModelParams(ExtendedBaseModel):
|
||||||
|
name: ModelTypeEnum
|
||||||
|
features: FeaturesParams
|
||||||
|
architecture: ClemNetParams
|
||||||
|
|
||||||
|
|
||||||
|
class TaskNameEnum(str, enum.Enum):
|
||||||
|
oonc: str = "OONC"
|
||||||
|
engagement: str = "Engagement"
|
||||||
|
|
||||||
|
|
||||||
|
class Task(ExtendedBaseModel):
|
||||||
|
name: TaskNameEnum
|
||||||
|
label: str
|
||||||
|
score_weight: NonNegativeFloat
|
||||||
|
|
||||||
|
|
||||||
|
DEFAULT_TASKS = [
|
||||||
|
Task(name=TaskNameEnum.oonc, label="label", score_weight=0.9),
|
||||||
|
Task(name=TaskNameEnum.engagement, label="label.engagement", score_weight=0.1),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
class GraphParams(ExtendedBaseModel):
|
||||||
|
tasks: List[Task] = DEFAULT_TASKS
|
||||||
|
model: ModelParams
|
||||||
|
weight: Optional[str]
|
||||||
|
|
||||||
|
|
||||||
|
DEFAULT_ARCHITECTURE_PARAMS = ClemNetParams(
|
||||||
|
blocks=[
|
||||||
|
BlockParams(
|
||||||
|
activation="relu",
|
||||||
|
conv=ConvParams(kernel_size=3, filters=5),
|
||||||
|
dense=DenseParams(output_size=output_size),
|
||||||
|
residual=False,
|
||||||
|
)
|
||||||
|
for output_size in [1024, 512, 256, 128]
|
||||||
|
],
|
||||||
|
top=TopLayerParams(n_labels=1),
|
||||||
|
)
|
||||||
|
|
||||||
|
DEFAULT_GRAPH_PARAMS = GraphParams(
|
||||||
|
model=ModelParams(
|
||||||
|
name=ModelTypeEnum.clemnet,
|
||||||
|
architecture=DEFAULT_ARCHITECTURE_PARAMS,
|
||||||
|
features=FeaturesParams(sparse_features=SparseFeaturesParams(bits=18, embedding_size=50)),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def load_graph_params(args) -> GraphParams:
|
||||||
|
params = DEFAULT_GRAPH_PARAMS
|
||||||
|
if args.param_file:
|
||||||
|
with tf.io.gfile.GFile(args.param_file, mode="r+") as file:
|
||||||
|
params = GraphParams.parse_obj(json.load(file))
|
||||||
|
|
||||||
|
return params
|
59
pushservice/src/main/python/models/heavy_ranking/run_args.py
Normal file
59
pushservice/src/main/python/models/heavy_ranking/run_args.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
from twml.trainers import DataRecordTrainer
|
||||||
|
|
||||||
|
from .features import FEATURE_LIST_DEFAULT_PATH
|
||||||
|
|
||||||
|
|
||||||
|
def get_training_arg_parser():
|
||||||
|
parser = DataRecordTrainer.add_parser_arguments()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--feature_list",
|
||||||
|
default=FEATURE_LIST_DEFAULT_PATH,
|
||||||
|
type=str,
|
||||||
|
help="Which features to use for training",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--param_file",
|
||||||
|
default=None,
|
||||||
|
type=str,
|
||||||
|
help="Path to JSON file containing the graph parameters. If None, model will load default parameters.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--directly_export_best",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="whether to directly_export best_checkpoint",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--warm_start_from", default=None, type=str, help="model dir to warm start from"
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--warm_start_base_dir",
|
||||||
|
default=None,
|
||||||
|
type=str,
|
||||||
|
help="latest ckpt in this folder will be used to ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_type",
|
||||||
|
default=None,
|
||||||
|
type=str,
|
||||||
|
help="Which type of model to train.",
|
||||||
|
)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_eval_arg_parser():
|
||||||
|
parser = get_training_arg_parser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--eval_checkpoint",
|
||||||
|
default=None,
|
||||||
|
type=str,
|
||||||
|
help="Which checkpoint to use for evaluation",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
@ -0,0 +1,146 @@
|
|||||||
|
"""
|
||||||
|
Model for modifying the checkpoints of the magic recs cnn Model with addition, deletion, and reordering
|
||||||
|
of continuous and binary features.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
from twitter.deepbird.projects.magic_recs.libs.get_feat_config import FEATURE_LIST_DEFAULT_PATH
|
||||||
|
from twitter.deepbird.projects.magic_recs.libs.warm_start_utils_v11 import (
|
||||||
|
get_feature_list_for_heavy_ranking,
|
||||||
|
mkdirp,
|
||||||
|
rename_dir,
|
||||||
|
rmdir,
|
||||||
|
warm_start_checkpoint,
|
||||||
|
)
|
||||||
|
import twml
|
||||||
|
from twml.trainers import DataRecordTrainer
|
||||||
|
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
from tensorflow.compat.v1 import logging
|
||||||
|
|
||||||
|
|
||||||
|
def get_arg_parser():
|
||||||
|
parser = DataRecordTrainer.add_parser_arguments()
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_type",
|
||||||
|
default="deepnorm_gbdt_inputdrop2_rescale",
|
||||||
|
type=str,
|
||||||
|
help="specify the model type to use.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_trainer_name",
|
||||||
|
default="None",
|
||||||
|
type=str,
|
||||||
|
help="deprecated, added here just for api compatibility.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--warm_start_base_dir",
|
||||||
|
default="none",
|
||||||
|
type=str,
|
||||||
|
help="latest ckpt in this folder will be used.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--output_checkpoint_dir",
|
||||||
|
default="none",
|
||||||
|
type=str,
|
||||||
|
help="Output folder for warm started ckpt. If none, it will move warm_start_base_dir to backup, and overwrite it",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--feature_list",
|
||||||
|
default="none",
|
||||||
|
type=str,
|
||||||
|
help="Which features to use for training",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--old_feature_list",
|
||||||
|
default="none",
|
||||||
|
type=str,
|
||||||
|
help="Which features to use for training",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params(args=None):
|
||||||
|
parser = get_arg_parser()
|
||||||
|
if args is None:
|
||||||
|
return parser.parse_args()
|
||||||
|
else:
|
||||||
|
return parser.parse_args(args)
|
||||||
|
|
||||||
|
|
||||||
|
def _main():
|
||||||
|
opt = get_params()
|
||||||
|
logging.info("parse is: ")
|
||||||
|
logging.info(opt)
|
||||||
|
|
||||||
|
if opt.feature_list == "none":
|
||||||
|
feature_list_path = FEATURE_LIST_DEFAULT_PATH
|
||||||
|
else:
|
||||||
|
feature_list_path = opt.feature_list
|
||||||
|
|
||||||
|
if opt.warm_start_base_dir != "none" and tf.io.gfile.exists(opt.warm_start_base_dir):
|
||||||
|
if opt.output_checkpoint_dir == "none" or opt.output_checkpoint_dir == opt.warm_start_base_dir:
|
||||||
|
_warm_start_base_dir = os.path.normpath(opt.warm_start_base_dir) + "_backup_warm_start"
|
||||||
|
_output_folder_dir = opt.warm_start_base_dir
|
||||||
|
|
||||||
|
rename_dir(opt.warm_start_base_dir, _warm_start_base_dir)
|
||||||
|
tf.logging.info(f"moved {opt.warm_start_base_dir} to {_warm_start_base_dir}")
|
||||||
|
else:
|
||||||
|
_warm_start_base_dir = opt.warm_start_base_dir
|
||||||
|
_output_folder_dir = opt.output_checkpoint_dir
|
||||||
|
|
||||||
|
continuous_binary_feat_list_save_path = os.path.join(
|
||||||
|
_warm_start_base_dir, "continuous_binary_feat_list.json"
|
||||||
|
)
|
||||||
|
|
||||||
|
if opt.old_feature_list != "none":
|
||||||
|
tf.logging.info("getting old continuous_binary_feat_list")
|
||||||
|
continuous_binary_feat_list = get_feature_list_for_heavy_ranking(
|
||||||
|
opt.old_feature_list, opt.data_spec
|
||||||
|
)
|
||||||
|
rmdir(continuous_binary_feat_list_save_path)
|
||||||
|
twml.util.write_file(
|
||||||
|
continuous_binary_feat_list_save_path, continuous_binary_feat_list, encode="json"
|
||||||
|
)
|
||||||
|
tf.logging.info(f"Finish writting files to {continuous_binary_feat_list_save_path}")
|
||||||
|
|
||||||
|
warm_start_folder = os.path.join(_warm_start_base_dir, "best_checkpoint")
|
||||||
|
if not tf.io.gfile.exists(warm_start_folder):
|
||||||
|
warm_start_folder = _warm_start_base_dir
|
||||||
|
|
||||||
|
rmdir(_output_folder_dir)
|
||||||
|
mkdirp(_output_folder_dir)
|
||||||
|
|
||||||
|
new_ckpt = warm_start_checkpoint(
|
||||||
|
warm_start_folder,
|
||||||
|
continuous_binary_feat_list_save_path,
|
||||||
|
feature_list_path,
|
||||||
|
opt.data_spec,
|
||||||
|
_output_folder_dir,
|
||||||
|
opt.model_type,
|
||||||
|
)
|
||||||
|
logging.info(f"Created new ckpt {new_ckpt} from {warm_start_folder}")
|
||||||
|
|
||||||
|
tf.logging.info("getting new continuous_binary_feat_list")
|
||||||
|
new_continuous_binary_feat_list_save_path = os.path.join(
|
||||||
|
_output_folder_dir, "continuous_binary_feat_list.json"
|
||||||
|
)
|
||||||
|
continuous_binary_feat_list = get_feature_list_for_heavy_ranking(
|
||||||
|
feature_list_path, opt.data_spec
|
||||||
|
)
|
||||||
|
rmdir(new_continuous_binary_feat_list_save_path)
|
||||||
|
twml.util.write_file(
|
||||||
|
new_continuous_binary_feat_list_save_path, continuous_binary_feat_list, encode="json"
|
||||||
|
)
|
||||||
|
tf.logging.info(f"Finish writting files to {new_continuous_binary_feat_list_save_path}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
_main()
|
16
pushservice/src/main/python/models/libs/BUILD
Normal file
16
pushservice/src/main/python/models/libs/BUILD
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
python3_library(
|
||||||
|
name = "libs",
|
||||||
|
sources = ["*.py"],
|
||||||
|
tags = [
|
||||||
|
"bazel-compatible",
|
||||||
|
"no-mypy",
|
||||||
|
],
|
||||||
|
dependencies = [
|
||||||
|
"cortex/recsys/src/python/twitter/cortex/recsys/utils",
|
||||||
|
"magicpony/common/file_access/src/python/twitter/magicpony/common/file_access",
|
||||||
|
"src/python/twitter/cortex/ml/embeddings/deepbird",
|
||||||
|
"src/python/twitter/cortex/ml/embeddings/deepbird/grouped_metrics",
|
||||||
|
"src/python/twitter/deepbird/util/data",
|
||||||
|
"twml:twml-nodeps",
|
||||||
|
],
|
||||||
|
)
|
0
pushservice/src/main/python/models/libs/__init__.py
Normal file
0
pushservice/src/main/python/models/libs/__init__.py
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
# pylint: disable=no-member, arguments-differ, attribute-defined-outside-init, unused-argument
|
||||||
|
"""
|
||||||
|
Implementing Full Sparse Layer, allow specify use_binary_value in call() to
|
||||||
|
overide default action.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from twml.layers import FullSparse as defaultFullSparse
|
||||||
|
from twml.layers.full_sparse import sparse_dense_matmul
|
||||||
|
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
|
||||||
|
|
||||||
|
class FullSparse(defaultFullSparse):
|
||||||
|
def call(self, inputs, use_binary_values=None, **kwargs): # pylint: disable=unused-argument
|
||||||
|
"""The logic of the layer lives here.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
inputs:
|
||||||
|
A SparseTensor or a list of SparseTensors.
|
||||||
|
If `inputs` is a list, all tensors must have same `dense_shape`.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- If `inputs` is `SparseTensor`, then returns `bias + inputs * dense_b`.
|
||||||
|
- If `inputs` is a `list[SparseTensor`, then returns
|
||||||
|
`bias + add_n([sp_a * dense_b for sp_a in inputs])`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if use_binary_values is not None:
|
||||||
|
default_use_binary_values = use_binary_values
|
||||||
|
else:
|
||||||
|
default_use_binary_values = self.use_binary_values
|
||||||
|
|
||||||
|
if isinstance(default_use_binary_values, (list, tuple)):
|
||||||
|
raise ValueError(
|
||||||
|
"use_binary_values can not be %s when inputs is %s"
|
||||||
|
% (type(default_use_binary_values), type(inputs))
|
||||||
|
)
|
||||||
|
|
||||||
|
outputs = sparse_dense_matmul(
|
||||||
|
inputs,
|
||||||
|
self.weight,
|
||||||
|
self.use_sparse_grads,
|
||||||
|
default_use_binary_values,
|
||||||
|
name="sparse_mm",
|
||||||
|
partition_axis=self.partition_axis,
|
||||||
|
num_partitions=self.num_partitions,
|
||||||
|
compress_ids=self._use_compression,
|
||||||
|
cast_indices_dtype=self._cast_indices_dtype,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.bias is not None:
|
||||||
|
outputs = tf.nn.bias_add(outputs, self.bias)
|
||||||
|
|
||||||
|
if self.activation is not None:
|
||||||
|
return self.activation(outputs) # pylint: disable=not-callable
|
||||||
|
return outputs
|
176
pushservice/src/main/python/models/libs/get_feat_config.py
Normal file
176
pushservice/src/main/python/models/libs/get_feat_config.py
Normal file
@ -0,0 +1,176 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
from twitter.deepbird.projects.magic_recs.libs.metric_fn_utils import USER_AGE_FEATURE_NAME
|
||||||
|
from twitter.deepbird.projects.magic_recs.libs.model_utils import read_config
|
||||||
|
from twml.contrib import feature_config as contrib_feature_config
|
||||||
|
|
||||||
|
|
||||||
|
# checkstyle: noqa
|
||||||
|
|
||||||
|
FEAT_CONFIG_DEFAULT_VAL = -1.23456789
|
||||||
|
|
||||||
|
DEFAULT_INPUT_SIZE_BITS = 18
|
||||||
|
|
||||||
|
DEFAULT_FEATURE_LIST_PATH = "./feature_list_default.yaml"
|
||||||
|
FEATURE_LIST_DEFAULT_PATH = os.path.join(
|
||||||
|
os.path.dirname(os.path.realpath(__file__)), DEFAULT_FEATURE_LIST_PATH
|
||||||
|
)
|
||||||
|
|
||||||
|
DEFAULT_FEATURE_LIST_LIGHT_RANKING_PATH = "./feature_list_light_ranking.yaml"
|
||||||
|
FEATURE_LIST_DEFAULT_LIGHT_RANKING_PATH = os.path.join(
|
||||||
|
os.path.dirname(os.path.realpath(__file__)), DEFAULT_FEATURE_LIST_LIGHT_RANKING_PATH
|
||||||
|
)
|
||||||
|
|
||||||
|
FEATURE_LIST_DEFAULT = read_config(FEATURE_LIST_DEFAULT_PATH).items()
|
||||||
|
FEATURE_LIST_LIGHT_RANKING_DEFAULT = read_config(FEATURE_LIST_DEFAULT_LIGHT_RANKING_PATH).items()
|
||||||
|
|
||||||
|
|
||||||
|
LABELS = ["label"]
|
||||||
|
LABELS_MTL = {"OONC": ["label"], "OONC_Engagement": ["label", "label.engagement"]}
|
||||||
|
LABELS_LR = {
|
||||||
|
"Sent": ["label.sent"],
|
||||||
|
"HeavyRankPosition": ["meta.ranking.is_top3"],
|
||||||
|
"HeavyRankProbability": ["meta.ranking.weighted_oonc_model_score"],
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def _get_new_feature_config_base(
|
||||||
|
data_spec_path,
|
||||||
|
labels,
|
||||||
|
add_sparse_continous=True,
|
||||||
|
add_gbdt=True,
|
||||||
|
add_user_id=False,
|
||||||
|
add_timestamp=False,
|
||||||
|
add_user_age=False,
|
||||||
|
feature_list_provided=[],
|
||||||
|
opt=None,
|
||||||
|
run_light_ranking_group_metrics_in_bq=False,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Getter of the feature config based on specification.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data_spec_path: A string indicating the path of the data_spec.json file, which could be
|
||||||
|
either a local path or a hdfs path.
|
||||||
|
labels: A list of strings indicating the name of the label in the data spec.
|
||||||
|
add_sparse_continous: A bool indicating if sparse_continuous feature needs to be included.
|
||||||
|
add_gbdt: A bool indicating if gbdt feature needs to be included.
|
||||||
|
add_user_id: A bool indicating if user_id feature needs to be included.
|
||||||
|
add_timestamp: A bool indicating if timestamp feature needs to be included. This will be useful
|
||||||
|
for sequential models and meta learning models.
|
||||||
|
add_user_age: A bool indicating if the user age feature needs to be included.
|
||||||
|
feature_list_provided: A list of features thats need to be included. If not specified, will use
|
||||||
|
FEATURE_LIST_DEFAULT by default.
|
||||||
|
opt: A namespace of arguments indicating the hyparameters.
|
||||||
|
run_light_ranking_group_metrics_in_bq: A bool indicating if heavy ranker score info needs to be included to compute group metrics in BigQuery.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A twml feature config object.
|
||||||
|
"""
|
||||||
|
|
||||||
|
input_size_bits = DEFAULT_INPUT_SIZE_BITS if opt is None else opt.input_size_bits
|
||||||
|
|
||||||
|
feature_list = feature_list_provided if feature_list_provided != [] else FEATURE_LIST_DEFAULT
|
||||||
|
a_string_feat_list = [f[0] for f in feature_list if f[1] != "S"]
|
||||||
|
|
||||||
|
builder = contrib_feature_config.FeatureConfigBuilder(data_spec_path=data_spec_path)
|
||||||
|
|
||||||
|
builder = builder.extract_feature_group(
|
||||||
|
feature_regexes=a_string_feat_list,
|
||||||
|
group_name="continuous",
|
||||||
|
default_value=FEAT_CONFIG_DEFAULT_VAL,
|
||||||
|
type_filter=["CONTINUOUS"],
|
||||||
|
)
|
||||||
|
|
||||||
|
builder = builder.extract_features_as_hashed_sparse(
|
||||||
|
feature_regexes=a_string_feat_list,
|
||||||
|
output_tensor_name="sparse_no_continuous",
|
||||||
|
hash_space_size_bits=input_size_bits,
|
||||||
|
type_filter=["BINARY", "DISCRETE", "STRING", "SPARSE_BINARY"],
|
||||||
|
)
|
||||||
|
|
||||||
|
if add_gbdt:
|
||||||
|
builder = builder.extract_features_as_hashed_sparse(
|
||||||
|
feature_regexes=["ads\..*"],
|
||||||
|
output_tensor_name="gbdt_sparse",
|
||||||
|
hash_space_size_bits=input_size_bits,
|
||||||
|
)
|
||||||
|
|
||||||
|
if add_sparse_continous:
|
||||||
|
s_string_feat_list = [f[0] for f in feature_list if f[1] == "S"]
|
||||||
|
|
||||||
|
builder = builder.extract_features_as_hashed_sparse(
|
||||||
|
feature_regexes=s_string_feat_list,
|
||||||
|
output_tensor_name="sparse_continuous",
|
||||||
|
hash_space_size_bits=input_size_bits,
|
||||||
|
type_filter=["SPARSE_CONTINUOUS"],
|
||||||
|
)
|
||||||
|
|
||||||
|
if add_user_id:
|
||||||
|
builder = builder.extract_feature("meta.user_id")
|
||||||
|
if add_timestamp:
|
||||||
|
builder = builder.extract_feature("meta.timestamp")
|
||||||
|
if add_user_age:
|
||||||
|
builder = builder.extract_feature(USER_AGE_FEATURE_NAME)
|
||||||
|
|
||||||
|
if run_light_ranking_group_metrics_in_bq:
|
||||||
|
builder = builder.extract_feature("meta.trace_id")
|
||||||
|
builder = builder.extract_feature("meta.ranking.weighted_oonc_model_score")
|
||||||
|
|
||||||
|
builder = builder.add_labels(labels).define_weight("meta.weight")
|
||||||
|
|
||||||
|
return builder.build()
|
||||||
|
|
||||||
|
|
||||||
|
def get_feature_config_with_sparse_continuous(
|
||||||
|
data_spec_path,
|
||||||
|
feature_list_provided=[],
|
||||||
|
opt=None,
|
||||||
|
add_user_id=False,
|
||||||
|
add_timestamp=False,
|
||||||
|
add_user_age=False,
|
||||||
|
):
|
||||||
|
task_name = opt.task_name if getattr(opt, "task_name", None) is not None else "OONC"
|
||||||
|
if task_name not in LABELS_MTL:
|
||||||
|
raise ValueError("Invalid Task Name !")
|
||||||
|
|
||||||
|
return _get_new_feature_config_base(
|
||||||
|
data_spec_path=data_spec_path,
|
||||||
|
labels=LABELS_MTL[task_name],
|
||||||
|
add_sparse_continous=True,
|
||||||
|
add_user_id=add_user_id,
|
||||||
|
add_timestamp=add_timestamp,
|
||||||
|
add_user_age=add_user_age,
|
||||||
|
feature_list_provided=feature_list_provided,
|
||||||
|
opt=opt,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_feature_config_light_ranking(
|
||||||
|
data_spec_path,
|
||||||
|
feature_list_provided=[],
|
||||||
|
opt=None,
|
||||||
|
add_user_id=True,
|
||||||
|
add_timestamp=False,
|
||||||
|
add_user_age=False,
|
||||||
|
add_gbdt=False,
|
||||||
|
run_light_ranking_group_metrics_in_bq=False,
|
||||||
|
):
|
||||||
|
task_name = opt.task_name if getattr(opt, "task_name", None) is not None else "HeavyRankPosition"
|
||||||
|
if task_name not in LABELS_LR:
|
||||||
|
raise ValueError("Invalid Task Name !")
|
||||||
|
if not feature_list_provided:
|
||||||
|
feature_list_provided = FEATURE_LIST_LIGHT_RANKING_DEFAULT
|
||||||
|
|
||||||
|
return _get_new_feature_config_base(
|
||||||
|
data_spec_path=data_spec_path,
|
||||||
|
labels=LABELS_LR[task_name],
|
||||||
|
add_sparse_continous=False,
|
||||||
|
add_gbdt=add_gbdt,
|
||||||
|
add_user_id=add_user_id,
|
||||||
|
add_timestamp=add_timestamp,
|
||||||
|
add_user_age=add_user_age,
|
||||||
|
feature_list_provided=feature_list_provided,
|
||||||
|
opt=opt,
|
||||||
|
run_light_ranking_group_metrics_in_bq=run_light_ranking_group_metrics_in_bq,
|
||||||
|
)
|
42
pushservice/src/main/python/models/libs/graph_utils.py
Normal file
42
pushservice/src/main/python/models/libs/graph_utils.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
"""
|
||||||
|
Utilties that aid in building the magic recs graph.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import re
|
||||||
|
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
|
||||||
|
|
||||||
|
def get_trainable_variables(all_trainable_variables, trainable_regexes):
|
||||||
|
"""Returns a subset of trainable variables for training.
|
||||||
|
|
||||||
|
Given a collection of trainable variables, this will return all those that match the given regexes.
|
||||||
|
Will also log those variables.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
all_trainable_variables (a collection of trainable tf.Variable): The variables to search through.
|
||||||
|
trainable_regexes (a collection of regexes): Variables that match any regex will be included.
|
||||||
|
|
||||||
|
Returns a list of tf.Variable
|
||||||
|
"""
|
||||||
|
if trainable_regexes is None or len(trainable_regexes) == 0:
|
||||||
|
tf.logging.info("No trainable regexes found. Not using get_trainable_variables behavior.")
|
||||||
|
return None
|
||||||
|
|
||||||
|
assert any(
|
||||||
|
tf.is_tensor(var) for var in all_trainable_variables
|
||||||
|
), f"Non TF variable found: {all_trainable_variables}"
|
||||||
|
trainable_variables = list(
|
||||||
|
filter(
|
||||||
|
lambda var: any(re.match(regex, var.name, re.IGNORECASE) for regex in trainable_regexes),
|
||||||
|
all_trainable_variables,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
tf.logging.info(f"Using filtered trainable variables: {trainable_variables}")
|
||||||
|
|
||||||
|
assert (
|
||||||
|
trainable_variables
|
||||||
|
), "Did not find trainable variables after filtering after filtering from {} number of vars originaly. All vars: {} and train regexes: {}".format(
|
||||||
|
len(all_trainable_variables), all_trainable_variables, trainable_regexes
|
||||||
|
)
|
||||||
|
return trainable_variables
|
114
pushservice/src/main/python/models/libs/group_metrics.py
Normal file
114
pushservice/src/main/python/models/libs/group_metrics.py
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
import os
|
||||||
|
import time
|
||||||
|
|
||||||
|
from twitter.cortex.ml.embeddings.deepbird.grouped_metrics.computation import (
|
||||||
|
write_grouped_metrics_to_mldash,
|
||||||
|
)
|
||||||
|
from twitter.cortex.ml.embeddings.deepbird.grouped_metrics.configuration import (
|
||||||
|
ClassificationGroupedMetricsConfiguration,
|
||||||
|
NDCGGroupedMetricsConfiguration,
|
||||||
|
)
|
||||||
|
import twml
|
||||||
|
|
||||||
|
from .light_ranking_metrics import (
|
||||||
|
CGRGroupedMetricsConfiguration,
|
||||||
|
ExpectedLossGroupedMetricsConfiguration,
|
||||||
|
RecallGroupedMetricsConfiguration,
|
||||||
|
)
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
from tensorflow.compat.v1 import logging
|
||||||
|
|
||||||
|
|
||||||
|
# checkstyle: noqa
|
||||||
|
|
||||||
|
|
||||||
|
def run_group_metrics(trainer, data_dir, model_path, parse_fn, group_feature_name="meta.user_id"):
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
logging.info("Evaluating with group metrics.")
|
||||||
|
|
||||||
|
metrics = write_grouped_metrics_to_mldash(
|
||||||
|
trainer=trainer,
|
||||||
|
data_dir=data_dir,
|
||||||
|
model_path=model_path,
|
||||||
|
group_fn=lambda datarecord: str(
|
||||||
|
datarecord.discreteFeatures[twml.feature_id(group_feature_name)[0]]
|
||||||
|
),
|
||||||
|
parse_fn=parse_fn,
|
||||||
|
metric_configurations=[
|
||||||
|
ClassificationGroupedMetricsConfiguration(),
|
||||||
|
NDCGGroupedMetricsConfiguration(k=[5, 10, 20]),
|
||||||
|
],
|
||||||
|
total_records_to_read=1000000000,
|
||||||
|
shuffle=False,
|
||||||
|
mldash_metrics_name="grouped_metrics",
|
||||||
|
)
|
||||||
|
|
||||||
|
end_time = time.time()
|
||||||
|
logging.info(f"Evaluated Group Metics: {metrics}.")
|
||||||
|
logging.info(f"Group metrics evaluation time {end_time - start_time}.")
|
||||||
|
|
||||||
|
|
||||||
|
def run_group_metrics_light_ranking(
|
||||||
|
trainer, data_dir, model_path, parse_fn, group_feature_name="meta.trace_id"
|
||||||
|
):
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
logging.info("Evaluating with group metrics.")
|
||||||
|
|
||||||
|
metrics = write_grouped_metrics_to_mldash(
|
||||||
|
trainer=trainer,
|
||||||
|
data_dir=data_dir,
|
||||||
|
model_path=model_path,
|
||||||
|
group_fn=lambda datarecord: str(
|
||||||
|
datarecord.discreteFeatures[twml.feature_id(group_feature_name)[0]]
|
||||||
|
),
|
||||||
|
parse_fn=parse_fn,
|
||||||
|
metric_configurations=[
|
||||||
|
CGRGroupedMetricsConfiguration(lightNs=[50, 100, 200], heavyKs=[1, 3, 10, 20, 50]),
|
||||||
|
RecallGroupedMetricsConfiguration(n=[50, 100, 200], k=[1, 3, 10, 20, 50]),
|
||||||
|
ExpectedLossGroupedMetricsConfiguration(lightNs=[50, 100, 200]),
|
||||||
|
],
|
||||||
|
total_records_to_read=10000000,
|
||||||
|
num_batches_to_load=50,
|
||||||
|
batch_size=1024,
|
||||||
|
shuffle=False,
|
||||||
|
mldash_metrics_name="grouped_metrics_for_light_ranking",
|
||||||
|
)
|
||||||
|
|
||||||
|
end_time = time.time()
|
||||||
|
logging.info(f"Evaluated Group Metics for Light Ranking: {metrics}.")
|
||||||
|
logging.info(f"Group metrics evaluation time {end_time - start_time}.")
|
||||||
|
|
||||||
|
|
||||||
|
def run_group_metrics_light_ranking_in_bq(trainer, params, checkpoint_path):
|
||||||
|
logging.info("getting Test Predictions for Light Ranking Group Metrics in BigQuery !!!")
|
||||||
|
eval_input_fn = trainer.get_eval_input_fn(repeat=False, shuffle=False)
|
||||||
|
info_pool = []
|
||||||
|
|
||||||
|
for result in trainer.estimator.predict(
|
||||||
|
eval_input_fn, checkpoint_path=checkpoint_path, yield_single_examples=False
|
||||||
|
):
|
||||||
|
traceID = result["trace_id"]
|
||||||
|
pred = result["prediction"]
|
||||||
|
label = result["target"]
|
||||||
|
info = np.concatenate([traceID, pred, label], axis=1)
|
||||||
|
info_pool.append(info)
|
||||||
|
|
||||||
|
info_pool = np.concatenate(info_pool)
|
||||||
|
|
||||||
|
locname = "/tmp/000/"
|
||||||
|
if not os.path.exists(locname):
|
||||||
|
os.makedirs(locname)
|
||||||
|
|
||||||
|
locfile = locname + params.pred_file_name
|
||||||
|
columns = ["trace_id", "model_prediction", "meta__ranking__weighted_oonc_model_score"]
|
||||||
|
np.savetxt(locfile, info_pool, delimiter=",", header=",".join(columns))
|
||||||
|
tf.io.gfile.copy(locfile, params.pred_file_path + params.pred_file_name, overwrite=True)
|
||||||
|
|
||||||
|
if os.path.isfile(locfile):
|
||||||
|
os.remove(locfile)
|
||||||
|
|
||||||
|
logging.info("Done Prediction for Light Ranking Group Metrics in BigQuery.")
|
118
pushservice/src/main/python/models/libs/initializer.py
Normal file
118
pushservice/src/main/python/models/libs/initializer.py
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
import numpy as np
|
||||||
|
from tensorflow.keras import backend as K
|
||||||
|
|
||||||
|
|
||||||
|
class VarianceScaling(object):
|
||||||
|
"""Initializer capable of adapting its scale to the shape of weights.
|
||||||
|
With `distribution="normal"`, samples are drawn from a truncated normal
|
||||||
|
distribution centered on zero, with `stddev = sqrt(scale / n)` where n is:
|
||||||
|
- number of input units in the weight tensor, if mode = "fan_in"
|
||||||
|
- number of output units, if mode = "fan_out"
|
||||||
|
- average of the numbers of input and output units, if mode = "fan_avg"
|
||||||
|
With `distribution="uniform"`,
|
||||||
|
samples are drawn from a uniform distribution
|
||||||
|
within [-limit, limit], with `limit = sqrt(3 * scale / n)`.
|
||||||
|
# Arguments
|
||||||
|
scale: Scaling factor (positive float).
|
||||||
|
mode: One of "fan_in", "fan_out", "fan_avg".
|
||||||
|
distribution: Random distribution to use. One of "normal", "uniform".
|
||||||
|
seed: A Python integer. Used to seed the random generator.
|
||||||
|
# Raises
|
||||||
|
ValueError: In case of an invalid value for the "scale", mode" or
|
||||||
|
"distribution" arguments."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
scale=1.0,
|
||||||
|
mode="fan_in",
|
||||||
|
distribution="normal",
|
||||||
|
seed=None,
|
||||||
|
fan_in=None,
|
||||||
|
fan_out=None,
|
||||||
|
):
|
||||||
|
self.fan_in = fan_in
|
||||||
|
self.fan_out = fan_out
|
||||||
|
if scale <= 0.0:
|
||||||
|
raise ValueError("`scale` must be a positive float. Got:", scale)
|
||||||
|
mode = mode.lower()
|
||||||
|
if mode not in {"fan_in", "fan_out", "fan_avg"}:
|
||||||
|
raise ValueError(
|
||||||
|
"Invalid `mode` argument: " 'expected on of {"fan_in", "fan_out", "fan_avg"} ' "but got",
|
||||||
|
mode,
|
||||||
|
)
|
||||||
|
distribution = distribution.lower()
|
||||||
|
if distribution not in {"normal", "uniform"}:
|
||||||
|
raise ValueError(
|
||||||
|
"Invalid `distribution` argument: " 'expected one of {"normal", "uniform"} ' "but got",
|
||||||
|
distribution,
|
||||||
|
)
|
||||||
|
self.scale = scale
|
||||||
|
self.mode = mode
|
||||||
|
self.distribution = distribution
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, shape, dtype=None, partition_info=None):
|
||||||
|
fan_in = shape[-2] if self.fan_in is None else self.fan_in
|
||||||
|
fan_out = shape[-1] if self.fan_out is None else self.fan_out
|
||||||
|
|
||||||
|
scale = self.scale
|
||||||
|
if self.mode == "fan_in":
|
||||||
|
scale /= max(1.0, fan_in)
|
||||||
|
elif self.mode == "fan_out":
|
||||||
|
scale /= max(1.0, fan_out)
|
||||||
|
else:
|
||||||
|
scale /= max(1.0, float(fan_in + fan_out) / 2)
|
||||||
|
if self.distribution == "normal":
|
||||||
|
stddev = np.sqrt(scale) / 0.87962566103423978
|
||||||
|
return K.truncated_normal(shape, 0.0, stddev, dtype=dtype, seed=self.seed)
|
||||||
|
else:
|
||||||
|
limit = np.sqrt(3.0 * scale)
|
||||||
|
return K.random_uniform(shape, -limit, limit, dtype=dtype, seed=self.seed)
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
return {
|
||||||
|
"scale": self.scale,
|
||||||
|
"mode": self.mode,
|
||||||
|
"distribution": self.distribution,
|
||||||
|
"seed": self.seed,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def customized_glorot_uniform(seed=None, fan_in=None, fan_out=None):
|
||||||
|
"""Glorot uniform initializer, also called Xavier uniform initializer.
|
||||||
|
It draws samples from a uniform distribution within [-limit, limit]
|
||||||
|
where `limit` is `sqrt(6 / (fan_in + fan_out))`
|
||||||
|
where `fan_in` is the number of input units in the weight tensor
|
||||||
|
and `fan_out` is the number of output units in the weight tensor.
|
||||||
|
# Arguments
|
||||||
|
seed: A Python integer. Used to seed the random generator.
|
||||||
|
# Returns
|
||||||
|
An initializer."""
|
||||||
|
return VarianceScaling(
|
||||||
|
scale=1.0,
|
||||||
|
mode="fan_avg",
|
||||||
|
distribution="uniform",
|
||||||
|
seed=seed,
|
||||||
|
fan_in=fan_in,
|
||||||
|
fan_out=fan_out,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def customized_glorot_norm(seed=None, fan_in=None, fan_out=None):
|
||||||
|
"""Glorot norm initializer, also called Xavier uniform initializer.
|
||||||
|
It draws samples from a uniform distribution within [-limit, limit]
|
||||||
|
where `limit` is `sqrt(6 / (fan_in + fan_out))`
|
||||||
|
where `fan_in` is the number of input units in the weight tensor
|
||||||
|
and `fan_out` is the number of output units in the weight tensor.
|
||||||
|
# Arguments
|
||||||
|
seed: A Python integer. Used to seed the random generator.
|
||||||
|
# Returns
|
||||||
|
An initializer."""
|
||||||
|
return VarianceScaling(
|
||||||
|
scale=1.0,
|
||||||
|
mode="fan_avg",
|
||||||
|
distribution="normal",
|
||||||
|
seed=seed,
|
||||||
|
fan_in=fan_in,
|
||||||
|
fan_out=fan_out,
|
||||||
|
)
|
255
pushservice/src/main/python/models/libs/light_ranking_metrics.py
Normal file
255
pushservice/src/main/python/models/libs/light_ranking_metrics.py
Normal file
@ -0,0 +1,255 @@
|
|||||||
|
from functools import partial
|
||||||
|
|
||||||
|
from twitter.cortex.ml.embeddings.deepbird.grouped_metrics.configuration import (
|
||||||
|
GroupedMetricsConfiguration,
|
||||||
|
)
|
||||||
|
from twitter.cortex.ml.embeddings.deepbird.grouped_metrics.helpers import (
|
||||||
|
extract_prediction_from_prediction_record,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# checkstyle: noqa
|
||||||
|
|
||||||
|
|
||||||
|
def score_loss_at_n(labels, predictions, lightN):
|
||||||
|
"""
|
||||||
|
Compute the absolute ScoreLoss ranking metric
|
||||||
|
Args:
|
||||||
|
labels (list) : A list of label values (HeavyRanking Reference)
|
||||||
|
predictions (list): A list of prediction values (LightRanking Predictions)
|
||||||
|
lightN (int): size of the list at which of Initial candidates to compute ScoreLoss. (LightRanking)
|
||||||
|
"""
|
||||||
|
assert len(labels) == len(predictions)
|
||||||
|
|
||||||
|
if lightN <= 0:
|
||||||
|
return None
|
||||||
|
|
||||||
|
labels_with_predictions = zip(labels, predictions)
|
||||||
|
labels_with_sorted_predictions = sorted(
|
||||||
|
labels_with_predictions, key=lambda x: x[1], reverse=True
|
||||||
|
)[:lightN]
|
||||||
|
labels_top1_light = max([label for label, _ in labels_with_sorted_predictions])
|
||||||
|
labels_top1_heavy = max(labels)
|
||||||
|
|
||||||
|
return labels_top1_heavy - labels_top1_light
|
||||||
|
|
||||||
|
|
||||||
|
def cgr_at_nk(labels, predictions, lightN, heavyK):
|
||||||
|
"""
|
||||||
|
Compute Cumulative Gain Ratio (CGR) ranking metric
|
||||||
|
Args:
|
||||||
|
labels (list) : A list of label values (HeavyRanking Reference)
|
||||||
|
predictions (list): A list of prediction values (LightRanking Predictions)
|
||||||
|
lightN (int): size of the list at which of Initial candidates to compute CGR. (LightRanking)
|
||||||
|
heavyK (int): size of the list at which of Refined candidates to compute CGR. (HeavyRanking)
|
||||||
|
"""
|
||||||
|
assert len(labels) == len(predictions)
|
||||||
|
|
||||||
|
if (not lightN) or (not heavyK):
|
||||||
|
out = None
|
||||||
|
elif lightN <= 0 or heavyK <= 0:
|
||||||
|
out = None
|
||||||
|
else:
|
||||||
|
|
||||||
|
labels_with_predictions = zip(labels, predictions)
|
||||||
|
labels_with_sorted_predictions = sorted(
|
||||||
|
labels_with_predictions, key=lambda x: x[1], reverse=True
|
||||||
|
)[:lightN]
|
||||||
|
labels_topN_light = [label for label, _ in labels_with_sorted_predictions]
|
||||||
|
|
||||||
|
if lightN <= heavyK:
|
||||||
|
cg_light = sum(labels_topN_light)
|
||||||
|
else:
|
||||||
|
labels_topK_heavy_from_light = sorted(labels_topN_light, reverse=True)[:heavyK]
|
||||||
|
cg_light = sum(labels_topK_heavy_from_light)
|
||||||
|
|
||||||
|
ideal_ordering = sorted(labels, reverse=True)
|
||||||
|
cg_heavy = sum(ideal_ordering[: min(lightN, heavyK)])
|
||||||
|
|
||||||
|
out = 0.0
|
||||||
|
if cg_heavy != 0:
|
||||||
|
out = max(cg_light / cg_heavy, 0)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def _get_weight(w, atK):
|
||||||
|
if not w:
|
||||||
|
return 1.0
|
||||||
|
elif len(w) <= atK:
|
||||||
|
return 0.0
|
||||||
|
else:
|
||||||
|
return w[atK]
|
||||||
|
|
||||||
|
|
||||||
|
def recall_at_nk(labels, predictions, n=None, k=None, w=None):
|
||||||
|
"""
|
||||||
|
Recall at N-K ranking metric
|
||||||
|
Args:
|
||||||
|
labels (list): A list of label values
|
||||||
|
predictions (list): A list of prediction values
|
||||||
|
n (int): size of the list at which of predictions to compute recall. (Light Ranking Predictions)
|
||||||
|
The default is None in which case the length of the provided predictions is used as L
|
||||||
|
k (int): size of the list at which of labels to compute recall. (Heavy Ranking Predictions)
|
||||||
|
The default is None in which case the length of the provided labels is used as L
|
||||||
|
w (list): weight vector sorted by labels
|
||||||
|
"""
|
||||||
|
assert len(labels) == len(predictions)
|
||||||
|
|
||||||
|
if not any(labels):
|
||||||
|
out = None
|
||||||
|
else:
|
||||||
|
|
||||||
|
safe_n = len(predictions) if not n else min(len(predictions), n)
|
||||||
|
safe_k = len(labels) if not k else min(len(labels), k)
|
||||||
|
|
||||||
|
labels_with_predictions = zip(labels, predictions)
|
||||||
|
sorted_labels_with_predictions = sorted(
|
||||||
|
labels_with_predictions, key=lambda x: x[0], reverse=True
|
||||||
|
)
|
||||||
|
|
||||||
|
order_sorted_labels_predictions = zip(range(len(labels)), *zip(*sorted_labels_with_predictions))
|
||||||
|
|
||||||
|
order_with_predictions = [
|
||||||
|
(order, pred) for order, label, pred in order_sorted_labels_predictions
|
||||||
|
]
|
||||||
|
order_with_sorted_predictions = sorted(order_with_predictions, key=lambda x: x[1], reverse=True)
|
||||||
|
|
||||||
|
pred_sorted_order_at_n = [order for order, _ in order_with_sorted_predictions][:safe_n]
|
||||||
|
|
||||||
|
intersection_weight = [
|
||||||
|
_get_weight(w, order) if order < safe_k else 0 for order in pred_sorted_order_at_n
|
||||||
|
]
|
||||||
|
|
||||||
|
intersection_score = sum(intersection_weight)
|
||||||
|
full_score = sum(w) if w else float(safe_k)
|
||||||
|
|
||||||
|
out = 0.0
|
||||||
|
if full_score != 0:
|
||||||
|
out = intersection_score / full_score
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class ExpectedLossGroupedMetricsConfiguration(GroupedMetricsConfiguration):
|
||||||
|
"""
|
||||||
|
This is the Expected Loss Grouped metric computation configuration.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, lightNs=[]):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lightNs (list): size of the list at which of Initial candidates to compute Expected Loss. (LightRanking)
|
||||||
|
"""
|
||||||
|
self.lightNs = lightNs
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self):
|
||||||
|
return "ExpectedLoss"
|
||||||
|
|
||||||
|
@property
|
||||||
|
def metrics_dict(self):
|
||||||
|
metrics_to_compute = {}
|
||||||
|
for lightN in self.lightNs:
|
||||||
|
metric_name = "ExpectedLoss_atLight_" + str(lightN)
|
||||||
|
metrics_to_compute[metric_name] = partial(score_loss_at_n, lightN=lightN)
|
||||||
|
return metrics_to_compute
|
||||||
|
|
||||||
|
def extract_label(self, prec, drec, drec_label):
|
||||||
|
return drec_label
|
||||||
|
|
||||||
|
def extract_prediction(self, prec, drec, drec_label):
|
||||||
|
return extract_prediction_from_prediction_record(prec)
|
||||||
|
|
||||||
|
|
||||||
|
class CGRGroupedMetricsConfiguration(GroupedMetricsConfiguration):
|
||||||
|
"""
|
||||||
|
This is the Cumulative Gain Ratio (CGR) Grouped metric computation configuration.
|
||||||
|
CGR at the max length of each session is the default.
|
||||||
|
CGR at additional positions can be computed by specifying a list of 'n's and 'k's
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, lightNs=[], heavyKs=[]):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lightNs (list): size of the list at which of Initial candidates to compute CGR. (LightRanking)
|
||||||
|
heavyK (int): size of the list at which of Refined candidates to compute CGR. (HeavyRanking)
|
||||||
|
"""
|
||||||
|
self.lightNs = lightNs
|
||||||
|
self.heavyKs = heavyKs
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self):
|
||||||
|
return "cgr"
|
||||||
|
|
||||||
|
@property
|
||||||
|
def metrics_dict(self):
|
||||||
|
metrics_to_compute = {}
|
||||||
|
for lightN in self.lightNs:
|
||||||
|
for heavyK in self.heavyKs:
|
||||||
|
metric_name = "cgr_atLight_" + str(lightN) + "_atHeavy_" + str(heavyK)
|
||||||
|
metrics_to_compute[metric_name] = partial(cgr_at_nk, lightN=lightN, heavyK=heavyK)
|
||||||
|
return metrics_to_compute
|
||||||
|
|
||||||
|
def extract_label(self, prec, drec, drec_label):
|
||||||
|
return drec_label
|
||||||
|
|
||||||
|
def extract_prediction(self, prec, drec, drec_label):
|
||||||
|
return extract_prediction_from_prediction_record(prec)
|
||||||
|
|
||||||
|
|
||||||
|
class RecallGroupedMetricsConfiguration(GroupedMetricsConfiguration):
|
||||||
|
"""
|
||||||
|
This is the Recall Grouped metric computation configuration.
|
||||||
|
Recall at the max length of each session is the default.
|
||||||
|
Recall at additional positions can be computed by specifying a list of 'n's and 'k's
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, n=[], k=[], w=[]):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
n (list): A list of ints. List of prediction rank thresholds (for light)
|
||||||
|
k (list): A list of ints. List of label rank thresholds (for heavy)
|
||||||
|
"""
|
||||||
|
self.predN = n
|
||||||
|
self.labelK = k
|
||||||
|
self.weight = w
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self):
|
||||||
|
return "group_recall"
|
||||||
|
|
||||||
|
@property
|
||||||
|
def metrics_dict(self):
|
||||||
|
metrics_to_compute = {"group_recall_unweighted": recall_at_nk}
|
||||||
|
if not self.weight:
|
||||||
|
metrics_to_compute["group_recall_weighted"] = partial(recall_at_nk, w=self.weight)
|
||||||
|
|
||||||
|
if self.predN and self.labelK:
|
||||||
|
for n in self.predN:
|
||||||
|
for k in self.labelK:
|
||||||
|
if n >= k:
|
||||||
|
metrics_to_compute[
|
||||||
|
"group_recall_unweighted_at_L" + str(n) + "_at_H" + str(k)
|
||||||
|
] = partial(recall_at_nk, n=n, k=k)
|
||||||
|
if self.weight:
|
||||||
|
metrics_to_compute[
|
||||||
|
"group_recall_weighted_at_L" + str(n) + "_at_H" + str(k)
|
||||||
|
] = partial(recall_at_nk, n=n, k=k, w=self.weight)
|
||||||
|
|
||||||
|
if self.labelK and not self.predN:
|
||||||
|
for k in self.labelK:
|
||||||
|
metrics_to_compute["group_recall_unweighted_at_full_at_H" + str(k)] = partial(
|
||||||
|
recall_at_nk, k=k
|
||||||
|
)
|
||||||
|
if self.weight:
|
||||||
|
metrics_to_compute["group_recall_weighted_at_full_at_H" + str(k)] = partial(
|
||||||
|
recall_at_nk, k=k, w=self.weight
|
||||||
|
)
|
||||||
|
return metrics_to_compute
|
||||||
|
|
||||||
|
def extract_label(self, prec, drec, drec_label):
|
||||||
|
return drec_label
|
||||||
|
|
||||||
|
def extract_prediction(self, prec, drec, drec_label):
|
||||||
|
return extract_prediction_from_prediction_record(prec)
|
294
pushservice/src/main/python/models/libs/metric_fn_utils.py
Normal file
294
pushservice/src/main/python/models/libs/metric_fn_utils.py
Normal file
@ -0,0 +1,294 @@
|
|||||||
|
"""
|
||||||
|
Utilties for constructing a metric_fn for magic recs.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from twml.contrib.metrics.metrics import (
|
||||||
|
get_dual_binary_tasks_metric_fn,
|
||||||
|
get_numeric_metric_fn,
|
||||||
|
get_partial_multi_binary_class_metric_fn,
|
||||||
|
get_single_binary_task_metric_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
from .model_utils import generate_disliked_mask
|
||||||
|
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
|
||||||
|
|
||||||
|
METRIC_BOOK = {
|
||||||
|
"OONC": ["OONC"],
|
||||||
|
"OONC_Engagement": ["OONC", "Engagement"],
|
||||||
|
"Sent": ["Sent"],
|
||||||
|
"HeavyRankPosition": ["HeavyRankPosition"],
|
||||||
|
"HeavyRankProbability": ["HeavyRankProbability"],
|
||||||
|
}
|
||||||
|
|
||||||
|
USER_AGE_FEATURE_NAME = "accountAge"
|
||||||
|
NEW_USER_AGE_CUTOFF = 0
|
||||||
|
|
||||||
|
|
||||||
|
def remove_padding_and_flatten(tensor, valid_batch_size):
|
||||||
|
"""Remove the padding of the input padded tensor given the valid batch size tensor,
|
||||||
|
then flatten the output with respect to the first dimension.
|
||||||
|
Args:
|
||||||
|
tensor: A tensor of size [META_BATCH_SIZE, BATCH_SIZE, FEATURE_DIM].
|
||||||
|
valid_batch_size: A tensor of size [META_BATCH_SIZE], with each element indicating
|
||||||
|
the effective batch size of the BATCH_SIZE dimension.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tesnor of size [tf.reduce_sum(valid_batch_size), FEATURE_DIM].
|
||||||
|
"""
|
||||||
|
unpadded_ragged_tensor = tf.RaggedTensor.from_tensor(tensor=tensor, lengths=valid_batch_size)
|
||||||
|
|
||||||
|
return unpadded_ragged_tensor.flat_values
|
||||||
|
|
||||||
|
|
||||||
|
def safe_mask(values, mask):
|
||||||
|
"""Mask values if possible.
|
||||||
|
|
||||||
|
Boolean mask inputed values if and only if values is a tensor of the same dimension as mask (or can be broadcasted to that dimension).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
values (Any or Tensor): Input tensor to mask. Dim 0 should be size N.
|
||||||
|
mask (boolean tensor): A boolean tensor of size N.
|
||||||
|
|
||||||
|
Returns Values or Values masked.
|
||||||
|
"""
|
||||||
|
if values is None:
|
||||||
|
return values
|
||||||
|
if not tf.is_tensor(values):
|
||||||
|
return values
|
||||||
|
values_shape = values.get_shape()
|
||||||
|
if not values_shape or len(values_shape) == 0:
|
||||||
|
return values
|
||||||
|
if not mask.get_shape().is_compatible_with(values_shape[0]):
|
||||||
|
return values
|
||||||
|
return tf.boolean_mask(values, mask)
|
||||||
|
|
||||||
|
|
||||||
|
def add_new_user_metrics(metric_fn):
|
||||||
|
"""Will stratify the metric_fn by adding new user metrics.
|
||||||
|
|
||||||
|
Given an input metric_fn, double every metric: One will be the orignal and the other will only include those for new users.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
metric_fn (python function): Base twml metric_fn.
|
||||||
|
|
||||||
|
Returns a metric_fn with new user metrics included.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def metric_fn_with_new_users(graph_output, labels, weights):
|
||||||
|
if USER_AGE_FEATURE_NAME not in graph_output:
|
||||||
|
raise ValueError(
|
||||||
|
"In order to get metrics stratified by user age, {name} feature should be added to model graph output. However, only the following output keys were found: {keys}.".format(
|
||||||
|
name=USER_AGE_FEATURE_NAME, keys=graph_output.keys()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
metric_ops = metric_fn(graph_output, labels, weights)
|
||||||
|
|
||||||
|
is_new = tf.reshape(
|
||||||
|
tf.math.less_equal(
|
||||||
|
tf.cast(graph_output[USER_AGE_FEATURE_NAME], tf.int64),
|
||||||
|
tf.cast(NEW_USER_AGE_CUTOFF, tf.int64),
|
||||||
|
),
|
||||||
|
[-1],
|
||||||
|
)
|
||||||
|
|
||||||
|
labels = safe_mask(labels, is_new)
|
||||||
|
weights = safe_mask(weights, is_new)
|
||||||
|
graph_output = {key: safe_mask(values, is_new) for key, values in graph_output.items()}
|
||||||
|
|
||||||
|
new_user_metric_ops = metric_fn(graph_output, labels, weights)
|
||||||
|
new_user_metric_ops = {name + "_new_users": ops for name, ops in new_user_metric_ops.items()}
|
||||||
|
metric_ops.update(new_user_metric_ops)
|
||||||
|
return metric_ops
|
||||||
|
|
||||||
|
return metric_fn_with_new_users
|
||||||
|
|
||||||
|
|
||||||
|
def get_meta_learn_single_binary_task_metric_fn(
|
||||||
|
metrics, classnames, top_k=(5, 5, 5), use_top_k=False
|
||||||
|
):
|
||||||
|
"""Wrapper function to use the metric_fn with meta learning evaluation scheme.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
metrics: A list of string representing metric names.
|
||||||
|
classnames: A list of string repsenting class names, In case of multiple binary class models,
|
||||||
|
the names for each class or label.
|
||||||
|
top_k: A tuple of int to specify top K metrics.
|
||||||
|
use_top_k: A boolean value indicating of top K of metrics is used.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A customized metric_fn function.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def get_eval_metric_ops(graph_output, labels, weights):
|
||||||
|
"""The op func of the eval_metrics. Comparing with normal version,
|
||||||
|
the difference is we flatten the output, label, and weights.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
graph_output: A dict of tensors.
|
||||||
|
labels: A tensor of int32 be the value of either 0 or 1.
|
||||||
|
weights: A tensor of float32 to indicate the per record weight.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A dict of metric names and values.
|
||||||
|
"""
|
||||||
|
metric_op_weighted = get_partial_multi_binary_class_metric_fn(
|
||||||
|
metrics, predcols=0, classes=classnames
|
||||||
|
)
|
||||||
|
classnames_unweighted = ["unweighted_" + classname for classname in classnames]
|
||||||
|
metric_op_unweighted = get_partial_multi_binary_class_metric_fn(
|
||||||
|
metrics, predcols=0, classes=classnames_unweighted
|
||||||
|
)
|
||||||
|
|
||||||
|
valid_batch_size = graph_output["valid_batch_size"]
|
||||||
|
graph_output["output"] = remove_padding_and_flatten(graph_output["output"], valid_batch_size)
|
||||||
|
labels = remove_padding_and_flatten(labels, valid_batch_size)
|
||||||
|
weights = remove_padding_and_flatten(weights, valid_batch_size)
|
||||||
|
|
||||||
|
tf.ensure_shape(graph_output["output"], [None, 1])
|
||||||
|
tf.ensure_shape(labels, [None, 1])
|
||||||
|
tf.ensure_shape(weights, [None, 1])
|
||||||
|
|
||||||
|
metrics_weighted = metric_op_weighted(graph_output, labels, weights)
|
||||||
|
metrics_unweighted = metric_op_unweighted(graph_output, labels, None)
|
||||||
|
metrics_weighted.update(metrics_unweighted)
|
||||||
|
|
||||||
|
if use_top_k:
|
||||||
|
metric_op_numeric = get_numeric_metric_fn(metrics=None, topK=top_k, predcol=0, labelcol=1)
|
||||||
|
metrics_numeric = metric_op_numeric(graph_output, labels, weights)
|
||||||
|
metrics_weighted.update(metrics_numeric)
|
||||||
|
return metrics_weighted
|
||||||
|
|
||||||
|
return get_eval_metric_ops
|
||||||
|
|
||||||
|
|
||||||
|
def get_meta_learn_dual_binary_tasks_metric_fn(
|
||||||
|
metrics, classnames, top_k=(5, 5, 5), use_top_k=False
|
||||||
|
):
|
||||||
|
"""Wrapper function to use the metric_fn with meta learning evaluation scheme.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
metrics: A list of string representing metric names.
|
||||||
|
classnames: A list of string repsenting class names, In case of multiple binary class models,
|
||||||
|
the names for each class or label.
|
||||||
|
top_k: A tuple of int to specify top K metrics.
|
||||||
|
use_top_k: A boolean value indicating of top K of metrics is used.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A customized metric_fn function.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def get_eval_metric_ops(graph_output, labels, weights):
|
||||||
|
"""The op func of the eval_metrics. Comparing with normal version,
|
||||||
|
the difference is we flatten the output, label, and weights.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
graph_output: A dict of tensors.
|
||||||
|
labels: A tensor of int32 be the value of either 0 or 1.
|
||||||
|
weights: A tensor of float32 to indicate the per record weight.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A dict of metric names and values.
|
||||||
|
"""
|
||||||
|
metric_op_weighted = get_partial_multi_binary_class_metric_fn(
|
||||||
|
metrics, predcols=[0, 1], classes=classnames
|
||||||
|
)
|
||||||
|
classnames_unweighted = ["unweighted_" + classname for classname in classnames]
|
||||||
|
metric_op_unweighted = get_partial_multi_binary_class_metric_fn(
|
||||||
|
metrics, predcols=[0, 1], classes=classnames_unweighted
|
||||||
|
)
|
||||||
|
|
||||||
|
valid_batch_size = graph_output["valid_batch_size"]
|
||||||
|
graph_output["output"] = remove_padding_and_flatten(graph_output["output"], valid_batch_size)
|
||||||
|
labels = remove_padding_and_flatten(labels, valid_batch_size)
|
||||||
|
weights = remove_padding_and_flatten(weights, valid_batch_size)
|
||||||
|
|
||||||
|
tf.ensure_shape(graph_output["output"], [None, 2])
|
||||||
|
tf.ensure_shape(labels, [None, 2])
|
||||||
|
tf.ensure_shape(weights, [None, 1])
|
||||||
|
|
||||||
|
metrics_weighted = metric_op_weighted(graph_output, labels, weights)
|
||||||
|
metrics_unweighted = metric_op_unweighted(graph_output, labels, None)
|
||||||
|
metrics_weighted.update(metrics_unweighted)
|
||||||
|
|
||||||
|
if use_top_k:
|
||||||
|
metric_op_numeric = get_numeric_metric_fn(metrics=None, topK=top_k, predcol=2, labelcol=2)
|
||||||
|
metrics_numeric = metric_op_numeric(graph_output, labels, weights)
|
||||||
|
metrics_weighted.update(metrics_numeric)
|
||||||
|
return metrics_weighted
|
||||||
|
|
||||||
|
return get_eval_metric_ops
|
||||||
|
|
||||||
|
|
||||||
|
def get_metric_fn(task_name, use_stratify_metrics, use_meta_batch=False):
|
||||||
|
"""Will retrieve the metric_fn for magic recs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_name (string): Which task is being used for this model.
|
||||||
|
use_stratify_metrics (boolean): Should we add stratified metrics (new user metrics).
|
||||||
|
use_meta_batch (boolean): If the output/label/weights are passed in 3D shape instead of
|
||||||
|
2D shape.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A metric_fn function to pass in twml Trainer.
|
||||||
|
"""
|
||||||
|
if task_name not in METRIC_BOOK:
|
||||||
|
raise ValueError(
|
||||||
|
"Task name of {task_name} not recognized. Unable to retrieve metrics.".format(
|
||||||
|
task_name=task_name
|
||||||
|
)
|
||||||
|
)
|
||||||
|
class_names = METRIC_BOOK[task_name]
|
||||||
|
if use_meta_batch:
|
||||||
|
get_n_binary_task_metric_fn = (
|
||||||
|
get_meta_learn_single_binary_task_metric_fn
|
||||||
|
if len(class_names) == 1
|
||||||
|
else get_meta_learn_dual_binary_tasks_metric_fn
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
get_n_binary_task_metric_fn = (
|
||||||
|
get_single_binary_task_metric_fn if len(class_names) == 1 else get_dual_binary_tasks_metric_fn
|
||||||
|
)
|
||||||
|
|
||||||
|
metric_fn = get_n_binary_task_metric_fn(metrics=None, classnames=METRIC_BOOK[task_name])
|
||||||
|
|
||||||
|
if use_stratify_metrics:
|
||||||
|
metric_fn = add_new_user_metrics(metric_fn)
|
||||||
|
|
||||||
|
return metric_fn
|
||||||
|
|
||||||
|
|
||||||
|
def flip_disliked_labels(metric_fn):
|
||||||
|
"""This function returns an adapted metric_fn which flips the labels of the OONCed evaluation data to 0 if it is disliked.
|
||||||
|
Args:
|
||||||
|
metric_fn: A metric_fn function to pass in twml Trainer.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
_adapted_metric_fn: A customized metric_fn function with disliked OONC labels flipped.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def _adapted_metric_fn(graph_output, labels, weights):
|
||||||
|
"""A customized metric_fn function with disliked OONC labels flipped.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
graph_output: A dict of tensors.
|
||||||
|
labels: labels of training samples, which is a 2D tensor of shape batch_size x 3: [OONCs, engagements, dislikes]
|
||||||
|
weights: A tensor of float32 to indicate the per record weight.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A dict of metric names and values.
|
||||||
|
"""
|
||||||
|
# We want to multiply the label of the observation by 0 only when it is disliked
|
||||||
|
disliked_mask = generate_disliked_mask(labels)
|
||||||
|
|
||||||
|
# Extract OONC and engagement labels only.
|
||||||
|
labels = tf.reshape(labels[:, 0:2], shape=[-1, 2])
|
||||||
|
|
||||||
|
# Labels will be set to 0 if it is disliked.
|
||||||
|
adapted_labels = labels * tf.cast(tf.logical_not(disliked_mask), dtype=labels.dtype)
|
||||||
|
|
||||||
|
return metric_fn(graph_output, adapted_labels, weights)
|
||||||
|
|
||||||
|
return _adapted_metric_fn
|
231
pushservice/src/main/python/models/libs/model_args.py
Normal file
231
pushservice/src/main/python/models/libs/model_args.py
Normal file
@ -0,0 +1,231 @@
|
|||||||
|
from twml.trainers import DataRecordTrainer
|
||||||
|
|
||||||
|
|
||||||
|
# checkstyle: noqa
|
||||||
|
|
||||||
|
|
||||||
|
def get_arg_parser():
|
||||||
|
parser = DataRecordTrainer.add_parser_arguments()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--input_size_bits",
|
||||||
|
type=int,
|
||||||
|
default=18,
|
||||||
|
help="number of bits allocated to the input size",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_trainer_name",
|
||||||
|
default="magic_recs_mlp_calibration_MTL_OONC_Engagement",
|
||||||
|
type=str,
|
||||||
|
help="specify the model trainer name.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--model_type",
|
||||||
|
default="deepnorm_gbdt_inputdrop2_rescale",
|
||||||
|
type=str,
|
||||||
|
help="specify the model type to use.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--feat_config_type",
|
||||||
|
default="get_feature_config_with_sparse_continuous",
|
||||||
|
type=str,
|
||||||
|
help="specify the feature configure function to use.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--directly_export_best",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="whether to directly_export best_checkpoint",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--warm_start_base_dir",
|
||||||
|
default="none",
|
||||||
|
type=str,
|
||||||
|
help="latest ckpt in this folder will be used to ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--feature_list",
|
||||||
|
default="none",
|
||||||
|
type=str,
|
||||||
|
help="Which features to use for training",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--warm_start_from", default=None, type=str, help="model dir to warm start from"
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--momentum", default=0.99999, type=float, help="Momentum term for batch normalization"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--dropout",
|
||||||
|
default=0.2,
|
||||||
|
type=float,
|
||||||
|
help="input_dropout_rate to rescale output by (1 - input_dropout_rate)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--out_layer_1_size", default=256, type=int, help="Size of MLP_branch layer 1"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--out_layer_2_size", default=128, type=int, help="Size of MLP_branch layer 2"
|
||||||
|
)
|
||||||
|
parser.add_argument("--out_layer_3_size", default=64, type=int, help="Size of MLP_branch layer 3")
|
||||||
|
parser.add_argument(
|
||||||
|
"--sparse_embedding_size", default=50, type=int, help="Dimensionality of sparse embedding layer"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--dense_embedding_size", default=128, type=int, help="Dimensionality of dense embedding layer"
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_uam_label",
|
||||||
|
default=False,
|
||||||
|
type=str,
|
||||||
|
help="Whether to use uam_label or not",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--task_name",
|
||||||
|
default="OONC_Engagement",
|
||||||
|
type=str,
|
||||||
|
help="specify the task name to use: OONC or OONC_Engagement.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--init_weight",
|
||||||
|
default=0.9,
|
||||||
|
type=float,
|
||||||
|
help="Initial OONC Task Weight MTL: OONC+Engagement.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_engagement_weight",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="whether to use engagement weight for base model.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--mtl_num_extra_layers",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of Hidden Layers for each TaskBranch.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--mtl_neuron_scale", type=int, default=4, help="Scaling Factor of Neurons in MTL Extra Layers."
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_oonc_score",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="whether to use oonc score only or combined score.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_stratified_metrics",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="Use stratified metrics: Break out new-user metrics.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--run_group_metrics",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="Will run evaluation metrics grouped by user.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_full_scope",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="Will add extra scope and naming to graph.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--trainable_regexes",
|
||||||
|
default=None,
|
||||||
|
nargs="*",
|
||||||
|
help="The union of variables specified by the list of regexes will be considered trainable.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--fine_tuning.ckpt_to_initialize_from",
|
||||||
|
dest="fine_tuning_ckpt_to_initialize_from",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Checkpoint path from which to warm start. Indicates the pre-trained model.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--fine_tuning.warm_start_scope_regex",
|
||||||
|
dest="fine_tuning_warm_start_scope_regex",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="All variables matching this will be restored.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params(args=None):
|
||||||
|
parser = get_arg_parser()
|
||||||
|
if args is None:
|
||||||
|
return parser.parse_args()
|
||||||
|
else:
|
||||||
|
return parser.parse_args(args)
|
||||||
|
|
||||||
|
|
||||||
|
def get_arg_parser_light_ranking():
|
||||||
|
parser = get_arg_parser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_record_weight",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="whether to use record weight for base model.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--min_record_weight", default=0.0, type=float, help="Minimum record weight to use."
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--smooth_weight", default=0.0, type=float, help="Factor to smooth Rank Position Weight."
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num_mlp_layers", type=int, default=3, help="Number of Hidden Layers for MLP model."
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--mlp_neuron_scale", type=int, default=4, help="Scaling Factor of Neurons in MLP Layers."
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--run_light_ranking_group_metrics",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="Will run evaluation metrics grouped by user for Light Ranking.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_missing_sub_branch",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="Whether to use missing value sub-branch for Light Ranking.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use_gbdt_features",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="Whether to use GBDT features for Light Ranking.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--run_light_ranking_group_metrics_in_bq",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="Whether to get_predictions for Light Ranking to compute group metrics in BigQuery.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--pred_file_path",
|
||||||
|
default=None,
|
||||||
|
type=str,
|
||||||
|
help="path",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--pred_file_name",
|
||||||
|
default=None,
|
||||||
|
type=str,
|
||||||
|
help="path",
|
||||||
|
)
|
||||||
|
return parser
|
339
pushservice/src/main/python/models/libs/model_utils.py
Normal file
339
pushservice/src/main/python/models/libs/model_utils.py
Normal file
@ -0,0 +1,339 @@
|
|||||||
|
import sys
|
||||||
|
|
||||||
|
import twml
|
||||||
|
|
||||||
|
from .initializer import customized_glorot_uniform
|
||||||
|
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
|
||||||
|
# checkstyle: noqa
|
||||||
|
|
||||||
|
|
||||||
|
def read_config(whitelist_yaml_file):
|
||||||
|
with tf.gfile.FastGFile(whitelist_yaml_file) as f:
|
||||||
|
try:
|
||||||
|
return yaml.safe_load(f)
|
||||||
|
except yaml.YAMLError as exc:
|
||||||
|
print(exc)
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
|
||||||
|
def _sparse_feature_fixup(features, input_size_bits):
|
||||||
|
"""Rebuild a sparse tensor feature so that its dense shape attribute is present.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
features (SparseTensor): Sparse feature tensor of shape ``(B, sparse_feature_dim)``.
|
||||||
|
input_size_bits (int): Number of columns in ``log2`` scale. Must be positive.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
SparseTensor: Rebuilt and non-faulty version of `features`."""
|
||||||
|
sparse_feature_dim = tf.constant(2**input_size_bits, dtype=tf.int64)
|
||||||
|
sparse_shape = tf.stack([features.dense_shape[0], sparse_feature_dim])
|
||||||
|
sparse_tf = tf.SparseTensor(features.indices, features.values, sparse_shape)
|
||||||
|
return sparse_tf
|
||||||
|
|
||||||
|
|
||||||
|
def self_atten_dense(input, out_dim, activation=None, use_bias=True, name=None):
|
||||||
|
def safe_concat(base, suffix):
|
||||||
|
"""Concats variables name components if base is given."""
|
||||||
|
if not base:
|
||||||
|
return base
|
||||||
|
return f"{base}:{suffix}"
|
||||||
|
|
||||||
|
input_dim = input.shape.as_list()[1]
|
||||||
|
|
||||||
|
sigmoid_out = twml.layers.FullDense(
|
||||||
|
input_dim, dtype=tf.float32, activation=tf.nn.sigmoid, name=safe_concat(name, "sigmoid_out")
|
||||||
|
)(input)
|
||||||
|
atten_input = sigmoid_out * input
|
||||||
|
mlp_out = twml.layers.FullDense(
|
||||||
|
out_dim,
|
||||||
|
dtype=tf.float32,
|
||||||
|
activation=activation,
|
||||||
|
use_bias=use_bias,
|
||||||
|
name=safe_concat(name, "mlp_out"),
|
||||||
|
)(atten_input)
|
||||||
|
return mlp_out
|
||||||
|
|
||||||
|
|
||||||
|
def get_dense_out(input, out_dim, activation, dense_type):
|
||||||
|
if dense_type == "full_dense":
|
||||||
|
out = twml.layers.FullDense(out_dim, dtype=tf.float32, activation=activation)(input)
|
||||||
|
elif dense_type == "self_atten_dense":
|
||||||
|
out = self_atten_dense(input, out_dim, activation=activation)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def get_input_trans_func(bn_normalized_dense, is_training):
|
||||||
|
gw_normalized_dense = tf.expand_dims(bn_normalized_dense, -1)
|
||||||
|
group_num = bn_normalized_dense.shape.as_list()[1]
|
||||||
|
|
||||||
|
gw_normalized_dense = GroupWiseTrans(group_num, 1, 8, name="groupwise_1", activation=tf.tanh)(
|
||||||
|
gw_normalized_dense
|
||||||
|
)
|
||||||
|
gw_normalized_dense = GroupWiseTrans(group_num, 8, 4, name="groupwise_2", activation=tf.tanh)(
|
||||||
|
gw_normalized_dense
|
||||||
|
)
|
||||||
|
gw_normalized_dense = GroupWiseTrans(group_num, 4, 1, name="groupwise_3", activation=tf.tanh)(
|
||||||
|
gw_normalized_dense
|
||||||
|
)
|
||||||
|
|
||||||
|
gw_normalized_dense = tf.squeeze(gw_normalized_dense, [-1])
|
||||||
|
|
||||||
|
bn_gw_normalized_dense = tf.layers.batch_normalization(
|
||||||
|
gw_normalized_dense,
|
||||||
|
training=is_training,
|
||||||
|
renorm_momentum=0.9999,
|
||||||
|
momentum=0.9999,
|
||||||
|
renorm=is_training,
|
||||||
|
trainable=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
return bn_gw_normalized_dense
|
||||||
|
|
||||||
|
|
||||||
|
def tensor_dropout(
|
||||||
|
input_tensor,
|
||||||
|
rate,
|
||||||
|
is_training,
|
||||||
|
sparse_tensor=None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Implements dropout layer for both dense and sparse input_tensor
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
input_tensor:
|
||||||
|
B x D dense tensor, or a sparse tensor
|
||||||
|
rate (float32):
|
||||||
|
dropout rate
|
||||||
|
is_training (bool):
|
||||||
|
training stage or not.
|
||||||
|
sparse_tensor (bool):
|
||||||
|
whether the input_tensor is sparse tensor or not. Default to be None, this value has to be passed explicitly.
|
||||||
|
rescale_sparse_dropout (bool):
|
||||||
|
Do we need to do rescaling or not.
|
||||||
|
Returns:
|
||||||
|
tensor dropped out"""
|
||||||
|
if sparse_tensor == True:
|
||||||
|
if is_training:
|
||||||
|
with tf.variable_scope("sparse_dropout"):
|
||||||
|
values = input_tensor.values
|
||||||
|
keep_mask = tf.keras.backend.random_binomial(
|
||||||
|
tf.shape(values), p=1 - rate, dtype=tf.float32, seed=None
|
||||||
|
)
|
||||||
|
keep_mask.set_shape([None])
|
||||||
|
keep_mask = tf.cast(keep_mask, tf.bool)
|
||||||
|
|
||||||
|
keep_indices = tf.boolean_mask(input_tensor.indices, keep_mask, axis=0)
|
||||||
|
keep_values = tf.boolean_mask(values, keep_mask, axis=0)
|
||||||
|
|
||||||
|
dropped_tensor = tf.SparseTensor(keep_indices, keep_values, input_tensor.dense_shape)
|
||||||
|
return dropped_tensor
|
||||||
|
else:
|
||||||
|
return input_tensor
|
||||||
|
elif sparse_tensor == False:
|
||||||
|
return tf.layers.dropout(input_tensor, rate=rate, training=is_training)
|
||||||
|
|
||||||
|
|
||||||
|
def adaptive_transformation(bn_normalized_dense, is_training, func_type="default"):
|
||||||
|
assert func_type in [
|
||||||
|
"default",
|
||||||
|
"tiny",
|
||||||
|
], f"fun_type can only be one of default and tiny, but get {func_type}"
|
||||||
|
|
||||||
|
gw_normalized_dense = tf.expand_dims(bn_normalized_dense, -1)
|
||||||
|
group_num = bn_normalized_dense.shape.as_list()[1]
|
||||||
|
|
||||||
|
if func_type == "default":
|
||||||
|
gw_normalized_dense = FastGroupWiseTrans(
|
||||||
|
group_num, 1, 8, name="groupwise_1", activation=tf.tanh, init_multiplier=8
|
||||||
|
)(gw_normalized_dense)
|
||||||
|
|
||||||
|
gw_normalized_dense = FastGroupWiseTrans(
|
||||||
|
group_num, 8, 4, name="groupwise_2", activation=tf.tanh, init_multiplier=8
|
||||||
|
)(gw_normalized_dense)
|
||||||
|
|
||||||
|
gw_normalized_dense = FastGroupWiseTrans(
|
||||||
|
group_num, 4, 1, name="groupwise_3", activation=tf.tanh, init_multiplier=8
|
||||||
|
)(gw_normalized_dense)
|
||||||
|
elif func_type == "tiny":
|
||||||
|
gw_normalized_dense = FastGroupWiseTrans(
|
||||||
|
group_num, 1, 2, name="groupwise_1", activation=tf.tanh, init_multiplier=8
|
||||||
|
)(gw_normalized_dense)
|
||||||
|
|
||||||
|
gw_normalized_dense = FastGroupWiseTrans(
|
||||||
|
group_num, 2, 1, name="groupwise_2", activation=tf.tanh, init_multiplier=8
|
||||||
|
)(gw_normalized_dense)
|
||||||
|
|
||||||
|
gw_normalized_dense = FastGroupWiseTrans(
|
||||||
|
group_num, 1, 1, name="groupwise_3", activation=tf.tanh, init_multiplier=8
|
||||||
|
)(gw_normalized_dense)
|
||||||
|
|
||||||
|
gw_normalized_dense = tf.squeeze(gw_normalized_dense, [-1])
|
||||||
|
bn_gw_normalized_dense = tf.layers.batch_normalization(
|
||||||
|
gw_normalized_dense,
|
||||||
|
training=is_training,
|
||||||
|
renorm_momentum=0.9999,
|
||||||
|
momentum=0.9999,
|
||||||
|
renorm=is_training,
|
||||||
|
trainable=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
return bn_gw_normalized_dense
|
||||||
|
|
||||||
|
|
||||||
|
class FastGroupWiseTrans(object):
|
||||||
|
"""
|
||||||
|
used to apply group-wise fully connected layers to the input.
|
||||||
|
it applies a tiny, unique MLP to each individual feature."""
|
||||||
|
|
||||||
|
def __init__(self, group_num, input_dim, out_dim, name, activation=None, init_multiplier=1):
|
||||||
|
self.group_num = group_num
|
||||||
|
self.input_dim = input_dim
|
||||||
|
self.out_dim = out_dim
|
||||||
|
self.activation = activation
|
||||||
|
self.init_multiplier = init_multiplier
|
||||||
|
|
||||||
|
self.w = tf.get_variable(
|
||||||
|
name + "_group_weight",
|
||||||
|
[1, group_num, input_dim, out_dim],
|
||||||
|
initializer=customized_glorot_uniform(
|
||||||
|
fan_in=input_dim * init_multiplier, fan_out=out_dim * init_multiplier
|
||||||
|
),
|
||||||
|
trainable=True,
|
||||||
|
)
|
||||||
|
self.b = tf.get_variable(
|
||||||
|
name + "_group_bias",
|
||||||
|
[1, group_num, out_dim],
|
||||||
|
initializer=tf.constant_initializer(0.0),
|
||||||
|
trainable=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(self, input_tensor):
|
||||||
|
"""
|
||||||
|
input_tensor: batch_size x group_num x input_dim
|
||||||
|
output_tensor: batch_size x group_num x out_dim"""
|
||||||
|
input_tensor_expand = tf.expand_dims(input_tensor, axis=-1)
|
||||||
|
|
||||||
|
output_tensor = tf.add(
|
||||||
|
tf.reduce_sum(tf.multiply(input_tensor_expand, self.w), axis=-2, keepdims=False),
|
||||||
|
self.b,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.activation is not None:
|
||||||
|
output_tensor = self.activation(output_tensor)
|
||||||
|
return output_tensor
|
||||||
|
|
||||||
|
|
||||||
|
class GroupWiseTrans(object):
|
||||||
|
"""
|
||||||
|
Used to apply group fully connected layers to the input.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, group_num, input_dim, out_dim, name, activation=None):
|
||||||
|
self.group_num = group_num
|
||||||
|
self.input_dim = input_dim
|
||||||
|
self.out_dim = out_dim
|
||||||
|
self.activation = activation
|
||||||
|
|
||||||
|
w_list, b_list = [], []
|
||||||
|
for idx in range(out_dim):
|
||||||
|
this_w = tf.get_variable(
|
||||||
|
name + f"_group_weight_{idx}",
|
||||||
|
[1, group_num, input_dim],
|
||||||
|
initializer=tf.keras.initializers.glorot_uniform(),
|
||||||
|
trainable=True,
|
||||||
|
)
|
||||||
|
this_b = tf.get_variable(
|
||||||
|
name + f"_group_bias_{idx}",
|
||||||
|
[1, group_num, 1],
|
||||||
|
initializer=tf.constant_initializer(0.0),
|
||||||
|
trainable=True,
|
||||||
|
)
|
||||||
|
w_list.append(this_w)
|
||||||
|
b_list.append(this_b)
|
||||||
|
self.w_list = w_list
|
||||||
|
self.b_list = b_list
|
||||||
|
|
||||||
|
def __call__(self, input_tensor):
|
||||||
|
"""
|
||||||
|
input_tensor: batch_size x group_num x input_dim
|
||||||
|
output_tensor: batch_size x group_num x out_dim
|
||||||
|
"""
|
||||||
|
out_tensor_list = []
|
||||||
|
for idx in range(self.out_dim):
|
||||||
|
this_res = (
|
||||||
|
tf.reduce_sum(input_tensor * self.w_list[idx], axis=-1, keepdims=True) + self.b_list[idx]
|
||||||
|
)
|
||||||
|
out_tensor_list.append(this_res)
|
||||||
|
output_tensor = tf.concat(out_tensor_list, axis=-1)
|
||||||
|
|
||||||
|
if self.activation is not None:
|
||||||
|
output_tensor = self.activation(output_tensor)
|
||||||
|
return output_tensor
|
||||||
|
|
||||||
|
|
||||||
|
def add_scalar_summary(var, name, name_scope="hist_dense_feature/"):
|
||||||
|
with tf.name_scope("summaries/"):
|
||||||
|
with tf.name_scope(name_scope):
|
||||||
|
tf.summary.scalar(name, var)
|
||||||
|
|
||||||
|
|
||||||
|
def add_histogram_summary(var, name, name_scope="hist_dense_feature/"):
|
||||||
|
with tf.name_scope("summaries/"):
|
||||||
|
with tf.name_scope(name_scope):
|
||||||
|
tf.summary.histogram(name, tf.reshape(var, [-1]))
|
||||||
|
|
||||||
|
|
||||||
|
def sparse_clip_by_value(sparse_tf, min_val, max_val):
|
||||||
|
new_vals = tf.clip_by_value(sparse_tf.values, min_val, max_val)
|
||||||
|
return tf.SparseTensor(sparse_tf.indices, new_vals, sparse_tf.dense_shape)
|
||||||
|
|
||||||
|
|
||||||
|
def check_numerics_with_msg(tensor, message="", sparse_tensor=False):
|
||||||
|
if sparse_tensor:
|
||||||
|
values = tf.debugging.check_numerics(tensor.values, message=message)
|
||||||
|
return tf.SparseTensor(tensor.indices, values, tensor.dense_shape)
|
||||||
|
else:
|
||||||
|
return tf.debugging.check_numerics(tensor, message=message)
|
||||||
|
|
||||||
|
|
||||||
|
def pad_empty_sparse_tensor(tensor):
|
||||||
|
dummy_tensor = tf.SparseTensor(
|
||||||
|
indices=[[0, 0]],
|
||||||
|
values=[0.00001],
|
||||||
|
dense_shape=tensor.dense_shape,
|
||||||
|
)
|
||||||
|
result = tf.cond(
|
||||||
|
tf.equal(tf.size(tensor.values), 0),
|
||||||
|
lambda: dummy_tensor,
|
||||||
|
lambda: tensor,
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def filter_nans_and_infs(tensor, sparse_tensor=False):
|
||||||
|
if sparse_tensor:
|
||||||
|
sparse_values = tensor.values
|
||||||
|
filtered_val = tf.where(
|
||||||
|
tf.logical_or(tf.is_nan(sparse_values), tf.is_inf(sparse_values)),
|
||||||
|
tf.zeros_like(sparse_values),
|
||||||
|
sparse_values,
|
||||||
|
)
|
||||||
|
return tf.SparseTensor(tensor.indices, filtered_val, tensor.dense_shape)
|
||||||
|
else:
|
||||||
|
return tf.where(
|
||||||
|
tf.logical_or(tf.is_nan(tensor), tf.is_inf(tensor)), tf.zeros_like(tensor), tensor
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_disliked_mask(labels):
|
||||||
|
"""Generate a disliked mask where only samples with dislike labels are set to 1 otherwise set to 0.
|
||||||
|
Args:
|
||||||
|
labels: labels of training samples, which is a 2D tensor of shape batch_size x 3: [OONCs, engagements, dislikes]
|
||||||
|
Returns:
|
||||||
|
1D tensor of shape batch_size x 1: [dislikes (booleans)]
|
||||||
|
"""
|
||||||
|
return tf.equal(tf.reshape(labels[:, 2], shape=[-1, 1]), 1)
|
309
pushservice/src/main/python/models/libs/warm_start_utils.py
Normal file
309
pushservice/src/main/python/models/libs/warm_start_utils.py
Normal file
@ -0,0 +1,309 @@
|
|||||||
|
from collections import OrderedDict
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from os.path import join
|
||||||
|
|
||||||
|
from twitter.magicpony.common import file_access
|
||||||
|
import twml
|
||||||
|
|
||||||
|
from .model_utils import read_config
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from scipy import stats
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
|
||||||
|
|
||||||
|
# checkstyle: noqa
|
||||||
|
|
||||||
|
|
||||||
|
def get_model_type_to_tensors_to_change_axis():
|
||||||
|
model_type_to_tensors_to_change_axis = {
|
||||||
|
"magic_recs/model/batch_normalization/beta": ([0], "continuous"),
|
||||||
|
"magic_recs/model/batch_normalization/gamma": ([0], "continuous"),
|
||||||
|
"magic_recs/model/batch_normalization/moving_mean": ([0], "continuous"),
|
||||||
|
"magic_recs/model/batch_normalization/moving_stddev": ([0], "continuous"),
|
||||||
|
"magic_recs/model/batch_normalization/moving_variance": ([0], "continuous"),
|
||||||
|
"magic_recs/model/batch_normalization/renorm_mean": ([0], "continuous"),
|
||||||
|
"magic_recs/model/batch_normalization/renorm_stddev": ([0], "continuous"),
|
||||||
|
"magic_recs/model/logits/EngagementGivenOONC_logits/clem_net_1/block2_4/channel_wise_dense_4/kernel": (
|
||||||
|
[1],
|
||||||
|
"all",
|
||||||
|
),
|
||||||
|
"magic_recs/model/logits/OONC_logits/clem_net/block2/channel_wise_dense/kernel": ([1], "all"),
|
||||||
|
}
|
||||||
|
|
||||||
|
return model_type_to_tensors_to_change_axis
|
||||||
|
|
||||||
|
|
||||||
|
def mkdirp(dirname):
|
||||||
|
if not tf.io.gfile.exists(dirname):
|
||||||
|
tf.io.gfile.makedirs(dirname)
|
||||||
|
|
||||||
|
|
||||||
|
def rename_dir(dirname, dst):
|
||||||
|
file_access.hdfs.mv(dirname, dst)
|
||||||
|
|
||||||
|
|
||||||
|
def rmdir(dirname):
|
||||||
|
if tf.io.gfile.exists(dirname):
|
||||||
|
if tf.io.gfile.isdir(dirname):
|
||||||
|
tf.io.gfile.rmtree(dirname)
|
||||||
|
else:
|
||||||
|
tf.io.gfile.remove(dirname)
|
||||||
|
|
||||||
|
|
||||||
|
def get_var_dict(checkpoint_path):
|
||||||
|
checkpoint = tf.train.get_checkpoint_state(checkpoint_path)
|
||||||
|
var_dict = OrderedDict()
|
||||||
|
with tf.Session() as sess:
|
||||||
|
all_var_list = tf.train.list_variables(checkpoint_path)
|
||||||
|
for var_name, _ in all_var_list:
|
||||||
|
# Load the variable
|
||||||
|
var = tf.train.load_variable(checkpoint_path, var_name)
|
||||||
|
var_dict[var_name] = var
|
||||||
|
return var_dict
|
||||||
|
|
||||||
|
|
||||||
|
def get_continunous_mapping_from_feat_list(old_feature_list, new_feature_list):
|
||||||
|
"""
|
||||||
|
get var_ind for old_feature and corresponding var_ind for new_feature
|
||||||
|
"""
|
||||||
|
new_var_ind, old_var_ind = [], []
|
||||||
|
for this_new_id, this_new_name in enumerate(new_feature_list):
|
||||||
|
if this_new_name in old_feature_list:
|
||||||
|
this_old_id = old_feature_list.index(this_new_name)
|
||||||
|
new_var_ind.append(this_new_id)
|
||||||
|
old_var_ind.append(this_old_id)
|
||||||
|
return np.asarray(old_var_ind), np.asarray(new_var_ind)
|
||||||
|
|
||||||
|
|
||||||
|
def get_continuous_mapping_from_feat_dict(old_feature_dict, new_feature_dict):
|
||||||
|
"""
|
||||||
|
get var_ind for old_feature and corresponding var_ind for new_feature
|
||||||
|
"""
|
||||||
|
old_cont = old_feature_dict["continuous"]
|
||||||
|
old_bin = old_feature_dict["binary"]
|
||||||
|
|
||||||
|
new_cont = new_feature_dict["continuous"]
|
||||||
|
new_bin = new_feature_dict["binary"]
|
||||||
|
|
||||||
|
_dummy_sparse_feat = [f"sparse_feature_{_idx}" for _idx in range(100)]
|
||||||
|
|
||||||
|
cont_old_var_ind, cont_new_var_ind = get_continunous_mapping_from_feat_list(old_cont, new_cont)
|
||||||
|
|
||||||
|
all_old_var_ind, all_new_var_ind = get_continunous_mapping_from_feat_list(
|
||||||
|
old_cont + old_bin + _dummy_sparse_feat, new_cont + new_bin + _dummy_sparse_feat
|
||||||
|
)
|
||||||
|
|
||||||
|
_res = {
|
||||||
|
"continuous": (cont_old_var_ind, cont_new_var_ind),
|
||||||
|
"all": (all_old_var_ind, all_new_var_ind),
|
||||||
|
}
|
||||||
|
|
||||||
|
return _res
|
||||||
|
|
||||||
|
|
||||||
|
def warm_start_from_var_dict(
|
||||||
|
old_ckpt_path,
|
||||||
|
var_ind_dict,
|
||||||
|
output_dir,
|
||||||
|
new_len_var,
|
||||||
|
var_to_change_dict_fn=get_model_type_to_tensors_to_change_axis,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Parameters:
|
||||||
|
old_ckpt_path (str): path to the old checkpoint path
|
||||||
|
new_var_ind (array of int): index to overlapping features in new var between old and new feature list.
|
||||||
|
old_var_ind (array of int): index to overlapping features in old var between old and new feature list.
|
||||||
|
|
||||||
|
output_dir (str): dir that used to write modified checkpoint
|
||||||
|
new_len_var ({str:int}): number of feature in the new feature list.
|
||||||
|
var_to_change_dict_fn (dict): A function to get the dictionary of format {var_name: dim_to_change}
|
||||||
|
"""
|
||||||
|
old_var_dict = get_var_dict(old_ckpt_path)
|
||||||
|
|
||||||
|
ckpt_file_name = os.path.basename(old_ckpt_path)
|
||||||
|
mkdirp(output_dir)
|
||||||
|
output_path = join(output_dir, ckpt_file_name)
|
||||||
|
|
||||||
|
tensors_to_change = var_to_change_dict_fn()
|
||||||
|
tf.compat.v1.reset_default_graph()
|
||||||
|
|
||||||
|
with tf.Session() as sess:
|
||||||
|
var_name_shape_list = tf.train.list_variables(old_ckpt_path)
|
||||||
|
count = 0
|
||||||
|
|
||||||
|
for var_name, var_shape in var_name_shape_list:
|
||||||
|
old_var = old_var_dict[var_name]
|
||||||
|
if var_name in tensors_to_change.keys():
|
||||||
|
_info_tuple = tensors_to_change[var_name]
|
||||||
|
dims_to_remove_from, var_type = _info_tuple
|
||||||
|
|
||||||
|
new_var_ind, old_var_ind = var_ind_dict[var_type]
|
||||||
|
|
||||||
|
this_shape = list(old_var.shape)
|
||||||
|
for this_dim in dims_to_remove_from:
|
||||||
|
this_shape[this_dim] = new_len_var[var_type]
|
||||||
|
|
||||||
|
stddev = np.std(old_var)
|
||||||
|
truncated_norm_generator = stats.truncnorm(-0.5, 0.5, loc=0, scale=stddev)
|
||||||
|
size = np.prod(this_shape)
|
||||||
|
new_var = truncated_norm_generator.rvs(size).reshape(this_shape)
|
||||||
|
new_var = new_var.astype(old_var.dtype)
|
||||||
|
|
||||||
|
new_var = copy_feat_based_on_mapping(
|
||||||
|
new_var, old_var, dims_to_remove_from, new_var_ind, old_var_ind
|
||||||
|
)
|
||||||
|
count = count + 1
|
||||||
|
else:
|
||||||
|
new_var = old_var
|
||||||
|
var = tf.Variable(new_var, name=var_name)
|
||||||
|
assert count == len(tensors_to_change.keys()), "not all variables are exchanged.\n"
|
||||||
|
saver = tf.train.Saver()
|
||||||
|
sess.run(tf.global_variables_initializer())
|
||||||
|
saver.save(sess, output_path)
|
||||||
|
return output_path
|
||||||
|
|
||||||
|
|
||||||
|
def copy_feat_based_on_mapping(new_array, old_array, dims_to_remove_from, new_var_ind, old_var_ind):
|
||||||
|
if dims_to_remove_from == [0, 1]:
|
||||||
|
for this_new_ind, this_old_ind in zip(new_var_ind, old_var_ind):
|
||||||
|
new_array[this_new_ind, new_var_ind] = old_array[this_old_ind, old_var_ind]
|
||||||
|
elif dims_to_remove_from == [0]:
|
||||||
|
new_array[new_var_ind] = old_array[old_var_ind]
|
||||||
|
elif dims_to_remove_from == [1]:
|
||||||
|
new_array[:, new_var_ind] = old_array[:, old_var_ind]
|
||||||
|
else:
|
||||||
|
raise RuntimeError(f"undefined dims_to_remove_from pattern: ({dims_to_remove_from})")
|
||||||
|
return new_array
|
||||||
|
|
||||||
|
|
||||||
|
def read_file(filename, decode=False):
|
||||||
|
"""
|
||||||
|
Reads contents from a file and optionally decodes it.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
filename:
|
||||||
|
path to file where the contents will be loaded from.
|
||||||
|
Accepts HDFS and local paths.
|
||||||
|
decode:
|
||||||
|
False or 'json'. When decode='json', contents is decoded
|
||||||
|
with json.loads. When False, contents is returned as is.
|
||||||
|
"""
|
||||||
|
graph = tf.Graph()
|
||||||
|
with graph.as_default():
|
||||||
|
read = tf.read_file(filename)
|
||||||
|
|
||||||
|
with tf.Session(graph=graph) as sess:
|
||||||
|
contents = sess.run(read)
|
||||||
|
if not isinstance(contents, str):
|
||||||
|
contents = contents.decode()
|
||||||
|
|
||||||
|
if decode == "json":
|
||||||
|
contents = json.loads(contents)
|
||||||
|
|
||||||
|
return contents
|
||||||
|
|
||||||
|
|
||||||
|
def read_feat_list_from_disk(file_path):
|
||||||
|
return read_file(file_path, decode="json")
|
||||||
|
|
||||||
|
|
||||||
|
def get_feature_list_for_light_ranking(feature_list_path, data_spec_path):
|
||||||
|
feature_list = read_config(feature_list_path).items()
|
||||||
|
string_feat_list = [f[0] for f in feature_list if f[1] != "S"]
|
||||||
|
|
||||||
|
feature_config_builder = twml.contrib.feature_config.FeatureConfigBuilder(
|
||||||
|
data_spec_path=data_spec_path
|
||||||
|
)
|
||||||
|
feature_config_builder = feature_config_builder.extract_feature_group(
|
||||||
|
feature_regexes=string_feat_list,
|
||||||
|
group_name="continuous",
|
||||||
|
default_value=-1,
|
||||||
|
type_filter=["CONTINUOUS"],
|
||||||
|
)
|
||||||
|
feature_config = feature_config_builder.build()
|
||||||
|
feature_list = feature_config_builder._feature_group_extraction_configs[0].feature_map[
|
||||||
|
"CONTINUOUS"
|
||||||
|
]
|
||||||
|
return feature_list
|
||||||
|
|
||||||
|
|
||||||
|
def get_feature_list_for_heavy_ranking(feature_list_path, data_spec_path):
|
||||||
|
feature_list = read_config(feature_list_path).items()
|
||||||
|
string_feat_list = [f[0] for f in feature_list if f[1] != "S"]
|
||||||
|
|
||||||
|
feature_config_builder = twml.contrib.feature_config.FeatureConfigBuilder(
|
||||||
|
data_spec_path=data_spec_path
|
||||||
|
)
|
||||||
|
feature_config_builder = feature_config_builder.extract_feature_group(
|
||||||
|
feature_regexes=string_feat_list,
|
||||||
|
group_name="continuous",
|
||||||
|
default_value=-1,
|
||||||
|
type_filter=["CONTINUOUS"],
|
||||||
|
)
|
||||||
|
|
||||||
|
feature_config_builder = feature_config_builder.extract_feature_group(
|
||||||
|
feature_regexes=string_feat_list,
|
||||||
|
group_name="binary",
|
||||||
|
default_value=False,
|
||||||
|
type_filter=["BINARY"],
|
||||||
|
)
|
||||||
|
|
||||||
|
feature_config_builder = feature_config_builder.build()
|
||||||
|
|
||||||
|
continuous_feature_list = feature_config_builder._feature_group_extraction_configs[0].feature_map[
|
||||||
|
"CONTINUOUS"
|
||||||
|
]
|
||||||
|
|
||||||
|
binary_feature_list = feature_config_builder._feature_group_extraction_configs[1].feature_map[
|
||||||
|
"BINARY"
|
||||||
|
]
|
||||||
|
return {"continuous": continuous_feature_list, "binary": binary_feature_list}
|
||||||
|
|
||||||
|
|
||||||
|
def warm_start_checkpoint(
|
||||||
|
old_best_ckpt_folder,
|
||||||
|
old_feature_list_path,
|
||||||
|
feature_allow_list_path,
|
||||||
|
data_spec_path,
|
||||||
|
output_ckpt_folder,
|
||||||
|
*args,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Reads old checkpoint and the old feature list, and create a new ckpt warm started from old ckpt using new features .
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
old_best_ckpt_folder:
|
||||||
|
path to the best_checkpoint_folder for old model
|
||||||
|
old_feature_list_path:
|
||||||
|
path to the json file that stores the list of continuous features used in old models.
|
||||||
|
feature_allow_list_path:
|
||||||
|
yaml file that contain the feature allow list.
|
||||||
|
data_spec_path:
|
||||||
|
path to the data_spec file
|
||||||
|
output_ckpt_folder:
|
||||||
|
folder that contains the modified ckpt.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
path to the modified ckpt."""
|
||||||
|
old_ckpt_path = tf.train.latest_checkpoint(old_best_ckpt_folder, latest_filename=None)
|
||||||
|
|
||||||
|
new_feature_dict = get_feature_list(feature_allow_list_path, data_spec_path)
|
||||||
|
old_feature_dict = read_feat_list_from_disk(old_feature_list_path)
|
||||||
|
|
||||||
|
var_ind_dict = get_continuous_mapping_from_feat_dict(new_feature_dict, old_feature_dict)
|
||||||
|
|
||||||
|
new_len_var = {
|
||||||
|
"continuous": len(new_feature_dict["continuous"]),
|
||||||
|
"all": len(new_feature_dict["continuous"] + new_feature_dict["binary"]) + 100,
|
||||||
|
}
|
||||||
|
|
||||||
|
warm_started_ckpt_path = warm_start_from_var_dict(
|
||||||
|
old_ckpt_path,
|
||||||
|
var_ind_dict,
|
||||||
|
output_dir=output_ckpt_folder,
|
||||||
|
new_len_var=new_len_var,
|
||||||
|
)
|
||||||
|
|
||||||
|
return warm_started_ckpt_path
|
69
pushservice/src/main/python/models/light_ranking/BUILD
Normal file
69
pushservice/src/main/python/models/light_ranking/BUILD
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
#":mlwf_libs",
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "eval_model",
|
||||||
|
source = "eval_model.py",
|
||||||
|
dependencies = [
|
||||||
|
":libs",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/light_ranking:eval_model",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "train_model",
|
||||||
|
source = "deep_norm.py",
|
||||||
|
dependencies = [
|
||||||
|
":libs",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/light_ranking:train_model",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "train_model_local",
|
||||||
|
source = "deep_norm.py",
|
||||||
|
dependencies = [
|
||||||
|
":libs",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/light_ranking:train_model_local",
|
||||||
|
"twml",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "eval_model_local",
|
||||||
|
source = "eval_model.py",
|
||||||
|
dependencies = [
|
||||||
|
":libs",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/light_ranking:eval_model_local",
|
||||||
|
"twml",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python37_binary(
|
||||||
|
name = "mlwf_model",
|
||||||
|
source = "deep_norm.py",
|
||||||
|
dependencies = [
|
||||||
|
":mlwf_libs",
|
||||||
|
"3rdparty/python/_closures/frigate/frigate-pushservice-opensource/src/main/python/models/light_ranking:mlwf_model",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "libs",
|
||||||
|
sources = ["**/*.py"],
|
||||||
|
tags = ["no-mypy"],
|
||||||
|
dependencies = [
|
||||||
|
"src/python/twitter/deepbird/projects/magic_recs/libs",
|
||||||
|
"src/python/twitter/deepbird/util/data",
|
||||||
|
"twml:twml-nodeps",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
python3_library(
|
||||||
|
name = "mlwf_libs",
|
||||||
|
sources = ["**/*.py"],
|
||||||
|
tags = ["no-mypy"],
|
||||||
|
dependencies = [
|
||||||
|
"src/python/twitter/deepbird/projects/magic_recs/libs",
|
||||||
|
"twml",
|
||||||
|
],
|
||||||
|
)
|
14
pushservice/src/main/python/models/light_ranking/README.md
Normal file
14
pushservice/src/main/python/models/light_ranking/README.md
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
# Notification Light Ranker Model
|
||||||
|
|
||||||
|
## Model Context
|
||||||
|
There are 4 major components of Twitter notifications recommendation system: 1) candidate generation 2) light ranking 3) heavy ranking & 4) quality control. This notification light ranker model bridges candidate generation and heavy ranking by pre-selecting highly-relevant candidates from the initial huge candidate pool. It’s a light-weight model to reduce system cost during heavy ranking without hurting user experience.
|
||||||
|
|
||||||
|
## Directory Structure
|
||||||
|
- BUILD: this file defines python library dependencies
|
||||||
|
- model_pools_mlp.py: this file defines tensorflow model architecture for the notification light ranker model
|
||||||
|
- deep_norm.py: this file contains 1) how to build the tensorflow graph with specified model architecture, loss function and training configuration. 2) how to set up the overall model training & evaluation pipeline
|
||||||
|
- eval_model.py: the main python entry file to set up the overall model evaluation pipeline
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
226
pushservice/src/main/python/models/light_ranking/deep_norm.py
Normal file
226
pushservice/src/main/python/models/light_ranking/deep_norm.py
Normal file
@ -0,0 +1,226 @@
|
|||||||
|
from datetime import datetime
|
||||||
|
from functools import partial
|
||||||
|
import os
|
||||||
|
|
||||||
|
from twitter.cortex.ml.embeddings.common.helpers import decode_str_or_unicode
|
||||||
|
import twml
|
||||||
|
from twml.trainers import DataRecordTrainer
|
||||||
|
|
||||||
|
from ..libs.get_feat_config import get_feature_config_light_ranking, LABELS_LR
|
||||||
|
from ..libs.graph_utils import get_trainable_variables
|
||||||
|
from ..libs.group_metrics import (
|
||||||
|
run_group_metrics_light_ranking,
|
||||||
|
run_group_metrics_light_ranking_in_bq,
|
||||||
|
)
|
||||||
|
from ..libs.metric_fn_utils import get_metric_fn
|
||||||
|
from ..libs.model_args import get_arg_parser_light_ranking
|
||||||
|
from ..libs.model_utils import read_config
|
||||||
|
from ..libs.warm_start_utils import get_feature_list_for_light_ranking
|
||||||
|
from .model_pools_mlp import light_ranking_mlp_ngbdt
|
||||||
|
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
from tensorflow.compat.v1 import logging
|
||||||
|
|
||||||
|
|
||||||
|
# checkstyle: noqa
|
||||||
|
|
||||||
|
|
||||||
|
def build_graph(
|
||||||
|
features, label, mode, params, config=None, run_light_ranking_group_metrics_in_bq=False
|
||||||
|
):
|
||||||
|
is_training = mode == tf.estimator.ModeKeys.TRAIN
|
||||||
|
this_model_func = light_ranking_mlp_ngbdt
|
||||||
|
model_output = this_model_func(features, is_training, params, label)
|
||||||
|
|
||||||
|
logits = model_output["output"]
|
||||||
|
graph_output = {}
|
||||||
|
# --------------------------------------------------------
|
||||||
|
# define graph output dict
|
||||||
|
# --------------------------------------------------------
|
||||||
|
if mode == tf.estimator.ModeKeys.PREDICT:
|
||||||
|
loss = None
|
||||||
|
output_label = "prediction"
|
||||||
|
if params.task_name in LABELS_LR:
|
||||||
|
output = tf.nn.sigmoid(logits)
|
||||||
|
output = tf.clip_by_value(output, 0, 1)
|
||||||
|
|
||||||
|
if run_light_ranking_group_metrics_in_bq:
|
||||||
|
graph_output["trace_id"] = features["meta.trace_id"]
|
||||||
|
graph_output["target"] = features["meta.ranking.weighted_oonc_model_score"]
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError("Invalid Task Name !")
|
||||||
|
|
||||||
|
else:
|
||||||
|
output_label = "output"
|
||||||
|
weights = tf.cast(features["weights"], dtype=tf.float32, name="RecordWeights")
|
||||||
|
|
||||||
|
if params.task_name in LABELS_LR:
|
||||||
|
if params.use_record_weight:
|
||||||
|
weights = tf.clip_by_value(
|
||||||
|
1.0 / (1.0 + weights + params.smooth_weight), params.min_record_weight, 1.0
|
||||||
|
)
|
||||||
|
|
||||||
|
loss = tf.reduce_sum(
|
||||||
|
tf.nn.sigmoid_cross_entropy_with_logits(labels=label, logits=logits) * weights
|
||||||
|
) / (tf.reduce_sum(weights))
|
||||||
|
else:
|
||||||
|
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=label, logits=logits))
|
||||||
|
output = tf.nn.sigmoid(logits)
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError("Invalid Task Name !")
|
||||||
|
|
||||||
|
train_op = None
|
||||||
|
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||||
|
# --------------------------------------------------------
|
||||||
|
# get train_op
|
||||||
|
# --------------------------------------------------------
|
||||||
|
optimizer = tf.train.GradientDescentOptimizer(learning_rate=params.learning_rate)
|
||||||
|
update_ops = set(tf.get_collection(tf.GraphKeys.UPDATE_OPS))
|
||||||
|
variables = get_trainable_variables(
|
||||||
|
all_trainable_variables=tf.trainable_variables(), trainable_regexes=params.trainable_regexes
|
||||||
|
)
|
||||||
|
with tf.control_dependencies(update_ops):
|
||||||
|
train_op = twml.optimizers.optimize_loss(
|
||||||
|
loss=loss,
|
||||||
|
variables=variables,
|
||||||
|
global_step=tf.train.get_global_step(),
|
||||||
|
optimizer=optimizer,
|
||||||
|
learning_rate=params.learning_rate,
|
||||||
|
learning_rate_decay_fn=twml.learning_rate_decay.get_learning_rate_decay_fn(params),
|
||||||
|
)
|
||||||
|
|
||||||
|
graph_output[output_label] = output
|
||||||
|
graph_output["loss"] = loss
|
||||||
|
graph_output["train_op"] = train_op
|
||||||
|
return graph_output
|
||||||
|
|
||||||
|
|
||||||
|
def get_params(args=None):
|
||||||
|
parser = get_arg_parser_light_ranking()
|
||||||
|
if args is None:
|
||||||
|
return parser.parse_args()
|
||||||
|
else:
|
||||||
|
return parser.parse_args(args)
|
||||||
|
|
||||||
|
|
||||||
|
def _main():
|
||||||
|
opt = get_params()
|
||||||
|
logging.info("parse is: ")
|
||||||
|
logging.info(opt)
|
||||||
|
|
||||||
|
feature_list = read_config(opt.feature_list).items()
|
||||||
|
feature_config = get_feature_config_light_ranking(
|
||||||
|
data_spec_path=opt.data_spec,
|
||||||
|
feature_list_provided=feature_list,
|
||||||
|
opt=opt,
|
||||||
|
add_gbdt=opt.use_gbdt_features,
|
||||||
|
run_light_ranking_group_metrics_in_bq=opt.run_light_ranking_group_metrics_in_bq,
|
||||||
|
)
|
||||||
|
feature_list_path = opt.feature_list
|
||||||
|
|
||||||
|
# --------------------------------------------------------
|
||||||
|
# Create Trainer
|
||||||
|
# --------------------------------------------------------
|
||||||
|
trainer = DataRecordTrainer(
|
||||||
|
name=opt.model_trainer_name,
|
||||||
|
params=opt,
|
||||||
|
build_graph_fn=build_graph,
|
||||||
|
save_dir=opt.save_dir,
|
||||||
|
run_config=None,
|
||||||
|
feature_config=feature_config,
|
||||||
|
metric_fn=get_metric_fn(opt.task_name, use_stratify_metrics=False),
|
||||||
|
)
|
||||||
|
if opt.directly_export_best:
|
||||||
|
logging.info("Directly exporting the model without training")
|
||||||
|
else:
|
||||||
|
# ----------------------------------------------------
|
||||||
|
# Model Training & Evaluation
|
||||||
|
# ----------------------------------------------------
|
||||||
|
eval_input_fn = trainer.get_eval_input_fn(repeat=False, shuffle=False)
|
||||||
|
train_input_fn = trainer.get_train_input_fn(shuffle=True)
|
||||||
|
|
||||||
|
if opt.distributed or opt.num_workers is not None:
|
||||||
|
learn = trainer.train_and_evaluate
|
||||||
|
else:
|
||||||
|
learn = trainer.learn
|
||||||
|
logging.info("Training...")
|
||||||
|
start = datetime.now()
|
||||||
|
|
||||||
|
early_stop_metric = "rce_unweighted_" + opt.task_name
|
||||||
|
learn(
|
||||||
|
early_stop_minimize=False,
|
||||||
|
early_stop_metric=early_stop_metric,
|
||||||
|
early_stop_patience=opt.early_stop_patience,
|
||||||
|
early_stop_tolerance=opt.early_stop_tolerance,
|
||||||
|
eval_input_fn=eval_input_fn,
|
||||||
|
train_input_fn=train_input_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
end = datetime.now()
|
||||||
|
logging.info("Training time: " + str(end - start))
|
||||||
|
|
||||||
|
logging.info("Exporting the models...")
|
||||||
|
|
||||||
|
# --------------------------------------------------------
|
||||||
|
# Do the model exporting
|
||||||
|
# --------------------------------------------------------
|
||||||
|
start = datetime.now()
|
||||||
|
if not opt.export_dir:
|
||||||
|
opt.export_dir = os.path.join(opt.save_dir, "exported_models")
|
||||||
|
|
||||||
|
raw_model_path = twml.contrib.export.export_fn.export_all_models(
|
||||||
|
trainer=trainer,
|
||||||
|
export_dir=opt.export_dir,
|
||||||
|
parse_fn=feature_config.get_parse_fn(),
|
||||||
|
serving_input_receiver_fn=feature_config.get_serving_input_receiver_fn(),
|
||||||
|
export_output_fn=twml.export_output_fns.batch_prediction_continuous_output_fn,
|
||||||
|
)
|
||||||
|
export_model_dir = decode_str_or_unicode(raw_model_path)
|
||||||
|
|
||||||
|
logging.info("Model export time: " + str(datetime.now() - start))
|
||||||
|
logging.info("The saved model directory is: " + opt.save_dir)
|
||||||
|
|
||||||
|
tf.logging.info("getting default continuous_feature_list")
|
||||||
|
continuous_feature_list = get_feature_list_for_light_ranking(feature_list_path, opt.data_spec)
|
||||||
|
continous_feature_list_save_path = os.path.join(opt.save_dir, "continuous_feature_list.json")
|
||||||
|
twml.util.write_file(continous_feature_list_save_path, continuous_feature_list, encode="json")
|
||||||
|
tf.logging.info(f"Finish writting files to {continous_feature_list_save_path}")
|
||||||
|
|
||||||
|
if opt.run_light_ranking_group_metrics:
|
||||||
|
# --------------------------------------------
|
||||||
|
# Run Light Ranking Group Metrics
|
||||||
|
# --------------------------------------------
|
||||||
|
run_group_metrics_light_ranking(
|
||||||
|
trainer=trainer,
|
||||||
|
data_dir=os.path.join(opt.eval_data_dir, opt.eval_start_datetime),
|
||||||
|
model_path=export_model_dir,
|
||||||
|
parse_fn=feature_config.get_parse_fn(),
|
||||||
|
)
|
||||||
|
|
||||||
|
if opt.run_light_ranking_group_metrics_in_bq:
|
||||||
|
# ----------------------------------------------------------------------------------------
|
||||||
|
# Get Light/Heavy Ranker Predictions for Light Ranking Group Metrics in BigQuery
|
||||||
|
# ----------------------------------------------------------------------------------------
|
||||||
|
trainer_pred = DataRecordTrainer(
|
||||||
|
name=opt.model_trainer_name,
|
||||||
|
params=opt,
|
||||||
|
build_graph_fn=partial(build_graph, run_light_ranking_group_metrics_in_bq=True),
|
||||||
|
save_dir=opt.save_dir + "/tmp/",
|
||||||
|
run_config=None,
|
||||||
|
feature_config=feature_config,
|
||||||
|
metric_fn=get_metric_fn(opt.task_name, use_stratify_metrics=False),
|
||||||
|
)
|
||||||
|
checkpoint_folder = os.path.join(opt.save_dir, "best_checkpoint")
|
||||||
|
checkpoint = tf.train.latest_checkpoint(checkpoint_folder, latest_filename=None)
|
||||||
|
tf.logging.info("\n\nPrediction from Checkpoint: {:}.\n\n".format(checkpoint))
|
||||||
|
run_group_metrics_light_ranking_in_bq(
|
||||||
|
trainer=trainer_pred, params=opt, checkpoint_path=checkpoint
|
||||||
|
)
|
||||||
|
|
||||||
|
tf.logging.info("Done Training & Prediction.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
_main()
|
@ -0,0 +1,89 @@
|
|||||||
|
from datetime import datetime
|
||||||
|
from functools import partial
|
||||||
|
import os
|
||||||
|
|
||||||
|
from ..libs.group_metrics import (
|
||||||
|
run_group_metrics_light_ranking,
|
||||||
|
run_group_metrics_light_ranking_in_bq,
|
||||||
|
)
|
||||||
|
from ..libs.metric_fn_utils import get_metric_fn
|
||||||
|
from ..libs.model_args import get_arg_parser_light_ranking
|
||||||
|
from ..libs.model_utils import read_config
|
||||||
|
from .deep_norm import build_graph, DataRecordTrainer, get_config_func, logging
|
||||||
|
|
||||||
|
|
||||||
|
# checkstyle: noqa
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = get_arg_parser_light_ranking()
|
||||||
|
parser.add_argument(
|
||||||
|
"--eval_checkpoint",
|
||||||
|
default=None,
|
||||||
|
type=str,
|
||||||
|
help="Which checkpoint to use for evaluation",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--saved_model_path",
|
||||||
|
default=None,
|
||||||
|
type=str,
|
||||||
|
help="Path to saved model for evaluation",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--run_binary_metrics",
|
||||||
|
default=False,
|
||||||
|
action="store_true",
|
||||||
|
help="Whether to compute the basic binary metrics for Light Ranking.",
|
||||||
|
)
|
||||||
|
|
||||||
|
opt = parser.parse_args()
|
||||||
|
logging.info("parse is: ")
|
||||||
|
logging.info(opt)
|
||||||
|
|
||||||
|
feature_list = read_config(opt.feature_list).items()
|
||||||
|
feature_config = get_config_func(opt.feat_config_type)(
|
||||||
|
data_spec_path=opt.data_spec,
|
||||||
|
feature_list_provided=feature_list,
|
||||||
|
opt=opt,
|
||||||
|
add_gbdt=opt.use_gbdt_features,
|
||||||
|
run_light_ranking_group_metrics_in_bq=opt.run_light_ranking_group_metrics_in_bq,
|
||||||
|
)
|
||||||
|
|
||||||
|
# -----------------------------------------------
|
||||||
|
# Create Trainer
|
||||||
|
# -----------------------------------------------
|
||||||
|
trainer = DataRecordTrainer(
|
||||||
|
name=opt.model_trainer_name,
|
||||||
|
params=opt,
|
||||||
|
build_graph_fn=partial(build_graph, run_light_ranking_group_metrics_in_bq=True),
|
||||||
|
save_dir=opt.save_dir,
|
||||||
|
run_config=None,
|
||||||
|
feature_config=feature_config,
|
||||||
|
metric_fn=get_metric_fn(opt.task_name, use_stratify_metrics=False),
|
||||||
|
)
|
||||||
|
|
||||||
|
# -----------------------------------------------
|
||||||
|
# Model Evaluation
|
||||||
|
# -----------------------------------------------
|
||||||
|
logging.info("Evaluating...")
|
||||||
|
start = datetime.now()
|
||||||
|
|
||||||
|
if opt.run_binary_metrics:
|
||||||
|
eval_input_fn = trainer.get_eval_input_fn(repeat=False, shuffle=False)
|
||||||
|
eval_steps = None if (opt.eval_steps is not None and opt.eval_steps < 0) else opt.eval_steps
|
||||||
|
trainer.estimator.evaluate(eval_input_fn, steps=eval_steps, checkpoint_path=opt.eval_checkpoint)
|
||||||
|
|
||||||
|
if opt.run_light_ranking_group_metrics_in_bq:
|
||||||
|
run_group_metrics_light_ranking_in_bq(
|
||||||
|
trainer=trainer, params=opt, checkpoint_path=opt.eval_checkpoint
|
||||||
|
)
|
||||||
|
|
||||||
|
if opt.run_light_ranking_group_metrics:
|
||||||
|
run_group_metrics_light_ranking(
|
||||||
|
trainer=trainer,
|
||||||
|
data_dir=os.path.join(opt.eval_data_dir, opt.eval_start_datetime),
|
||||||
|
model_path=opt.saved_model_path,
|
||||||
|
parse_fn=feature_config.get_parse_fn(),
|
||||||
|
)
|
||||||
|
|
||||||
|
end = datetime.now()
|
||||||
|
logging.info("Evaluating time: " + str(end - start))
|
@ -0,0 +1,187 @@
|
|||||||
|
import warnings
|
||||||
|
|
||||||
|
from twml.contrib.layers import ZscoreNormalization
|
||||||
|
|
||||||
|
from ...libs.customized_full_sparse import FullSparse
|
||||||
|
from ...libs.get_feat_config import FEAT_CONFIG_DEFAULT_VAL as MISSING_VALUE_MARKER
|
||||||
|
from ...libs.model_utils import (
|
||||||
|
_sparse_feature_fixup,
|
||||||
|
adaptive_transformation,
|
||||||
|
filter_nans_and_infs,
|
||||||
|
get_dense_out,
|
||||||
|
tensor_dropout,
|
||||||
|
)
|
||||||
|
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
# checkstyle: noqa
|
||||||
|
|
||||||
|
def light_ranking_mlp_ngbdt(features, is_training, params, label=None):
|
||||||
|
return deepnorm_light_ranking(
|
||||||
|
features,
|
||||||
|
is_training,
|
||||||
|
params,
|
||||||
|
label=label,
|
||||||
|
decay=params.momentum,
|
||||||
|
dense_emb_size=params.dense_embedding_size,
|
||||||
|
base_activation=tf.keras.layers.LeakyReLU(),
|
||||||
|
input_dropout_rate=params.dropout,
|
||||||
|
use_gbdt=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def deepnorm_light_ranking(
|
||||||
|
features,
|
||||||
|
is_training,
|
||||||
|
params,
|
||||||
|
label=None,
|
||||||
|
decay=0.99999,
|
||||||
|
dense_emb_size=128,
|
||||||
|
base_activation=None,
|
||||||
|
input_dropout_rate=None,
|
||||||
|
input_dense_type="self_atten_dense",
|
||||||
|
emb_dense_type="self_atten_dense",
|
||||||
|
mlp_dense_type="self_atten_dense",
|
||||||
|
use_gbdt=False,
|
||||||
|
):
|
||||||
|
# --------------------------------------------------------
|
||||||
|
# Initial Parameter Checking
|
||||||
|
# --------------------------------------------------------
|
||||||
|
if base_activation is None:
|
||||||
|
base_activation = tf.keras.layers.LeakyReLU()
|
||||||
|
|
||||||
|
if label is not None:
|
||||||
|
warnings.warn(
|
||||||
|
"Label is unused in deepnorm_gbdt. Stop using this argument.",
|
||||||
|
DeprecationWarning,
|
||||||
|
)
|
||||||
|
|
||||||
|
with tf.variable_scope("helper_layers"):
|
||||||
|
full_sparse_layer = FullSparse(
|
||||||
|
output_size=params.sparse_embedding_size,
|
||||||
|
activation=base_activation,
|
||||||
|
use_sparse_grads=is_training,
|
||||||
|
use_binary_values=False,
|
||||||
|
dtype=tf.float32,
|
||||||
|
)
|
||||||
|
input_normalizing_layer = ZscoreNormalization(decay=decay, name="input_normalizing_layer")
|
||||||
|
|
||||||
|
# --------------------------------------------------------
|
||||||
|
# Feature Selection & Embedding
|
||||||
|
# --------------------------------------------------------
|
||||||
|
if use_gbdt:
|
||||||
|
sparse_gbdt_features = _sparse_feature_fixup(features["gbdt_sparse"], params.input_size_bits)
|
||||||
|
if input_dropout_rate is not None:
|
||||||
|
sparse_gbdt_features = tensor_dropout(
|
||||||
|
sparse_gbdt_features, input_dropout_rate, is_training, sparse_tensor=True
|
||||||
|
)
|
||||||
|
|
||||||
|
total_embed = full_sparse_layer(sparse_gbdt_features, use_binary_values=True)
|
||||||
|
|
||||||
|
if (input_dropout_rate is not None) and is_training:
|
||||||
|
total_embed = total_embed / (1 - input_dropout_rate)
|
||||||
|
|
||||||
|
else:
|
||||||
|
with tf.variable_scope("dense_branch"):
|
||||||
|
dense_continuous_features = filter_nans_and_infs(features["continuous"])
|
||||||
|
|
||||||
|
if params.use_missing_sub_branch:
|
||||||
|
is_missing = tf.equal(dense_continuous_features, MISSING_VALUE_MARKER)
|
||||||
|
continuous_features_filled = tf.where(
|
||||||
|
is_missing,
|
||||||
|
tf.zeros_like(dense_continuous_features),
|
||||||
|
dense_continuous_features,
|
||||||
|
)
|
||||||
|
normalized_features = input_normalizing_layer(
|
||||||
|
continuous_features_filled, is_training, tf.math.logical_not(is_missing)
|
||||||
|
)
|
||||||
|
|
||||||
|
with tf.variable_scope("missing_sub_branch"):
|
||||||
|
missing_feature_embed = get_dense_out(
|
||||||
|
tf.cast(is_missing, tf.float32),
|
||||||
|
dense_emb_size,
|
||||||
|
activation=base_activation,
|
||||||
|
dense_type=input_dense_type,
|
||||||
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
continuous_features_filled = dense_continuous_features
|
||||||
|
normalized_features = input_normalizing_layer(continuous_features_filled, is_training)
|
||||||
|
|
||||||
|
with tf.variable_scope("continuous_sub_branch"):
|
||||||
|
normalized_features = adaptive_transformation(
|
||||||
|
normalized_features, is_training, func_type="tiny"
|
||||||
|
)
|
||||||
|
|
||||||
|
if input_dropout_rate is not None:
|
||||||
|
normalized_features = tensor_dropout(
|
||||||
|
normalized_features,
|
||||||
|
input_dropout_rate,
|
||||||
|
is_training,
|
||||||
|
sparse_tensor=False,
|
||||||
|
)
|
||||||
|
filled_feature_embed = get_dense_out(
|
||||||
|
normalized_features,
|
||||||
|
dense_emb_size,
|
||||||
|
activation=base_activation,
|
||||||
|
dense_type=input_dense_type,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.use_missing_sub_branch:
|
||||||
|
dense_embed = tf.concat(
|
||||||
|
[filled_feature_embed, missing_feature_embed], axis=1, name="merge_dense_emb"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
dense_embed = filled_feature_embed
|
||||||
|
|
||||||
|
with tf.variable_scope("sparse_branch"):
|
||||||
|
sparse_discrete_features = _sparse_feature_fixup(
|
||||||
|
features["sparse_no_continuous"], params.input_size_bits
|
||||||
|
)
|
||||||
|
if input_dropout_rate is not None:
|
||||||
|
sparse_discrete_features = tensor_dropout(
|
||||||
|
sparse_discrete_features, input_dropout_rate, is_training, sparse_tensor=True
|
||||||
|
)
|
||||||
|
|
||||||
|
discrete_features_embed = full_sparse_layer(sparse_discrete_features, use_binary_values=True)
|
||||||
|
|
||||||
|
if (input_dropout_rate is not None) and is_training:
|
||||||
|
discrete_features_embed = discrete_features_embed / (1 - input_dropout_rate)
|
||||||
|
|
||||||
|
total_embed = tf.concat(
|
||||||
|
[dense_embed, discrete_features_embed],
|
||||||
|
axis=1,
|
||||||
|
name="total_embed",
|
||||||
|
)
|
||||||
|
|
||||||
|
total_embed = tf.layers.batch_normalization(
|
||||||
|
total_embed,
|
||||||
|
training=is_training,
|
||||||
|
renorm_momentum=decay,
|
||||||
|
momentum=decay,
|
||||||
|
renorm=is_training,
|
||||||
|
trainable=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# --------------------------------------------------------
|
||||||
|
# MLP Layers
|
||||||
|
# --------------------------------------------------------
|
||||||
|
with tf.variable_scope("MLP_branch"):
|
||||||
|
|
||||||
|
assert params.num_mlp_layers >= 0
|
||||||
|
embed_list = [total_embed] + [None for _ in range(params.num_mlp_layers)]
|
||||||
|
dense_types = [emb_dense_type] + [mlp_dense_type for _ in range(params.num_mlp_layers - 1)]
|
||||||
|
|
||||||
|
for xl in range(1, params.num_mlp_layers + 1):
|
||||||
|
neurons = params.mlp_neuron_scale ** (params.num_mlp_layers + 1 - xl)
|
||||||
|
embed_list[xl] = get_dense_out(
|
||||||
|
embed_list[xl - 1], neurons, activation=base_activation, dense_type=dense_types[xl - 1]
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.task_name in ["Sent", "HeavyRankPosition", "HeavyRankProbability"]:
|
||||||
|
logits = get_dense_out(embed_list[-1], 1, activation=None, dense_type=mlp_dense_type)
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError("Invalid Task Name !")
|
||||||
|
|
||||||
|
output_dict = {"output": logits}
|
||||||
|
return output_dict
|
@ -0,0 +1,337 @@
|
|||||||
|
scala_library(
|
||||||
|
sources = ["**/*.scala"],
|
||||||
|
compiler_option_sets = ["fatal_warnings"],
|
||||||
|
strict_deps = True,
|
||||||
|
tags = [
|
||||||
|
"bazel-compatible",
|
||||||
|
],
|
||||||
|
dependencies = [
|
||||||
|
"3rdparty/jvm/com/twitter/bijection:scrooge",
|
||||||
|
"3rdparty/jvm/com/twitter/storehaus:core",
|
||||||
|
"abdecider",
|
||||||
|
"abuse/detection/src/main/thrift/com/twitter/abuse/detection/scoring:thrift-scala",
|
||||||
|
"ann/src/main/scala/com/twitter/ann/common",
|
||||||
|
"ann/src/main/thrift/com/twitter/ann/common:ann-common-scala",
|
||||||
|
"audience-rewards/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"communities/thrift/src/main/thrift/com/twitter/communities:thrift-scala",
|
||||||
|
"configapi/configapi-core",
|
||||||
|
"configapi/configapi-decider",
|
||||||
|
"content-mixer/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"content-recommender/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"copyselectionservice/server/src/main/scala/com/twitter/copyselectionservice/algorithms",
|
||||||
|
"copyselectionservice/thrift/src/main/thrift:copyselectionservice-scala",
|
||||||
|
"cortex-deepbird/thrift/src/main/thrift:thrift-java",
|
||||||
|
"cr-mixer/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"cuad/projects/hashspace/thrift:thrift-scala",
|
||||||
|
"cuad/projects/tagspace/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"detopic/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"discovery-common/src/main/scala/com/twitter/discovery/common/configapi",
|
||||||
|
"discovery-common/src/main/scala/com/twitter/discovery/common/ddg",
|
||||||
|
"discovery-common/src/main/scala/com/twitter/discovery/common/environment",
|
||||||
|
"discovery-common/src/main/scala/com/twitter/discovery/common/fatigue",
|
||||||
|
"discovery-common/src/main/scala/com/twitter/discovery/common/nackwarmupfilter",
|
||||||
|
"discovery-common/src/main/scala/com/twitter/discovery/common/server",
|
||||||
|
"discovery-ds/src/main/thrift/com/twitter/dds/scio/searcher_aggregate_history_srp:searcher_aggregate_history_srp-scala",
|
||||||
|
"escherbird/src/scala/com/twitter/escherbird/util/metadatastitch",
|
||||||
|
"escherbird/src/scala/com/twitter/escherbird/util/uttclient",
|
||||||
|
"escherbird/src/thrift/com/twitter/escherbird/utt:strato-columns-scala",
|
||||||
|
"eventbus/client",
|
||||||
|
"eventdetection/event_context/src/main/scala/com/twitter/eventdetection/event_context/util",
|
||||||
|
"events-recos/events-recos-service/src/main/thrift:events-recos-thrift-scala",
|
||||||
|
"explore/explore-ranker/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"featureswitches/featureswitches-core/src/main/scala",
|
||||||
|
"featureswitches/featureswitches-core/src/main/scala:dynmap",
|
||||||
|
"featureswitches/featureswitches-core/src/main/scala:recipient",
|
||||||
|
"featureswitches/featureswitches-core/src/main/scala:useragent",
|
||||||
|
"featureswitches/featureswitches-core/src/main/scala/com/twitter/featureswitches/v2/builder",
|
||||||
|
"finagle-internal/mtls/src/main/scala/com/twitter/finagle/mtls/authentication",
|
||||||
|
"finagle-internal/mtls/src/main/scala/com/twitter/finagle/mtls/server",
|
||||||
|
"finagle-internal/ostrich-stats",
|
||||||
|
"finagle/finagle-core/src/main",
|
||||||
|
"finagle/finagle-http/src/main/scala",
|
||||||
|
"finagle/finagle-memcached/src/main/scala",
|
||||||
|
"finagle/finagle-stats",
|
||||||
|
"finagle/finagle-thriftmux",
|
||||||
|
"finagle/finagle-tunable/src/main/scala",
|
||||||
|
"finagle/finagle-zipkin-scribe",
|
||||||
|
"finatra-internal/abdecider",
|
||||||
|
"finatra-internal/decider",
|
||||||
|
"finatra-internal/mtls-http/src/main/scala",
|
||||||
|
"finatra-internal/mtls-thriftmux/src/main/scala",
|
||||||
|
"finatra/http-client/src/main/scala",
|
||||||
|
"finatra/http-core/src/main/java/com/twitter/finatra/http",
|
||||||
|
"finatra/http-core/src/main/scala/com/twitter/finatra/http/response",
|
||||||
|
"finatra/http-server/src/main/scala/com/twitter/finatra/http",
|
||||||
|
"finatra/http-server/src/main/scala/com/twitter/finatra/http/filters",
|
||||||
|
"finatra/inject/inject-app/src/main/java/com/twitter/inject/annotations",
|
||||||
|
"finatra/inject/inject-app/src/main/scala",
|
||||||
|
"finatra/inject/inject-core/src/main/scala",
|
||||||
|
"finatra/inject/inject-server/src/main/scala",
|
||||||
|
"finatra/inject/inject-slf4j/src/main/scala/com/twitter/inject",
|
||||||
|
"finatra/inject/inject-thrift-client/src/main/scala",
|
||||||
|
"finatra/inject/inject-utils/src/main/scala",
|
||||||
|
"finatra/utils/src/main/java/com/twitter/finatra/annotations",
|
||||||
|
"fleets/fleets-proxy/thrift/src/main/thrift:fleet-scala",
|
||||||
|
"fleets/fleets-proxy/thrift/src/main/thrift/service:baseservice-scala",
|
||||||
|
"flock-client/src/main/scala",
|
||||||
|
"flock-client/src/main/thrift:thrift-scala",
|
||||||
|
"follow-recommendations-service/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"frigate/frigate-common:base",
|
||||||
|
"frigate/frigate-common:config",
|
||||||
|
"frigate/frigate-common:debug",
|
||||||
|
"frigate/frigate-common:entity_graph_client",
|
||||||
|
"frigate/frigate-common:history",
|
||||||
|
"frigate/frigate-common:logger",
|
||||||
|
"frigate/frigate-common:ml-base",
|
||||||
|
"frigate/frigate-common:ml-feature",
|
||||||
|
"frigate/frigate-common:ml-prediction",
|
||||||
|
"frigate/frigate-common:ntab",
|
||||||
|
"frigate/frigate-common:predicate",
|
||||||
|
"frigate/frigate-common:rec_types",
|
||||||
|
"frigate/frigate-common:score_summary",
|
||||||
|
"frigate/frigate-common:util",
|
||||||
|
"frigate/frigate-common/src/main/scala/com/twitter/frigate/common/candidate",
|
||||||
|
"frigate/frigate-common/src/main/scala/com/twitter/frigate/common/experiments",
|
||||||
|
"frigate/frigate-common/src/main/scala/com/twitter/frigate/common/filter",
|
||||||
|
"frigate/frigate-common/src/main/scala/com/twitter/frigate/common/modules/store:semantic_core_stores",
|
||||||
|
"frigate/frigate-common/src/main/scala/com/twitter/frigate/common/store",
|
||||||
|
"frigate/frigate-common/src/main/scala/com/twitter/frigate/common/store/deviceinfo",
|
||||||
|
"frigate/frigate-common/src/main/scala/com/twitter/frigate/common/store/interests",
|
||||||
|
"frigate/frigate-common/src/main/scala/com/twitter/frigate/common/store/strato",
|
||||||
|
"frigate/push-mixer/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"geo/geo-prediction/src/main/thrift:local-viral-tweets-thrift-scala",
|
||||||
|
"geoduck/service/src/main/scala/com/twitter/geoduck/service/common/clientmodules",
|
||||||
|
"geoduck/util/country",
|
||||||
|
"gizmoduck/client/src/main/scala/com/twitter/gizmoduck/testusers/client",
|
||||||
|
"hermit/hermit-core:model-user_state",
|
||||||
|
"hermit/hermit-core:predicate",
|
||||||
|
"hermit/hermit-core:predicate-gizmoduck",
|
||||||
|
"hermit/hermit-core:predicate-scarecrow",
|
||||||
|
"hermit/hermit-core:predicate-socialgraph",
|
||||||
|
"hermit/hermit-core:predicate-tweetypie",
|
||||||
|
"hermit/hermit-core:store-labeled_push_recs",
|
||||||
|
"hermit/hermit-core:store-metastore",
|
||||||
|
"hermit/hermit-core:store-timezone",
|
||||||
|
"hermit/hermit-core:store-tweetypie",
|
||||||
|
"hermit/hermit-core/src/main/scala/com/twitter/hermit/constants",
|
||||||
|
"hermit/hermit-core/src/main/scala/com/twitter/hermit/model",
|
||||||
|
"hermit/hermit-core/src/main/scala/com/twitter/hermit/store",
|
||||||
|
"hermit/hermit-core/src/main/scala/com/twitter/hermit/store/common",
|
||||||
|
"hermit/hermit-core/src/main/scala/com/twitter/hermit/store/gizmoduck",
|
||||||
|
"hermit/hermit-core/src/main/scala/com/twitter/hermit/store/scarecrow",
|
||||||
|
"hermit/hermit-core/src/main/scala/com/twitter/hermit/store/semantic_core",
|
||||||
|
"hermit/hermit-core/src/main/scala/com/twitter/hermit/store/user_htl_session_store",
|
||||||
|
"hermit/hermit-core/src/main/scala/com/twitter/hermit/store/user_interest",
|
||||||
|
"hmli/hss/src/main/thrift/com/twitter/hss:thrift-scala",
|
||||||
|
"ibis2/service/src/main/scala/com/twitter/ibis2/lib",
|
||||||
|
"ibis2/service/src/main/thrift/com/twitter/ibis2/service:ibis2-service-scala",
|
||||||
|
"interests-service/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"interests_discovery/thrift/src/main/thrift:batch-thrift-scala",
|
||||||
|
"interests_discovery/thrift/src/main/thrift:service-thrift-scala",
|
||||||
|
"kujaku/thrift/src/main/thrift:domain-scala",
|
||||||
|
"live-video-timeline/client/src/main/scala/com/twitter/livevideo/timeline/client/v2",
|
||||||
|
"live-video-timeline/domain/src/main/scala/com/twitter/livevideo/timeline/domain",
|
||||||
|
"live-video-timeline/domain/src/main/scala/com/twitter/livevideo/timeline/domain/v2",
|
||||||
|
"live-video-timeline/thrift/src/main/thrift/com/twitter/livevideo/timeline:thrift-scala",
|
||||||
|
"live-video/common/src/main/scala/com/twitter/livevideo/common/domain/v2",
|
||||||
|
"live-video/common/src/main/scala/com/twitter/livevideo/common/ids",
|
||||||
|
"notifications-platform/inbound-notifications/src/main/thrift/com/twitter/inbound_notifications:exception-scala",
|
||||||
|
"notifications-platform/inbound-notifications/src/main/thrift/com/twitter/inbound_notifications:thrift-scala",
|
||||||
|
"notifications-platform/platform-lib/src/main/thrift/com/twitter/notifications/platform:custom-notification-actions-scala",
|
||||||
|
"notifications-platform/platform-lib/src/main/thrift/com/twitter/notifications/platform:thrift-scala",
|
||||||
|
"notifications-relevance/src/scala/com/twitter/nrel/heavyranker",
|
||||||
|
"notifications-relevance/src/scala/com/twitter/nrel/hydration/base",
|
||||||
|
"notifications-relevance/src/scala/com/twitter/nrel/hydration/frigate",
|
||||||
|
"notifications-relevance/src/scala/com/twitter/nrel/hydration/push",
|
||||||
|
"notifications-relevance/src/scala/com/twitter/nrel/lightranker",
|
||||||
|
"notificationservice/common/src/main/scala/com/twitter/notificationservice/genericfeedbackstore",
|
||||||
|
"notificationservice/common/src/main/scala/com/twitter/notificationservice/model:alias",
|
||||||
|
"notificationservice/common/src/main/scala/com/twitter/notificationservice/model/service",
|
||||||
|
"notificationservice/common/src/test/scala/com/twitter/notificationservice/mocks",
|
||||||
|
"notificationservice/scribe/src/main/scala/com/twitter/notificationservice/scribe/manhattan:mh_wrapper",
|
||||||
|
"notificationservice/thrift/src/main/thrift/com/twitter/notificationservice/api:thrift-scala",
|
||||||
|
"notificationservice/thrift/src/main/thrift/com/twitter/notificationservice/badgecount-api:thrift-scala",
|
||||||
|
"notificationservice/thrift/src/main/thrift/com/twitter/notificationservice/generic_notifications:thrift-scala",
|
||||||
|
"notifinfra/ni-lib/src/main/scala/com/twitter/ni/lib/logged_out_transform",
|
||||||
|
"observability/observability-manhattan-client/src/main/scala",
|
||||||
|
"onboarding/service/src/main/scala/com/twitter/onboarding/task/service/models/external",
|
||||||
|
"onboarding/service/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"people-discovery/api/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"periscope/api-proxy-thrift/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"product-mixer/core/src/main/scala/com/twitter/product_mixer/core/module",
|
||||||
|
"product-mixer/core/src/main/scala/com/twitter/product_mixer/core/module/stringcenter",
|
||||||
|
"product-mixer/core/src/main/thrift/com/twitter/product_mixer/core:thrift-scala",
|
||||||
|
"qig-ranker/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"rux-ds/src/main/thrift/com/twitter/ruxds/jobs/user_past_aggregate:user_past_aggregate-scala",
|
||||||
|
"rux/common/src/main/scala/com/twitter/rux/common/encode",
|
||||||
|
"rux/common/thrift/src/main/thrift/rux-context:rux-context-scala",
|
||||||
|
"rux/common/thrift/src/main/thrift/strato:strato-scala",
|
||||||
|
"scribelib/marshallers/src/main/scala/com/twitter/scribelib/marshallers",
|
||||||
|
"scrooge/scrooge-core",
|
||||||
|
"scrooge/scrooge-serializer/src/main/scala",
|
||||||
|
"sensitive-ds/src/main/thrift/com/twitter/scio/nsfw_user_segmentation:nsfw_user_segmentation-scala",
|
||||||
|
"servo/decider/src/main/scala",
|
||||||
|
"servo/request/src/main/scala",
|
||||||
|
"servo/util/src/main/scala",
|
||||||
|
"src/java/com/twitter/ml/api:api-base",
|
||||||
|
"src/java/com/twitter/ml/prediction/core",
|
||||||
|
"src/scala/com/twitter/frigate/data_pipeline/common",
|
||||||
|
"src/scala/com/twitter/frigate/data_pipeline/embedding_cg:embedding_cg-test-user-ids",
|
||||||
|
"src/scala/com/twitter/frigate/data_pipeline/features_common",
|
||||||
|
"src/scala/com/twitter/frigate/news_article_recs/news_articles_metadata:thrift-scala",
|
||||||
|
"src/scala/com/twitter/frontpage/stream/util",
|
||||||
|
"src/scala/com/twitter/language/normalization",
|
||||||
|
"src/scala/com/twitter/ml/api/embedding",
|
||||||
|
"src/scala/com/twitter/ml/api/util:datarecord",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/catalog/entities/core",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/catalog/entities/magicrecs",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/catalog/features/core:aggregate",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/catalog/features/cuad:aggregate",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/catalog/features/embeddings",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/catalog/features/magicrecs:aggregate",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/catalog/features/topic_signals:aggregate",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/lib",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/lib/data",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/lib/dynamic",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/lib/entity",
|
||||||
|
"src/scala/com/twitter/ml/featurestore/lib/online",
|
||||||
|
"src/scala/com/twitter/recommendation/interests/discovery/core/config",
|
||||||
|
"src/scala/com/twitter/recommendation/interests/discovery/core/deploy",
|
||||||
|
"src/scala/com/twitter/recommendation/interests/discovery/core/model",
|
||||||
|
"src/scala/com/twitter/recommendation/interests/discovery/popgeo/deploy",
|
||||||
|
"src/scala/com/twitter/simclusters_v2/common",
|
||||||
|
"src/scala/com/twitter/storehaus_internal/manhattan",
|
||||||
|
"src/scala/com/twitter/storehaus_internal/manhattan/config",
|
||||||
|
"src/scala/com/twitter/storehaus_internal/memcache",
|
||||||
|
"src/scala/com/twitter/storehaus_internal/memcache/config",
|
||||||
|
"src/scala/com/twitter/storehaus_internal/util",
|
||||||
|
"src/scala/com/twitter/taxi/common",
|
||||||
|
"src/scala/com/twitter/taxi/config",
|
||||||
|
"src/scala/com/twitter/taxi/deploy",
|
||||||
|
"src/scala/com/twitter/taxi/trending/common",
|
||||||
|
"src/thrift/com/twitter/ads/adserver:adserver_rpc-scala",
|
||||||
|
"src/thrift/com/twitter/clientapp/gen:clientapp-scala",
|
||||||
|
"src/thrift/com/twitter/core_workflows/user_model:user_model-scala",
|
||||||
|
"src/thrift/com/twitter/escherbird/common:constants-scala",
|
||||||
|
"src/thrift/com/twitter/escherbird/metadata:megadata-scala",
|
||||||
|
"src/thrift/com/twitter/escherbird/metadata:metadata-service-scala",
|
||||||
|
"src/thrift/com/twitter/escherbird/search:search-service-scala",
|
||||||
|
"src/thrift/com/twitter/expandodo:only-scala",
|
||||||
|
"src/thrift/com/twitter/frigate:frigate-common-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate:frigate-ml-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate:frigate-notification-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate:frigate-secondary-accounts-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate:frigate-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate:frigate-user-media-representation-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate/data_pipeline:frigate-user-history-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate/dau_model:frigate-dau-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate/magic_events:frigate-magic-events-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate/magic_events/scribe:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate/pushcap:frigate-pushcap-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate/pushservice:frigate-pushservice-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate/scribe:frigate-scribe-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate/subscribed_search:frigate-subscribed-search-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/frigate/user_states:frigate-userstates-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/geoduck:geoduck-scala",
|
||||||
|
"src/thrift/com/twitter/gizmoduck:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/gizmoduck:user-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/hermit:hermit-scala",
|
||||||
|
"src/thrift/com/twitter/hermit/pop_geo:hermit-pop-geo-scala",
|
||||||
|
"src/thrift/com/twitter/hermit/stp:hermit-stp-scala",
|
||||||
|
"src/thrift/com/twitter/ibis:service-scala",
|
||||||
|
"src/thrift/com/twitter/manhattan:v1-scala",
|
||||||
|
"src/thrift/com/twitter/manhattan:v2-scala",
|
||||||
|
"src/thrift/com/twitter/ml/api:data-java",
|
||||||
|
"src/thrift/com/twitter/ml/api:data-scala",
|
||||||
|
"src/thrift/com/twitter/ml/featurestore/timelines:ml-features-timelines-scala",
|
||||||
|
"src/thrift/com/twitter/ml/featurestore/timelines:ml-features-timelines-strato",
|
||||||
|
"src/thrift/com/twitter/ml/prediction_service:prediction_service-java",
|
||||||
|
"src/thrift/com/twitter/permissions_storage:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/pink-floyd/thrift:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/recos:recos-common-scala",
|
||||||
|
"src/thrift/com/twitter/recos/user_tweet_entity_graph:user_tweet_entity_graph-scala",
|
||||||
|
"src/thrift/com/twitter/recos/user_user_graph:user_user_graph-scala",
|
||||||
|
"src/thrift/com/twitter/relevance/feature_store:feature_store-scala",
|
||||||
|
"src/thrift/com/twitter/search:earlybird-scala",
|
||||||
|
"src/thrift/com/twitter/search/common:features-scala",
|
||||||
|
"src/thrift/com/twitter/search/query_interaction_graph:query_interaction_graph-scala",
|
||||||
|
"src/thrift/com/twitter/search/query_interaction_graph/service:qig-service-scala",
|
||||||
|
"src/thrift/com/twitter/service/metastore/gen:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/service/scarecrow/gen:scarecrow-scala",
|
||||||
|
"src/thrift/com/twitter/service/scarecrow/gen:tiered-actions-scala",
|
||||||
|
"src/thrift/com/twitter/simclusters_v2:simclusters_v2-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/socialgraph:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/spam/rtf:safety-level-scala",
|
||||||
|
"src/thrift/com/twitter/timelinemixer:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/timelinemixer/server/internal:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/timelines/author_features/user_health:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/timelines/real_graph:real_graph-scala",
|
||||||
|
"src/thrift/com/twitter/timelinescorer:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/timelinescorer/server/internal:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/timelineservice/server/internal:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/timelineservice/server/suggests/logging:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/trends/common:common-scala",
|
||||||
|
"src/thrift/com/twitter/trends/trip_v1:trip-tweets-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/tweetypie:service-scala",
|
||||||
|
"src/thrift/com/twitter/tweetypie:tweet-scala",
|
||||||
|
"src/thrift/com/twitter/user_session_store:thrift-scala",
|
||||||
|
"src/thrift/com/twitter/wtf/candidate:wtf-candidate-scala",
|
||||||
|
"src/thrift/com/twitter/wtf/interest:interest-thrift-scala",
|
||||||
|
"src/thrift/com/twitter/wtf/scalding/common:thrift-scala",
|
||||||
|
"stitch/stitch-core",
|
||||||
|
"stitch/stitch-gizmoduck",
|
||||||
|
"stitch/stitch-socialgraph/src/main/scala",
|
||||||
|
"stitch/stitch-storehaus/src/main/scala",
|
||||||
|
"stitch/stitch-tweetypie/src/main/scala",
|
||||||
|
"storage/clients/manhattan/client/src/main/scala",
|
||||||
|
"strato/config/columns/clients:clients-strato-client",
|
||||||
|
"strato/config/columns/geo/user:user-strato-client",
|
||||||
|
"strato/config/columns/globe/curation:curation-strato-client",
|
||||||
|
"strato/config/columns/interests:interests-strato-client",
|
||||||
|
"strato/config/columns/ml/featureStore:featureStore-strato-client",
|
||||||
|
"strato/config/columns/notifications:notifications-strato-client",
|
||||||
|
"strato/config/columns/notifinfra:notifinfra-strato-client",
|
||||||
|
"strato/config/columns/periscope:periscope-strato-client",
|
||||||
|
"strato/config/columns/rux",
|
||||||
|
"strato/config/columns/rux:rux-strato-client",
|
||||||
|
"strato/config/columns/rux/open-app:open-app-strato-client",
|
||||||
|
"strato/config/columns/socialgraph/graphs:graphs-strato-client",
|
||||||
|
"strato/config/columns/socialgraph/service/soft_users:soft_users-strato-client",
|
||||||
|
"strato/config/columns/translation/service:service-strato-client",
|
||||||
|
"strato/config/columns/translation/service/platform:platform-strato-client",
|
||||||
|
"strato/config/columns/trends/trip:trip-strato-client",
|
||||||
|
"strato/config/src/thrift/com/twitter/strato/columns/frigate:logged-out-web-notifications-scala",
|
||||||
|
"strato/config/src/thrift/com/twitter/strato/columns/notifications:thrift-scala",
|
||||||
|
"strato/src/main/scala/com/twitter/strato/config",
|
||||||
|
"strato/src/main/scala/com/twitter/strato/response",
|
||||||
|
"thrift-web-forms",
|
||||||
|
"timeline-training-service/service/thrift/src/main/thrift:thrift-scala",
|
||||||
|
"timelines/src/main/scala/com/twitter/timelines/features/app",
|
||||||
|
"topic-social-proof/server/src/main/thrift:thrift-scala",
|
||||||
|
"topiclisting/topiclisting-core/src/main/scala/com/twitter/topiclisting",
|
||||||
|
"topiclisting/topiclisting-utt/src/main/scala/com/twitter/topiclisting/utt",
|
||||||
|
"trends/common/src/main/thrift/com/twitter/trends/common:thrift-scala",
|
||||||
|
"tweetypie/src/scala/com/twitter/tweetypie/tweettext",
|
||||||
|
"twitter-context/src/main/scala",
|
||||||
|
"twitter-server-internal",
|
||||||
|
"twitter-server/server/src/main/scala",
|
||||||
|
"twitter-text/lib/java/src/main/java/com/twitter/twittertext",
|
||||||
|
"twml/runtime/src/main/scala/com/twitter/deepbird/runtime/prediction_engine:prediction_engine_mkl",
|
||||||
|
"ubs/common/src/main/thrift/com/twitter/ubs:broadcast-thrift-scala",
|
||||||
|
"ubs/common/src/main/thrift/com/twitter/ubs:seller_application-thrift-scala",
|
||||||
|
"user_session_store/src/main/scala/com/twitter/user_session_store/impl/manhattan/readwrite",
|
||||||
|
"util-internal/scribe",
|
||||||
|
"util-internal/tunable/src/main/scala/com/twitter/util/tunable",
|
||||||
|
"util/util-app",
|
||||||
|
"util/util-hashing/src/main/scala",
|
||||||
|
"util/util-slf4j-api/src/main/scala",
|
||||||
|
"util/util-stats/src/main/scala",
|
||||||
|
"visibility/lib/src/main/scala/com/twitter/visibility/builder",
|
||||||
|
"visibility/lib/src/main/scala/com/twitter/visibility/interfaces/push_service",
|
||||||
|
"visibility/lib/src/main/scala/com/twitter/visibility/interfaces/spaces",
|
||||||
|
"visibility/lib/src/main/scala/com/twitter/visibility/util",
|
||||||
|
],
|
||||||
|
exports = [
|
||||||
|
"strato/config/src/thrift/com/twitter/strato/columns/frigate:logged-out-web-notifications-scala",
|
||||||
|
],
|
||||||
|
)
|
@ -0,0 +1,93 @@
|
|||||||
|
package com.twitter.frigate.pushservice
|
||||||
|
|
||||||
|
import com.google.inject.Inject
|
||||||
|
import com.google.inject.Singleton
|
||||||
|
import com.twitter.finagle.mtls.authentication.ServiceIdentifier
|
||||||
|
import com.twitter.finagle.thrift.ClientId
|
||||||
|
import com.twitter.finatra.thrift.routing.ThriftWarmup
|
||||||
|
import com.twitter.util.logging.Logging
|
||||||
|
import com.twitter.inject.utils.Handler
|
||||||
|
import com.twitter.frigate.pushservice.{thriftscala => t}
|
||||||
|
import com.twitter.frigate.thriftscala.NotificationDisplayLocation
|
||||||
|
import com.twitter.util.Stopwatch
|
||||||
|
import com.twitter.scrooge.Request
|
||||||
|
import com.twitter.scrooge.Response
|
||||||
|
import com.twitter.util.Return
|
||||||
|
import com.twitter.util.Throw
|
||||||
|
import com.twitter.util.Try
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Warms up the refresh request path.
|
||||||
|
* If service is running as pushservice-send then the warmup does nothing.
|
||||||
|
*
|
||||||
|
* When making the warmup refresh requests we
|
||||||
|
* - Set skipFilters to true to execute as much of the request path as possible
|
||||||
|
* - Set darkWrite to true to prevent sending a push
|
||||||
|
*/
|
||||||
|
@Singleton
|
||||||
|
class PushMixerThriftServerWarmupHandler @Inject() (
|
||||||
|
warmup: ThriftWarmup,
|
||||||
|
serviceIdentifier: ServiceIdentifier)
|
||||||
|
extends Handler
|
||||||
|
with Logging {
|
||||||
|
|
||||||
|
private val clientId = ClientId("thrift-warmup-client")
|
||||||
|
|
||||||
|
def handle(): Unit = {
|
||||||
|
val refreshServices = Set(
|
||||||
|
"frigate-pushservice",
|
||||||
|
"frigate-pushservice-canary",
|
||||||
|
"frigate-pushservice-canary-control",
|
||||||
|
"frigate-pushservice-canary-treatment"
|
||||||
|
)
|
||||||
|
val isRefresh = refreshServices.contains(serviceIdentifier.service)
|
||||||
|
if (isRefresh && !serviceIdentifier.isLocal) refreshWarmup()
|
||||||
|
}
|
||||||
|
|
||||||
|
def refreshWarmup(): Unit = {
|
||||||
|
val elapsed = Stopwatch.start()
|
||||||
|
val testIds = Seq(
|
||||||
|
1,
|
||||||
|
2,
|
||||||
|
3
|
||||||
|
)
|
||||||
|
try {
|
||||||
|
clientId.asCurrent {
|
||||||
|
testIds.foreach { id =>
|
||||||
|
val warmupReq = warmupQuery(id)
|
||||||
|
info(s"Sending warm-up request to service with query: $warmupReq")
|
||||||
|
warmup.sendRequest(
|
||||||
|
method = t.PushService.Refresh,
|
||||||
|
req = Request(t.PushService.Refresh.Args(warmupReq)))(assertWarmupResponse)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} catch {
|
||||||
|
case e: Throwable =>
|
||||||
|
error(e.getMessage, e)
|
||||||
|
}
|
||||||
|
info(s"Warm up complete. Time taken: ${elapsed().toString}")
|
||||||
|
}
|
||||||
|
|
||||||
|
private def warmupQuery(userId: Long): t.RefreshRequest = {
|
||||||
|
t.RefreshRequest(
|
||||||
|
userId = userId,
|
||||||
|
notificationDisplayLocation = NotificationDisplayLocation.PushToMobileDevice,
|
||||||
|
context = Some(
|
||||||
|
t.PushContext(
|
||||||
|
skipFilters = Some(true),
|
||||||
|
darkWrite = Some(true)
|
||||||
|
))
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
private def assertWarmupResponse(
|
||||||
|
result: Try[Response[t.PushService.Refresh.SuccessType]]
|
||||||
|
): Unit = {
|
||||||
|
result match {
|
||||||
|
case Return(_) => // ok
|
||||||
|
case Throw(exception) =>
|
||||||
|
warn("Error performing warm-up request.")
|
||||||
|
error(exception.getMessage, exception)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,193 @@
|
|||||||
|
package com.twitter.frigate.pushservice
|
||||||
|
|
||||||
|
import com.twitter.discovery.common.environment.modules.EnvironmentModule
|
||||||
|
import com.twitter.finagle.Filter
|
||||||
|
import com.twitter.finatra.annotations.DarkTrafficFilterType
|
||||||
|
import com.twitter.finatra.decider.modules.DeciderModule
|
||||||
|
import com.twitter.finatra.http.HttpServer
|
||||||
|
import com.twitter.finatra.http.filters.CommonFilters
|
||||||
|
import com.twitter.finatra.http.routing.HttpRouter
|
||||||
|
import com.twitter.finatra.mtls.http.{Mtls => HttpMtls}
|
||||||
|
import com.twitter.finatra.mtls.thriftmux.{Mtls => ThriftMtls}
|
||||||
|
import com.twitter.finatra.mtls.thriftmux.filters.MtlsServerSessionTrackerFilter
|
||||||
|
import com.twitter.finatra.thrift.ThriftServer
|
||||||
|
import com.twitter.finatra.thrift.filters.ExceptionMappingFilter
|
||||||
|
import com.twitter.finatra.thrift.filters.LoggingMDCFilter
|
||||||
|
import com.twitter.finatra.thrift.filters.StatsFilter
|
||||||
|
import com.twitter.finatra.thrift.filters.ThriftMDCFilter
|
||||||
|
import com.twitter.finatra.thrift.filters.TraceIdMDCFilter
|
||||||
|
import com.twitter.finatra.thrift.routing.ThriftRouter
|
||||||
|
import com.twitter.frigate.common.logger.MRLoggerGlobalVariables
|
||||||
|
import com.twitter.frigate.pushservice.controller.PushServiceController
|
||||||
|
import com.twitter.frigate.pushservice.module._
|
||||||
|
import com.twitter.inject.TwitterModule
|
||||||
|
import com.twitter.inject.annotations.Flags
|
||||||
|
import com.twitter.inject.thrift.modules.ThriftClientIdModule
|
||||||
|
import com.twitter.logging.BareFormatter
|
||||||
|
import com.twitter.logging.Level
|
||||||
|
import com.twitter.logging.LoggerFactory
|
||||||
|
import com.twitter.logging.{Logging => JLogging}
|
||||||
|
import com.twitter.logging.QueueingHandler
|
||||||
|
import com.twitter.logging.ScribeHandler
|
||||||
|
import com.twitter.product_mixer.core.module.product_mixer_flags.ProductMixerFlagModule
|
||||||
|
import com.twitter.product_mixer.core.module.ABDeciderModule
|
||||||
|
import com.twitter.product_mixer.core.module.FeatureSwitchesModule
|
||||||
|
import com.twitter.product_mixer.core.module.StratoClientModule
|
||||||
|
|
||||||
|
object PushServiceMain extends PushServiceFinatraServer
|
||||||
|
|
||||||
|
class PushServiceFinatraServer
|
||||||
|
extends ThriftServer
|
||||||
|
with ThriftMtls
|
||||||
|
with HttpServer
|
||||||
|
with HttpMtls
|
||||||
|
with JLogging {
|
||||||
|
|
||||||
|
override val name = "PushService"
|
||||||
|
|
||||||
|
override val modules: Seq[TwitterModule] = {
|
||||||
|
Seq(
|
||||||
|
ABDeciderModule,
|
||||||
|
DeciderModule,
|
||||||
|
FeatureSwitchesModule,
|
||||||
|
FilterModule,
|
||||||
|
FlagModule,
|
||||||
|
EnvironmentModule,
|
||||||
|
ThriftClientIdModule,
|
||||||
|
DeployConfigModule,
|
||||||
|
ProductMixerFlagModule,
|
||||||
|
StratoClientModule,
|
||||||
|
PushHandlerModule,
|
||||||
|
PushTargetUserBuilderModule,
|
||||||
|
PushServiceDarkTrafficModule,
|
||||||
|
LoggedOutPushTargetUserBuilderModule,
|
||||||
|
new ThriftWebFormsModule(this),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
override def configureThrift(router: ThriftRouter): Unit = {
|
||||||
|
router
|
||||||
|
.filter[ExceptionMappingFilter]
|
||||||
|
.filter[LoggingMDCFilter]
|
||||||
|
.filter[TraceIdMDCFilter]
|
||||||
|
.filter[ThriftMDCFilter]
|
||||||
|
.filter[MtlsServerSessionTrackerFilter]
|
||||||
|
.filter[StatsFilter]
|
||||||
|
.filter[Filter.TypeAgnostic, DarkTrafficFilterType]
|
||||||
|
.add[PushServiceController]
|
||||||
|
}
|
||||||
|
|
||||||
|
override def configureHttp(router: HttpRouter): Unit =
|
||||||
|
router
|
||||||
|
.filter[CommonFilters]
|
||||||
|
|
||||||
|
override protected def start(): Unit = {
|
||||||
|
MRLoggerGlobalVariables.setRequiredFlags(
|
||||||
|
traceLogFlag = injector.instance[Boolean](Flags.named(FlagModule.mrLoggerIsTraceAll.name)),
|
||||||
|
nthLogFlag = injector.instance[Boolean](Flags.named(FlagModule.mrLoggerNthLog.name)),
|
||||||
|
nthLogValFlag = injector.instance[Long](Flags.named(FlagModule.mrLoggerNthVal.name))
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
override protected def warmup(): Unit = {
|
||||||
|
handle[PushMixerThriftServerWarmupHandler]()
|
||||||
|
}
|
||||||
|
|
||||||
|
override protected def configureLoggerFactories(): Unit = {
|
||||||
|
loggerFactories.foreach { _() }
|
||||||
|
}
|
||||||
|
|
||||||
|
override def loggerFactories: List[LoggerFactory] = {
|
||||||
|
val scribeScope = statsReceiver.scope("scribe")
|
||||||
|
List(
|
||||||
|
LoggerFactory(
|
||||||
|
level = Some(levelFlag()),
|
||||||
|
handlers = handlers
|
||||||
|
),
|
||||||
|
LoggerFactory(
|
||||||
|
node = "request_scribe",
|
||||||
|
level = Some(Level.INFO),
|
||||||
|
useParents = false,
|
||||||
|
handlers = QueueingHandler(
|
||||||
|
maxQueueSize = 10000,
|
||||||
|
handler = ScribeHandler(
|
||||||
|
category = "frigate_pushservice_log",
|
||||||
|
formatter = BareFormatter,
|
||||||
|
statsReceiver = scribeScope.scope("frigate_pushservice_log")
|
||||||
|
)
|
||||||
|
) :: Nil
|
||||||
|
),
|
||||||
|
LoggerFactory(
|
||||||
|
node = "notification_scribe",
|
||||||
|
level = Some(Level.INFO),
|
||||||
|
useParents = false,
|
||||||
|
handlers = QueueingHandler(
|
||||||
|
maxQueueSize = 10000,
|
||||||
|
handler = ScribeHandler(
|
||||||
|
category = "frigate_notifier",
|
||||||
|
formatter = BareFormatter,
|
||||||
|
statsReceiver = scribeScope.scope("frigate_notifier")
|
||||||
|
)
|
||||||
|
) :: Nil
|
||||||
|
),
|
||||||
|
LoggerFactory(
|
||||||
|
node = "push_scribe",
|
||||||
|
level = Some(Level.INFO),
|
||||||
|
useParents = false,
|
||||||
|
handlers = QueueingHandler(
|
||||||
|
maxQueueSize = 10000,
|
||||||
|
handler = ScribeHandler(
|
||||||
|
category = "test_frigate_push",
|
||||||
|
formatter = BareFormatter,
|
||||||
|
statsReceiver = scribeScope.scope("test_frigate_push")
|
||||||
|
)
|
||||||
|
) :: Nil
|
||||||
|
),
|
||||||
|
LoggerFactory(
|
||||||
|
node = "push_subsample_scribe",
|
||||||
|
level = Some(Level.INFO),
|
||||||
|
useParents = false,
|
||||||
|
handlers = QueueingHandler(
|
||||||
|
maxQueueSize = 2500,
|
||||||
|
handler = ScribeHandler(
|
||||||
|
category = "magicrecs_candidates_subsample_scribe",
|
||||||
|
maxMessagesPerTransaction = 250,
|
||||||
|
maxMessagesToBuffer = 2500,
|
||||||
|
formatter = BareFormatter,
|
||||||
|
statsReceiver = scribeScope.scope("magicrecs_candidates_subsample_scribe")
|
||||||
|
)
|
||||||
|
) :: Nil
|
||||||
|
),
|
||||||
|
LoggerFactory(
|
||||||
|
node = "mr_request_scribe",
|
||||||
|
level = Some(Level.INFO),
|
||||||
|
useParents = false,
|
||||||
|
handlers = QueueingHandler(
|
||||||
|
maxQueueSize = 2500,
|
||||||
|
handler = ScribeHandler(
|
||||||
|
category = "mr_request_scribe",
|
||||||
|
maxMessagesPerTransaction = 250,
|
||||||
|
maxMessagesToBuffer = 2500,
|
||||||
|
formatter = BareFormatter,
|
||||||
|
statsReceiver = scribeScope.scope("mr_request_scribe")
|
||||||
|
)
|
||||||
|
) :: Nil
|
||||||
|
),
|
||||||
|
LoggerFactory(
|
||||||
|
node = "high_quality_candidates_scribe",
|
||||||
|
level = Some(Level.INFO),
|
||||||
|
useParents = false,
|
||||||
|
handlers = QueueingHandler(
|
||||||
|
maxQueueSize = 2500,
|
||||||
|
handler = ScribeHandler(
|
||||||
|
category = "frigate_high_quality_candidates_log",
|
||||||
|
maxMessagesPerTransaction = 250,
|
||||||
|
maxMessagesToBuffer = 2500,
|
||||||
|
formatter = BareFormatter,
|
||||||
|
statsReceiver = scribeScope.scope("high_quality_candidates_scribe")
|
||||||
|
)
|
||||||
|
) :: Nil
|
||||||
|
),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,323 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.contentrecommender.thriftscala.MetricTag
|
||||||
|
import com.twitter.cr_mixer.thriftscala.CrMixerTweetRequest
|
||||||
|
import com.twitter.cr_mixer.thriftscala.NotificationsContext
|
||||||
|
import com.twitter.cr_mixer.thriftscala.Product
|
||||||
|
import com.twitter.cr_mixer.thriftscala.ProductContext
|
||||||
|
import com.twitter.cr_mixer.thriftscala.{MetricTag => CrMixerMetricTag}
|
||||||
|
import com.twitter.finagle.stats.Stat
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base.AlgorithmScore
|
||||||
|
import com.twitter.frigate.common.base.CandidateSource
|
||||||
|
import com.twitter.frigate.common.base.CandidateSourceEligible
|
||||||
|
import com.twitter.frigate.common.base.CrMixerCandidate
|
||||||
|
import com.twitter.frigate.common.base.TopicCandidate
|
||||||
|
import com.twitter.frigate.common.base.TopicProofTweetCandidate
|
||||||
|
import com.twitter.frigate.common.base.TweetCandidate
|
||||||
|
import com.twitter.frigate.common.predicate.CommonOutNetworkTweetCandidatesSourcePredicates.filterOutInNetworkTweets
|
||||||
|
import com.twitter.frigate.common.predicate.CommonOutNetworkTweetCandidatesSourcePredicates.filterOutReplyTweet
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.PushFeatureSwitchParams
|
||||||
|
import com.twitter.frigate.pushservice.params.PushParams
|
||||||
|
import com.twitter.frigate.pushservice.store.CrMixerTweetStore
|
||||||
|
import com.twitter.frigate.pushservice.store.UttEntityHydrationStore
|
||||||
|
import com.twitter.frigate.pushservice.util.AdaptorUtils
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.frigate.pushservice.util.TopicsUtil
|
||||||
|
import com.twitter.frigate.pushservice.util.TweetWithTopicProof
|
||||||
|
import com.twitter.frigate.thriftscala.CommonRecommendationType
|
||||||
|
import com.twitter.hermit.predicate.socialgraph.RelationEdge
|
||||||
|
import com.twitter.product_mixer.core.thriftscala.ClientContext
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.topiclisting.utt.LocalizedEntity
|
||||||
|
import com.twitter.tsp.thriftscala.TopicSocialProofRequest
|
||||||
|
import com.twitter.tsp.thriftscala.TopicSocialProofResponse
|
||||||
|
import com.twitter.util.Future
|
||||||
|
import scala.collection.Map
|
||||||
|
|
||||||
|
case class ContentRecommenderMixerAdaptor(
|
||||||
|
crMixerTweetStore: CrMixerTweetStore,
|
||||||
|
tweetyPieStore: ReadableStore[Long, TweetyPieResult],
|
||||||
|
edgeStore: ReadableStore[RelationEdge, Boolean],
|
||||||
|
topicSocialProofServiceStore: ReadableStore[TopicSocialProofRequest, TopicSocialProofResponse],
|
||||||
|
uttEntityHydrationStore: UttEntityHydrationStore,
|
||||||
|
globalStats: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
|
||||||
|
override val name: String = this.getClass.getSimpleName
|
||||||
|
|
||||||
|
private[this] val stats = globalStats.scope("ContentRecommenderMixerAdaptor")
|
||||||
|
private[this] val numOfValidAuthors = stats.stat("num_of_valid_authors")
|
||||||
|
private[this] val numOutOfMaximumDropped = stats.stat("dropped_due_out_of_maximum")
|
||||||
|
private[this] val totalInputRecs = stats.counter("input_recs")
|
||||||
|
private[this] val totalOutputRecs = stats.stat("output_recs")
|
||||||
|
private[this] val totalRequests = stats.counter("total_requests")
|
||||||
|
private[this] val nonReplyTweetsCounter = stats.counter("non_reply_tweets")
|
||||||
|
private[this] val totalOutNetworkRecs = stats.counter("out_network_tweets")
|
||||||
|
private[this] val totalInNetworkRecs = stats.counter("in_network_tweets")
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Builds OON raw candidates based on input OON Tweets
|
||||||
|
*/
|
||||||
|
def buildOONRawCandidates(
|
||||||
|
inputTarget: Target,
|
||||||
|
oonTweets: Seq[TweetyPieResult],
|
||||||
|
tweetScoreMap: Map[Long, Double],
|
||||||
|
tweetIdToTagsMap: Map[Long, Seq[CrMixerMetricTag]],
|
||||||
|
maxNumOfCandidates: Int
|
||||||
|
): Option[Seq[RawCandidate]] = {
|
||||||
|
val cands = oonTweets.flatMap { tweetResult =>
|
||||||
|
val tweetId = tweetResult.tweet.id
|
||||||
|
generateOONRawCandidate(
|
||||||
|
inputTarget,
|
||||||
|
tweetId,
|
||||||
|
Some(tweetResult),
|
||||||
|
tweetScoreMap,
|
||||||
|
tweetIdToTagsMap
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
val candidates = restrict(
|
||||||
|
maxNumOfCandidates,
|
||||||
|
cands,
|
||||||
|
numOutOfMaximumDropped,
|
||||||
|
totalOutputRecs
|
||||||
|
)
|
||||||
|
|
||||||
|
Some(candidates)
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Builds a single RawCandidate With TopicProofTweetCandidate
|
||||||
|
*/
|
||||||
|
def buildTopicTweetRawCandidate(
|
||||||
|
inputTarget: Target,
|
||||||
|
tweetWithTopicProof: TweetWithTopicProof,
|
||||||
|
localizedEntity: LocalizedEntity,
|
||||||
|
tags: Option[Seq[MetricTag]],
|
||||||
|
): RawCandidate with TopicProofTweetCandidate = {
|
||||||
|
new RawCandidate with TopicProofTweetCandidate {
|
||||||
|
override def target: Target = inputTarget
|
||||||
|
override def topicListingSetting: Option[String] = Some(
|
||||||
|
tweetWithTopicProof.topicListingSetting)
|
||||||
|
override def tweetId: Long = tweetWithTopicProof.tweetId
|
||||||
|
override def tweetyPieResult: Option[TweetyPieResult] = Some(
|
||||||
|
tweetWithTopicProof.tweetyPieResult)
|
||||||
|
override def semanticCoreEntityId: Option[Long] = Some(tweetWithTopicProof.topicId)
|
||||||
|
override def localizedUttEntity: Option[LocalizedEntity] = Some(localizedEntity)
|
||||||
|
override def algorithmCR: Option[String] = tweetWithTopicProof.algorithmCR
|
||||||
|
override def tagsCR: Option[Seq[MetricTag]] = tags
|
||||||
|
override def isOutOfNetwork: Boolean = tweetWithTopicProof.isOON
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Takes a group of TopicTweets and transforms them into RawCandidates
|
||||||
|
*/
|
||||||
|
def buildTopicTweetRawCandidates(
|
||||||
|
inputTarget: Target,
|
||||||
|
topicProofCandidates: Seq[TweetWithTopicProof],
|
||||||
|
tweetIdToTagsMap: Map[Long, Seq[CrMixerMetricTag]],
|
||||||
|
maxNumberOfCands: Int
|
||||||
|
): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
val semanticCoreEntityIds = topicProofCandidates
|
||||||
|
.map(_.topicId)
|
||||||
|
.toSet
|
||||||
|
|
||||||
|
TopicsUtil
|
||||||
|
.getLocalizedEntityMap(inputTarget, semanticCoreEntityIds, uttEntityHydrationStore)
|
||||||
|
.map { localizedEntityMap =>
|
||||||
|
val rawCandidates = topicProofCandidates.collect {
|
||||||
|
case topicSocialProof: TweetWithTopicProof
|
||||||
|
if localizedEntityMap.contains(topicSocialProof.topicId) =>
|
||||||
|
// Once we deprecate CR calls, we should replace this code to use the CrMixerMetricTag
|
||||||
|
val tags = tweetIdToTagsMap.get(topicSocialProof.tweetId).map {
|
||||||
|
_.flatMap { tag => MetricTag.get(tag.value) }
|
||||||
|
}
|
||||||
|
buildTopicTweetRawCandidate(
|
||||||
|
inputTarget,
|
||||||
|
topicSocialProof,
|
||||||
|
localizedEntityMap(topicSocialProof.topicId),
|
||||||
|
tags
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
val candResult = restrict(
|
||||||
|
maxNumberOfCands,
|
||||||
|
rawCandidates,
|
||||||
|
numOutOfMaximumDropped,
|
||||||
|
totalOutputRecs
|
||||||
|
)
|
||||||
|
|
||||||
|
Some(candResult)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def generateOONRawCandidate(
|
||||||
|
inputTarget: Target,
|
||||||
|
id: Long,
|
||||||
|
result: Option[TweetyPieResult],
|
||||||
|
tweetScoreMap: Map[Long, Double],
|
||||||
|
tweetIdToTagsMap: Map[Long, Seq[CrMixerMetricTag]]
|
||||||
|
): Option[RawCandidate with TweetCandidate] = {
|
||||||
|
val tagsFromCR = tweetIdToTagsMap.get(id).map { _.flatMap { tag => MetricTag.get(tag.value) } }
|
||||||
|
val candidate = new RawCandidate with CrMixerCandidate with TopicCandidate with AlgorithmScore {
|
||||||
|
override val tweetId = id
|
||||||
|
override val target = inputTarget
|
||||||
|
override val tweetyPieResult = result
|
||||||
|
override val localizedUttEntity = None
|
||||||
|
override val semanticCoreEntityId = None
|
||||||
|
override def commonRecType =
|
||||||
|
getMediaBasedCRT(
|
||||||
|
CommonRecommendationType.TwistlyTweet,
|
||||||
|
CommonRecommendationType.TwistlyPhoto,
|
||||||
|
CommonRecommendationType.TwistlyVideo)
|
||||||
|
override def tagsCR = tagsFromCR
|
||||||
|
override def algorithmScore = tweetScoreMap.get(id)
|
||||||
|
override def algorithmCR = None
|
||||||
|
}
|
||||||
|
Some(candidate)
|
||||||
|
}
|
||||||
|
|
||||||
|
private def restrict(
|
||||||
|
maxNumToReturn: Int,
|
||||||
|
candidates: Seq[RawCandidate],
|
||||||
|
numOutOfMaximumDropped: Stat,
|
||||||
|
totalOutputRecs: Stat
|
||||||
|
): Seq[RawCandidate] = {
|
||||||
|
val newCandidates = candidates.take(maxNumToReturn)
|
||||||
|
val numDropped = candidates.length - newCandidates.length
|
||||||
|
numOutOfMaximumDropped.add(numDropped)
|
||||||
|
totalOutputRecs.add(newCandidates.size)
|
||||||
|
newCandidates
|
||||||
|
}
|
||||||
|
|
||||||
|
private def buildCrMixerRequest(
|
||||||
|
target: Target,
|
||||||
|
countryCode: Option[String],
|
||||||
|
language: Option[String],
|
||||||
|
seenTweets: Seq[Long]
|
||||||
|
): CrMixerTweetRequest = {
|
||||||
|
CrMixerTweetRequest(
|
||||||
|
clientContext = ClientContext(
|
||||||
|
userId = Some(target.targetId),
|
||||||
|
countryCode = countryCode,
|
||||||
|
languageCode = language
|
||||||
|
),
|
||||||
|
product = Product.Notifications,
|
||||||
|
productContext = Some(ProductContext.NotificationsContext(NotificationsContext())),
|
||||||
|
excludedTweetIds = Some(seenTweets)
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
private def selectCandidatesToSendBasedOnSettings(
|
||||||
|
isRecommendationsEligible: Boolean,
|
||||||
|
isTopicsEligible: Boolean,
|
||||||
|
oonRawCandidates: Option[Seq[RawCandidate]],
|
||||||
|
topicTweetCandidates: Option[Seq[RawCandidate]]
|
||||||
|
): Option[Seq[RawCandidate]] = {
|
||||||
|
if (isRecommendationsEligible && isTopicsEligible) {
|
||||||
|
Some(topicTweetCandidates.getOrElse(Seq.empty) ++ oonRawCandidates.getOrElse(Seq.empty))
|
||||||
|
} else if (isRecommendationsEligible) {
|
||||||
|
oonRawCandidates
|
||||||
|
} else if (isTopicsEligible) {
|
||||||
|
topicTweetCandidates
|
||||||
|
} else None
|
||||||
|
}
|
||||||
|
|
||||||
|
override def get(target: Target): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
Future
|
||||||
|
.join(
|
||||||
|
target.seenTweetIds,
|
||||||
|
target.countryCode,
|
||||||
|
target.inferredUserDeviceLanguage,
|
||||||
|
PushDeviceUtil.isTopicsEligible(target),
|
||||||
|
PushDeviceUtil.isRecommendationsEligible(target)
|
||||||
|
).flatMap {
|
||||||
|
case (seenTweets, countryCode, language, isTopicsEligible, isRecommendationsEligible) =>
|
||||||
|
val request = buildCrMixerRequest(target, countryCode, language, seenTweets)
|
||||||
|
crMixerTweetStore.getTweetRecommendations(request).flatMap {
|
||||||
|
case Some(response) =>
|
||||||
|
totalInputRecs.incr(response.tweets.size)
|
||||||
|
totalRequests.incr()
|
||||||
|
AdaptorUtils
|
||||||
|
.getTweetyPieResults(
|
||||||
|
response.tweets.map(_.tweetId).toSet,
|
||||||
|
tweetyPieStore).flatMap { tweetyPieResultMap =>
|
||||||
|
filterOutInNetworkTweets(
|
||||||
|
target,
|
||||||
|
filterOutReplyTweet(tweetyPieResultMap.toMap, nonReplyTweetsCounter),
|
||||||
|
edgeStore,
|
||||||
|
numOfValidAuthors).flatMap {
|
||||||
|
outNetworkTweetsWithId: Seq[(Long, TweetyPieResult)] =>
|
||||||
|
totalOutNetworkRecs.incr(outNetworkTweetsWithId.size)
|
||||||
|
totalInNetworkRecs.incr(response.tweets.size - outNetworkTweetsWithId.size)
|
||||||
|
val outNetworkTweets: Seq[TweetyPieResult] = outNetworkTweetsWithId.map {
|
||||||
|
case (_, tweetyPieResult) => tweetyPieResult
|
||||||
|
}
|
||||||
|
|
||||||
|
val tweetIdToTagsMap = response.tweets.map { tweet =>
|
||||||
|
tweet.tweetId -> tweet.metricTags.getOrElse(Seq.empty)
|
||||||
|
}.toMap
|
||||||
|
|
||||||
|
val tweetScoreMap = response.tweets.map { tweet =>
|
||||||
|
tweet.tweetId -> tweet.score
|
||||||
|
}.toMap
|
||||||
|
|
||||||
|
val maxNumOfCandidates =
|
||||||
|
target.params(PushFeatureSwitchParams.NumberOfMaxCrMixerCandidatesParam)
|
||||||
|
|
||||||
|
val oonRawCandidates =
|
||||||
|
buildOONRawCandidates(
|
||||||
|
target,
|
||||||
|
outNetworkTweets,
|
||||||
|
tweetScoreMap,
|
||||||
|
tweetIdToTagsMap,
|
||||||
|
maxNumOfCandidates)
|
||||||
|
|
||||||
|
TopicsUtil
|
||||||
|
.getTopicSocialProofs(
|
||||||
|
target,
|
||||||
|
outNetworkTweets,
|
||||||
|
topicSocialProofServiceStore,
|
||||||
|
edgeStore,
|
||||||
|
PushFeatureSwitchParams.TopicProofTweetCandidatesTopicScoreThreshold).flatMap {
|
||||||
|
tweetsWithTopicProof =>
|
||||||
|
buildTopicTweetRawCandidates(
|
||||||
|
target,
|
||||||
|
tweetsWithTopicProof,
|
||||||
|
tweetIdToTagsMap,
|
||||||
|
maxNumOfCandidates)
|
||||||
|
}.map { topicTweetCandidates =>
|
||||||
|
selectCandidatesToSendBasedOnSettings(
|
||||||
|
isRecommendationsEligible,
|
||||||
|
isTopicsEligible,
|
||||||
|
oonRawCandidates,
|
||||||
|
topicTweetCandidates)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
case _ => Future.None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* For a user to be available the following news to happen
|
||||||
|
*/
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
Future
|
||||||
|
.join(
|
||||||
|
PushDeviceUtil.isRecommendationsEligible(target),
|
||||||
|
PushDeviceUtil.isTopicsEligible(target)
|
||||||
|
).map {
|
||||||
|
case (isRecommendationsEligible, isTopicsEligible) =>
|
||||||
|
(isRecommendationsEligible || isTopicsEligible) &&
|
||||||
|
target.params(PushParams.ContentRecommenderMixerAdaptorDecider)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,293 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.finagle.stats.Stat
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base._
|
||||||
|
import com.twitter.frigate.common.candidate._
|
||||||
|
import com.twitter.frigate.common.predicate.CommonOutNetworkTweetCandidatesSourcePredicates.filterOutReplyTweet
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.PushFeatureSwitchParams
|
||||||
|
import com.twitter.frigate.pushservice.params.PushParams
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.hermit.store.tweetypie.UserTweet
|
||||||
|
import com.twitter.recos.recos_common.thriftscala.SocialProofType
|
||||||
|
import com.twitter.search.common.features.thriftscala.ThriftSearchResultFeatures
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.timelines.configapi.Param
|
||||||
|
import com.twitter.util.Future
|
||||||
|
import com.twitter.util.Time
|
||||||
|
import scala.collection.Map
|
||||||
|
|
||||||
|
case class EarlyBirdFirstDegreeCandidateAdaptor(
|
||||||
|
earlyBirdFirstDegreeCandidates: CandidateSource[
|
||||||
|
EarlybirdCandidateSource.Query,
|
||||||
|
EarlybirdCandidate
|
||||||
|
],
|
||||||
|
tweetyPieStore: ReadableStore[Long, TweetyPieResult],
|
||||||
|
tweetyPieStoreNoVF: ReadableStore[Long, TweetyPieResult],
|
||||||
|
userTweetTweetyPieStore: ReadableStore[UserTweet, TweetyPieResult],
|
||||||
|
maxResultsParam: Param[Int],
|
||||||
|
globalStats: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
|
||||||
|
type EBCandidate = EarlybirdCandidate with TweetDetails
|
||||||
|
private val stats = globalStats.scope("EarlyBirdFirstDegreeAdaptor")
|
||||||
|
private val earlyBirdCandsStat: Stat = stats.stat("early_bird_cands_dist")
|
||||||
|
private val emptyEarlyBirdCands = stats.counter("empty_early_bird_candidates")
|
||||||
|
private val seedSetEmpty = stats.counter("empty_seedset")
|
||||||
|
private val seenTweetsStat = stats.stat("filtered_by_seen_tweets")
|
||||||
|
private val emptyTweetyPieResult = stats.stat("empty_tweetypie_result")
|
||||||
|
private val nonReplyTweetsCounter = stats.counter("non_reply_tweets")
|
||||||
|
private val enableRetweets = stats.counter("enable_retweets")
|
||||||
|
private val f1withoutSocialContexts = stats.counter("f1_without_social_context")
|
||||||
|
private val userTweetTweetyPieStoreCounter = stats.counter("user_tweet_tweetypie_store")
|
||||||
|
|
||||||
|
override val name: String = earlyBirdFirstDegreeCandidates.name
|
||||||
|
|
||||||
|
private def getAllSocialContextActions(
|
||||||
|
socialProofTypes: Seq[(SocialProofType, Seq[Long])]
|
||||||
|
): Seq[SocialContextAction] = {
|
||||||
|
socialProofTypes.flatMap {
|
||||||
|
case (SocialProofType.Favorite, scIds) =>
|
||||||
|
scIds.map { scId =>
|
||||||
|
SocialContextAction(
|
||||||
|
scId,
|
||||||
|
Time.now.inMilliseconds,
|
||||||
|
socialContextActionType = Some(SocialContextActionType.Favorite)
|
||||||
|
)
|
||||||
|
}
|
||||||
|
case (SocialProofType.Retweet, scIds) =>
|
||||||
|
scIds.map { scId =>
|
||||||
|
SocialContextAction(
|
||||||
|
scId,
|
||||||
|
Time.now.inMilliseconds,
|
||||||
|
socialContextActionType = Some(SocialContextActionType.Retweet)
|
||||||
|
)
|
||||||
|
}
|
||||||
|
case (SocialProofType.Reply, scIds) =>
|
||||||
|
scIds.map { scId =>
|
||||||
|
SocialContextAction(
|
||||||
|
scId,
|
||||||
|
Time.now.inMilliseconds,
|
||||||
|
socialContextActionType = Some(SocialContextActionType.Reply)
|
||||||
|
)
|
||||||
|
}
|
||||||
|
case (SocialProofType.Tweet, scIds) =>
|
||||||
|
scIds.map { scId =>
|
||||||
|
SocialContextAction(
|
||||||
|
scId,
|
||||||
|
Time.now.inMilliseconds,
|
||||||
|
socialContextActionType = Some(SocialContextActionType.Tweet)
|
||||||
|
)
|
||||||
|
}
|
||||||
|
case _ => Nil
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def generateRetweetCandidate(
|
||||||
|
inputTarget: Target,
|
||||||
|
candidate: EBCandidate,
|
||||||
|
scIds: Seq[Long],
|
||||||
|
socialProofTypes: Seq[(SocialProofType, Seq[Long])]
|
||||||
|
): RawCandidate = {
|
||||||
|
val scActions = scIds.map { scId => SocialContextAction(scId, Time.now.inMilliseconds) }
|
||||||
|
new RawCandidate with TweetRetweetCandidate with EarlybirdTweetFeatures {
|
||||||
|
override val socialContextActions = scActions
|
||||||
|
override val socialContextAllTypeActions = getAllSocialContextActions(socialProofTypes)
|
||||||
|
override val tweetId = candidate.tweetId
|
||||||
|
override val target = inputTarget
|
||||||
|
override val tweetyPieResult = candidate.tweetyPieResult
|
||||||
|
override val features = candidate.features
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def generateF1CandidateWithoutSocialContext(
|
||||||
|
inputTarget: Target,
|
||||||
|
candidate: EBCandidate
|
||||||
|
): RawCandidate = {
|
||||||
|
f1withoutSocialContexts.incr()
|
||||||
|
new RawCandidate with F1FirstDegree with EarlybirdTweetFeatures {
|
||||||
|
override val tweetId = candidate.tweetId
|
||||||
|
override val target = inputTarget
|
||||||
|
override val tweetyPieResult = candidate.tweetyPieResult
|
||||||
|
override val features = candidate.features
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def generateEarlyBirdCandidate(
|
||||||
|
id: Long,
|
||||||
|
result: Option[TweetyPieResult],
|
||||||
|
ebFeatures: Option[ThriftSearchResultFeatures]
|
||||||
|
): EBCandidate = {
|
||||||
|
new EarlybirdCandidate with TweetDetails {
|
||||||
|
override val tweetyPieResult: Option[TweetyPieResult] = result
|
||||||
|
override val tweetId: Long = id
|
||||||
|
override val features: Option[ThriftSearchResultFeatures] = ebFeatures
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def filterOutSeenTweets(seenTweetIds: Seq[Long], inputTweetIds: Seq[Long]): Seq[Long] = {
|
||||||
|
inputTweetIds.filterNot(seenTweetIds.contains)
|
||||||
|
}
|
||||||
|
|
||||||
|
private def filterInvalidTweets(
|
||||||
|
tweetIds: Seq[Long],
|
||||||
|
target: Target
|
||||||
|
): Future[Seq[(Long, TweetyPieResult)]] = {
|
||||||
|
|
||||||
|
val resMap = {
|
||||||
|
if (target.params(PushFeatureSwitchParams.EnableF1FromProtectedTweetAuthors)) {
|
||||||
|
userTweetTweetyPieStoreCounter.incr()
|
||||||
|
val keys = tweetIds.map { tweetId =>
|
||||||
|
UserTweet(tweetId, Some(target.targetId))
|
||||||
|
}
|
||||||
|
|
||||||
|
userTweetTweetyPieStore
|
||||||
|
.multiGet(keys.toSet).map {
|
||||||
|
case (userTweet, resultFut) =>
|
||||||
|
userTweet.tweetId -> resultFut
|
||||||
|
}.toMap
|
||||||
|
} else {
|
||||||
|
(target.params(PushFeatureSwitchParams.EnableVFInTweetypie) match {
|
||||||
|
case true => tweetyPieStore
|
||||||
|
case false => tweetyPieStoreNoVF
|
||||||
|
}).multiGet(tweetIds.toSet)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Future.collect(resMap).map { tweetyPieResultMap =>
|
||||||
|
val cands = filterOutReplyTweet(tweetyPieResultMap, nonReplyTweetsCounter).collect {
|
||||||
|
case (id: Long, Some(result)) =>
|
||||||
|
id -> result
|
||||||
|
}
|
||||||
|
|
||||||
|
emptyTweetyPieResult.add(tweetyPieResultMap.size - cands.size)
|
||||||
|
cands.toSeq
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getEBRetweetCandidates(
|
||||||
|
inputTarget: Target,
|
||||||
|
retweets: Seq[(Long, TweetyPieResult)]
|
||||||
|
): Seq[RawCandidate] = {
|
||||||
|
retweets.flatMap {
|
||||||
|
case (_, tweetypieResult) =>
|
||||||
|
tweetypieResult.tweet.coreData.flatMap { coreData =>
|
||||||
|
tweetypieResult.sourceTweet.map { sourceTweet =>
|
||||||
|
val tweetId = sourceTweet.id
|
||||||
|
val scId = coreData.userId
|
||||||
|
val socialProofTypes = Seq((SocialProofType.Retweet, Seq(scId)))
|
||||||
|
val candidate = generateEarlyBirdCandidate(
|
||||||
|
tweetId,
|
||||||
|
Some(TweetyPieResult(sourceTweet, None, None)),
|
||||||
|
None
|
||||||
|
)
|
||||||
|
generateRetweetCandidate(
|
||||||
|
inputTarget,
|
||||||
|
candidate,
|
||||||
|
Seq(scId),
|
||||||
|
socialProofTypes
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getEBFirstDegreeCands(
|
||||||
|
tweets: Seq[(Long, TweetyPieResult)],
|
||||||
|
ebTweetIdMap: Map[Long, Option[ThriftSearchResultFeatures]]
|
||||||
|
): Seq[EBCandidate] = {
|
||||||
|
tweets.map {
|
||||||
|
case (id, tweetypieResult) =>
|
||||||
|
val features = ebTweetIdMap.getOrElse(id, None)
|
||||||
|
generateEarlyBirdCandidate(id, Some(tweetypieResult), features)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns a combination of raw candidates made of: f1 recs, topic social proof recs, sc recs and retweet candidates
|
||||||
|
*/
|
||||||
|
def buildRawCandidates(
|
||||||
|
inputTarget: Target,
|
||||||
|
firstDegreeCandidates: Seq[EBCandidate],
|
||||||
|
retweetCandidates: Seq[RawCandidate]
|
||||||
|
): Seq[RawCandidate] = {
|
||||||
|
val hydratedF1Recs =
|
||||||
|
firstDegreeCandidates.map(generateF1CandidateWithoutSocialContext(inputTarget, _))
|
||||||
|
hydratedF1Recs ++ retweetCandidates
|
||||||
|
}
|
||||||
|
|
||||||
|
override def get(inputTarget: Target): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
inputTarget.seedsWithWeight.flatMap { seedsetOpt =>
|
||||||
|
val seedsetMap = seedsetOpt.getOrElse(Map.empty)
|
||||||
|
|
||||||
|
if (seedsetMap.isEmpty) {
|
||||||
|
seedSetEmpty.incr()
|
||||||
|
Future.None
|
||||||
|
} else {
|
||||||
|
val maxResultsToReturn = inputTarget.params(maxResultsParam)
|
||||||
|
val maxTweetAge = inputTarget.params(PushFeatureSwitchParams.F1CandidateMaxTweetAgeParam)
|
||||||
|
val earlybirdQuery = EarlybirdCandidateSource.Query(
|
||||||
|
maxNumResultsToReturn = maxResultsToReturn,
|
||||||
|
seedset = seedsetMap,
|
||||||
|
maxConsecutiveResultsByTheSameUser = Some(1),
|
||||||
|
maxTweetAge = maxTweetAge,
|
||||||
|
disableTimelinesMLModel = false,
|
||||||
|
searcherId = Some(inputTarget.targetId),
|
||||||
|
isProtectTweetsEnabled =
|
||||||
|
inputTarget.params(PushFeatureSwitchParams.EnableF1FromProtectedTweetAuthors),
|
||||||
|
followedUserIds = Some(seedsetMap.keySet.toSeq)
|
||||||
|
)
|
||||||
|
|
||||||
|
Future
|
||||||
|
.join(inputTarget.seenTweetIds, earlyBirdFirstDegreeCandidates.get(earlybirdQuery))
|
||||||
|
.flatMap {
|
||||||
|
case (seenTweetIds, Some(candidates)) =>
|
||||||
|
earlyBirdCandsStat.add(candidates.size)
|
||||||
|
|
||||||
|
val ebTweetIdMap = candidates.map { cand => cand.tweetId -> cand.features }.toMap
|
||||||
|
|
||||||
|
val ebTweetIds = ebTweetIdMap.keys.toSeq
|
||||||
|
|
||||||
|
val tweetIds = filterOutSeenTweets(seenTweetIds, ebTweetIds)
|
||||||
|
seenTweetsStat.add(ebTweetIds.size - tweetIds.size)
|
||||||
|
|
||||||
|
filterInvalidTweets(tweetIds, inputTarget)
|
||||||
|
.map { validTweets =>
|
||||||
|
val (retweets, tweets) = validTweets.partition {
|
||||||
|
case (_, tweetypieResult) =>
|
||||||
|
tweetypieResult.sourceTweet.isDefined
|
||||||
|
}
|
||||||
|
|
||||||
|
val firstDegreeCandidates = getEBFirstDegreeCands(tweets, ebTweetIdMap)
|
||||||
|
|
||||||
|
val retweetCandidates = {
|
||||||
|
if (inputTarget.params(PushParams.EarlyBirdSCBasedCandidatesParam) &&
|
||||||
|
inputTarget.params(PushParams.MRTweetRetweetRecsParam)) {
|
||||||
|
enableRetweets.incr()
|
||||||
|
getEBRetweetCandidates(inputTarget, retweets)
|
||||||
|
} else Nil
|
||||||
|
}
|
||||||
|
|
||||||
|
Some(
|
||||||
|
buildRawCandidates(
|
||||||
|
inputTarget,
|
||||||
|
firstDegreeCandidates,
|
||||||
|
retweetCandidates
|
||||||
|
))
|
||||||
|
}
|
||||||
|
|
||||||
|
case _ =>
|
||||||
|
emptyEarlyBirdCands.incr()
|
||||||
|
Future.None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
PushDeviceUtil.isRecommendationsEligible(target)
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,120 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.explore_ranker.thriftscala.ExploreRankerProductResponse
|
||||||
|
import com.twitter.explore_ranker.thriftscala.ExploreRankerRequest
|
||||||
|
import com.twitter.explore_ranker.thriftscala.ExploreRankerResponse
|
||||||
|
import com.twitter.explore_ranker.thriftscala.ExploreRecommendation
|
||||||
|
import com.twitter.explore_ranker.thriftscala.ImmersiveRecsResponse
|
||||||
|
import com.twitter.explore_ranker.thriftscala.ImmersiveRecsResult
|
||||||
|
import com.twitter.explore_ranker.thriftscala.NotificationsVideoRecs
|
||||||
|
import com.twitter.explore_ranker.thriftscala.Product
|
||||||
|
import com.twitter.explore_ranker.thriftscala.ProductContext
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base.CandidateSource
|
||||||
|
import com.twitter.frigate.common.base.CandidateSourceEligible
|
||||||
|
import com.twitter.frigate.common.base.OutOfNetworkTweetCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.PushFeatureSwitchParams
|
||||||
|
import com.twitter.frigate.pushservice.util.AdaptorUtils
|
||||||
|
import com.twitter.frigate.pushservice.util.MediaCRT
|
||||||
|
import com.twitter.frigate.pushservice.util.PushAdaptorUtil
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.frigate.thriftscala.CommonRecommendationType
|
||||||
|
import com.twitter.product_mixer.core.thriftscala.ClientContext
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.util.Future
|
||||||
|
|
||||||
|
case class ExploreVideoTweetCandidateAdaptor(
|
||||||
|
exploreRankerStore: ReadableStore[ExploreRankerRequest, ExploreRankerResponse],
|
||||||
|
tweetyPieStore: ReadableStore[Long, TweetyPieResult],
|
||||||
|
globalStats: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
|
||||||
|
override def name: String = this.getClass.getSimpleName
|
||||||
|
private[this] val stats = globalStats.scope("ExploreVideoTweetCandidateAdaptor")
|
||||||
|
private[this] val totalInputRecs = stats.stat("input_recs")
|
||||||
|
private[this] val totalRequests = stats.counter("total_requests")
|
||||||
|
private[this] val totalEmptyResponse = stats.counter("total_empty_response")
|
||||||
|
|
||||||
|
private def buildExploreRankerRequest(
|
||||||
|
target: Target,
|
||||||
|
countryCode: Option[String],
|
||||||
|
language: Option[String],
|
||||||
|
): ExploreRankerRequest = {
|
||||||
|
ExploreRankerRequest(
|
||||||
|
clientContext = ClientContext(
|
||||||
|
userId = Some(target.targetId),
|
||||||
|
countryCode = countryCode,
|
||||||
|
languageCode = language,
|
||||||
|
),
|
||||||
|
product = Product.NotificationsVideoRecs,
|
||||||
|
productContext = Some(ProductContext.NotificationsVideoRecs(NotificationsVideoRecs())),
|
||||||
|
maxResults = Some(target.params(PushFeatureSwitchParams.MaxExploreVideoTweets))
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
override def get(target: Target): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
Future
|
||||||
|
.join(
|
||||||
|
target.countryCode,
|
||||||
|
target.inferredUserDeviceLanguage
|
||||||
|
).flatMap {
|
||||||
|
case (countryCode, language) =>
|
||||||
|
val request = buildExploreRankerRequest(target, countryCode, language)
|
||||||
|
exploreRankerStore.get(request).flatMap {
|
||||||
|
case Some(response) =>
|
||||||
|
val exploreResonseTweetIds = response match {
|
||||||
|
case ExploreRankerResponse(ExploreRankerProductResponse
|
||||||
|
.ImmersiveRecsResponse(ImmersiveRecsResponse(immersiveRecsResult))) =>
|
||||||
|
immersiveRecsResult.collect {
|
||||||
|
case ImmersiveRecsResult(ExploreRecommendation
|
||||||
|
.ExploreTweetRecommendation(exploreTweetRecommendation)) =>
|
||||||
|
exploreTweetRecommendation.tweetId
|
||||||
|
}
|
||||||
|
case _ =>
|
||||||
|
Seq.empty
|
||||||
|
}
|
||||||
|
|
||||||
|
totalInputRecs.add(exploreResonseTweetIds.size)
|
||||||
|
totalRequests.incr()
|
||||||
|
AdaptorUtils
|
||||||
|
.getTweetyPieResults(exploreResonseTweetIds.toSet, tweetyPieStore).map {
|
||||||
|
tweetyPieResultMap =>
|
||||||
|
val candidates = tweetyPieResultMap.values.flatten
|
||||||
|
.map(buildVideoRawCandidates(target, _))
|
||||||
|
Some(candidates.toSeq)
|
||||||
|
}
|
||||||
|
case _ =>
|
||||||
|
totalEmptyResponse.incr()
|
||||||
|
Future.None
|
||||||
|
}
|
||||||
|
case _ =>
|
||||||
|
Future.None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
PushDeviceUtil.isRecommendationsEligible(target).map { userRecommendationsEligible =>
|
||||||
|
userRecommendationsEligible && target.params(PushFeatureSwitchParams.EnableExploreVideoTweets)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
private def buildVideoRawCandidates(
|
||||||
|
target: Target,
|
||||||
|
tweetyPieResult: TweetyPieResult
|
||||||
|
): RawCandidate with OutOfNetworkTweetCandidate = {
|
||||||
|
PushAdaptorUtil.generateOutOfNetworkTweetCandidates(
|
||||||
|
inputTarget = target,
|
||||||
|
id = tweetyPieResult.tweet.id,
|
||||||
|
mediaCRT = MediaCRT(
|
||||||
|
CommonRecommendationType.ExploreVideoTweet,
|
||||||
|
CommonRecommendationType.ExploreVideoTweet,
|
||||||
|
CommonRecommendationType.ExploreVideoTweet
|
||||||
|
),
|
||||||
|
result = Some(tweetyPieResult),
|
||||||
|
localizedEntity = None
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,272 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.cr_mixer.thriftscala.FrsTweetRequest
|
||||||
|
import com.twitter.cr_mixer.thriftscala.NotificationsContext
|
||||||
|
import com.twitter.cr_mixer.thriftscala.Product
|
||||||
|
import com.twitter.cr_mixer.thriftscala.ProductContext
|
||||||
|
import com.twitter.finagle.stats.Counter
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base.CandidateSource
|
||||||
|
import com.twitter.frigate.common.base.CandidateSourceEligible
|
||||||
|
import com.twitter.frigate.common.base._
|
||||||
|
import com.twitter.frigate.common.predicate.CommonOutNetworkTweetCandidatesSourcePredicates.filterOutReplyTweet
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.PushFeatureSwitchParams
|
||||||
|
import com.twitter.frigate.pushservice.store.CrMixerTweetStore
|
||||||
|
import com.twitter.frigate.pushservice.store.UttEntityHydrationStore
|
||||||
|
import com.twitter.frigate.pushservice.util.MediaCRT
|
||||||
|
import com.twitter.frigate.pushservice.util.PushAdaptorUtil
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.frigate.pushservice.util.TopicsUtil
|
||||||
|
import com.twitter.frigate.thriftscala.CommonRecommendationType
|
||||||
|
import com.twitter.hermit.constants.AlgorithmFeedbackTokens
|
||||||
|
import com.twitter.hermit.model.Algorithm.Algorithm
|
||||||
|
import com.twitter.hermit.model.Algorithm.CrowdSearchAccounts
|
||||||
|
import com.twitter.hermit.model.Algorithm.ForwardEmailBook
|
||||||
|
import com.twitter.hermit.model.Algorithm.ForwardPhoneBook
|
||||||
|
import com.twitter.hermit.model.Algorithm.ReverseEmailBookIbis
|
||||||
|
import com.twitter.hermit.model.Algorithm.ReversePhoneBook
|
||||||
|
import com.twitter.hermit.store.tweetypie.UserTweet
|
||||||
|
import com.twitter.product_mixer.core.thriftscala.ClientContext
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.tsp.thriftscala.TopicSocialProofRequest
|
||||||
|
import com.twitter.tsp.thriftscala.TopicSocialProofResponse
|
||||||
|
import com.twitter.util.Future
|
||||||
|
|
||||||
|
object FRSAlgorithmFeedbackTokenUtil {
|
||||||
|
private val crtsByAlgoToken = Map(
|
||||||
|
getAlgorithmToken(ReverseEmailBookIbis) -> CommonRecommendationType.ReverseAddressbookTweet,
|
||||||
|
getAlgorithmToken(ReversePhoneBook) -> CommonRecommendationType.ReverseAddressbookTweet,
|
||||||
|
getAlgorithmToken(ForwardEmailBook) -> CommonRecommendationType.ForwardAddressbookTweet,
|
||||||
|
getAlgorithmToken(ForwardPhoneBook) -> CommonRecommendationType.ForwardAddressbookTweet,
|
||||||
|
getAlgorithmToken(CrowdSearchAccounts) -> CommonRecommendationType.CrowdSearchTweet
|
||||||
|
)
|
||||||
|
|
||||||
|
def getAlgorithmToken(algorithm: Algorithm): Int = {
|
||||||
|
AlgorithmFeedbackTokens.AlgorithmToFeedbackTokenMap(algorithm)
|
||||||
|
}
|
||||||
|
|
||||||
|
def getCRTForAlgoToken(algorithmToken: Int): Option[CommonRecommendationType] = {
|
||||||
|
crtsByAlgoToken.get(algorithmToken)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
case class FRSTweetCandidateAdaptor(
|
||||||
|
crMixerTweetStore: CrMixerTweetStore,
|
||||||
|
tweetyPieStore: ReadableStore[Long, TweetyPieResult],
|
||||||
|
tweetyPieStoreNoVF: ReadableStore[Long, TweetyPieResult],
|
||||||
|
userTweetTweetyPieStore: ReadableStore[UserTweet, TweetyPieResult],
|
||||||
|
uttEntityHydrationStore: UttEntityHydrationStore,
|
||||||
|
topicSocialProofServiceStore: ReadableStore[TopicSocialProofRequest, TopicSocialProofResponse],
|
||||||
|
globalStats: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
|
||||||
|
private val stats = globalStats.scope(this.getClass.getSimpleName)
|
||||||
|
private val crtStats = stats.scope("CandidateDistribution")
|
||||||
|
private val totalRequests = stats.counter("total_requests")
|
||||||
|
|
||||||
|
// Candidate Distribution stats
|
||||||
|
private val reverseAddressbookCounter = crtStats.counter("reverse_addressbook")
|
||||||
|
private val forwardAddressbookCounter = crtStats.counter("forward_addressbook")
|
||||||
|
private val frsTweetCounter = crtStats.counter("frs_tweet")
|
||||||
|
private val nonReplyTweetsCounter = stats.counter("non_reply_tweets")
|
||||||
|
private val crtToCounterMapping: Map[CommonRecommendationType, Counter] = Map(
|
||||||
|
CommonRecommendationType.ReverseAddressbookTweet -> reverseAddressbookCounter,
|
||||||
|
CommonRecommendationType.ForwardAddressbookTweet -> forwardAddressbookCounter,
|
||||||
|
CommonRecommendationType.FrsTweet -> frsTweetCounter
|
||||||
|
)
|
||||||
|
|
||||||
|
private val emptyTweetyPieResult = stats.stat("empty_tweetypie_result")
|
||||||
|
|
||||||
|
private[this] val numberReturnedCandidates = stats.stat("returned_candidates_from_earlybird")
|
||||||
|
private[this] val numberCandidateWithTopic: Counter = stats.counter("num_can_with_topic")
|
||||||
|
private[this] val numberCandidateWithoutTopic: Counter = stats.counter("num_can_without_topic")
|
||||||
|
|
||||||
|
private val userTweetTweetyPieStoreCounter = stats.counter("user_tweet_tweetypie_store")
|
||||||
|
|
||||||
|
override val name: String = this.getClass.getSimpleName
|
||||||
|
|
||||||
|
private def filterInvalidTweets(
|
||||||
|
tweetIds: Seq[Long],
|
||||||
|
target: Target
|
||||||
|
): Future[Map[Long, TweetyPieResult]] = {
|
||||||
|
val resMap = {
|
||||||
|
if (target.params(PushFeatureSwitchParams.EnableF1FromProtectedTweetAuthors)) {
|
||||||
|
userTweetTweetyPieStoreCounter.incr()
|
||||||
|
val keys = tweetIds.map { tweetId =>
|
||||||
|
UserTweet(tweetId, Some(target.targetId))
|
||||||
|
}
|
||||||
|
userTweetTweetyPieStore
|
||||||
|
.multiGet(keys.toSet).map {
|
||||||
|
case (userTweet, resultFut) =>
|
||||||
|
userTweet.tweetId -> resultFut
|
||||||
|
}.toMap
|
||||||
|
} else {
|
||||||
|
(if (target.params(PushFeatureSwitchParams.EnableVFInTweetypie)) {
|
||||||
|
tweetyPieStore
|
||||||
|
} else {
|
||||||
|
tweetyPieStoreNoVF
|
||||||
|
}).multiGet(tweetIds.toSet)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Future.collect(resMap).map { tweetyPieResultMap =>
|
||||||
|
// Filter out replies and generate earlybird candidates only for non-empty tweetypie result
|
||||||
|
val cands = filterOutReplyTweet(tweetyPieResultMap, nonReplyTweetsCounter).collect {
|
||||||
|
case (id: Long, Some(result)) =>
|
||||||
|
id -> result
|
||||||
|
}
|
||||||
|
|
||||||
|
emptyTweetyPieResult.add(tweetyPieResultMap.size - cands.size)
|
||||||
|
cands
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def buildRawCandidates(
|
||||||
|
target: Target,
|
||||||
|
ebCandidates: Seq[FRSTweetCandidate]
|
||||||
|
): Future[Option[Seq[RawCandidate with TweetCandidate]]] = {
|
||||||
|
|
||||||
|
val enableTopic = target.params(PushFeatureSwitchParams.EnableFrsTweetCandidatesTopicAnnotation)
|
||||||
|
val topicScoreThre =
|
||||||
|
target.params(PushFeatureSwitchParams.FrsTweetCandidatesTopicScoreThreshold)
|
||||||
|
|
||||||
|
val ebTweets = ebCandidates.map { ebCandidate =>
|
||||||
|
ebCandidate.tweetId -> ebCandidate.tweetyPieResult
|
||||||
|
}.toMap
|
||||||
|
|
||||||
|
val tweetIdLocalizedEntityMapFut = TopicsUtil.getTweetIdLocalizedEntityMap(
|
||||||
|
target,
|
||||||
|
ebTweets,
|
||||||
|
uttEntityHydrationStore,
|
||||||
|
topicSocialProofServiceStore,
|
||||||
|
enableTopic,
|
||||||
|
topicScoreThre
|
||||||
|
)
|
||||||
|
|
||||||
|
Future.join(target.deviceInfo, tweetIdLocalizedEntityMapFut).map {
|
||||||
|
case (Some(deviceInfo), tweetIdLocalizedEntityMap) =>
|
||||||
|
val candidates = ebCandidates
|
||||||
|
.map { ebCandidate =>
|
||||||
|
val crt = ebCandidate.commonRecType
|
||||||
|
crtToCounterMapping.get(crt).foreach(_.incr())
|
||||||
|
|
||||||
|
val tweetId = ebCandidate.tweetId
|
||||||
|
val localizedEntityOpt = {
|
||||||
|
if (tweetIdLocalizedEntityMap
|
||||||
|
.contains(tweetId) && tweetIdLocalizedEntityMap.contains(
|
||||||
|
tweetId) && deviceInfo.isTopicsEligible) {
|
||||||
|
tweetIdLocalizedEntityMap(tweetId)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
PushAdaptorUtil.generateOutOfNetworkTweetCandidates(
|
||||||
|
inputTarget = target,
|
||||||
|
id = ebCandidate.tweetId,
|
||||||
|
mediaCRT = MediaCRT(
|
||||||
|
crt,
|
||||||
|
crt,
|
||||||
|
crt
|
||||||
|
),
|
||||||
|
result = ebCandidate.tweetyPieResult,
|
||||||
|
localizedEntity = localizedEntityOpt)
|
||||||
|
}.filter { candidate =>
|
||||||
|
// If user only has the topic setting enabled, filter out all non-topic cands
|
||||||
|
deviceInfo.isRecommendationsEligible || (deviceInfo.isTopicsEligible && candidate.semanticCoreEntityId.nonEmpty)
|
||||||
|
}
|
||||||
|
|
||||||
|
candidates.map { candidate =>
|
||||||
|
if (candidate.semanticCoreEntityId.nonEmpty) {
|
||||||
|
numberCandidateWithTopic.incr()
|
||||||
|
} else {
|
||||||
|
numberCandidateWithoutTopic.incr()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
numberReturnedCandidates.add(candidates.length)
|
||||||
|
Some(candidates)
|
||||||
|
case _ => Some(Seq.empty)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def getTweetCandidatesFromCrMixer(
|
||||||
|
inputTarget: Target,
|
||||||
|
showAllResultsFromFrs: Boolean,
|
||||||
|
): Future[Option[Seq[RawCandidate with TweetCandidate]]] = {
|
||||||
|
Future
|
||||||
|
.join(
|
||||||
|
inputTarget.seenTweetIds,
|
||||||
|
inputTarget.pushRecItems,
|
||||||
|
inputTarget.countryCode,
|
||||||
|
inputTarget.targetLanguage).flatMap {
|
||||||
|
case (seenTweetIds, pastRecItems, countryCode, language) =>
|
||||||
|
val pastUserRecs = pastRecItems.userIds.toSeq
|
||||||
|
val request = FrsTweetRequest(
|
||||||
|
clientContext = ClientContext(
|
||||||
|
userId = Some(inputTarget.targetId),
|
||||||
|
countryCode = countryCode,
|
||||||
|
languageCode = language
|
||||||
|
),
|
||||||
|
product = Product.Notifications,
|
||||||
|
productContext = Some(ProductContext.NotificationsContext(NotificationsContext())),
|
||||||
|
excludedUserIds = Some(pastUserRecs),
|
||||||
|
excludedTweetIds = Some(seenTweetIds)
|
||||||
|
)
|
||||||
|
crMixerTweetStore.getFRSTweetCandidates(request).flatMap {
|
||||||
|
case Some(response) =>
|
||||||
|
val tweetIds = response.tweets.map(_.tweetId)
|
||||||
|
val validTweets = filterInvalidTweets(tweetIds, inputTarget)
|
||||||
|
validTweets.flatMap { tweetypieMap =>
|
||||||
|
val ebCandidates = response.tweets
|
||||||
|
.map { frsTweet =>
|
||||||
|
val candidateTweetId = frsTweet.tweetId
|
||||||
|
val resultFromTweetyPie = tweetypieMap.get(candidateTweetId)
|
||||||
|
new FRSTweetCandidate {
|
||||||
|
override val tweetId = candidateTweetId
|
||||||
|
override val features = None
|
||||||
|
override val tweetyPieResult = resultFromTweetyPie
|
||||||
|
override val feedbackToken = frsTweet.frsPrimarySource
|
||||||
|
override val commonRecType: CommonRecommendationType = feedbackToken
|
||||||
|
.flatMap(token =>
|
||||||
|
FRSAlgorithmFeedbackTokenUtil.getCRTForAlgoToken(token)).getOrElse(
|
||||||
|
CommonRecommendationType.FrsTweet)
|
||||||
|
}
|
||||||
|
}.filter { ebCandidate =>
|
||||||
|
showAllResultsFromFrs || ebCandidate.commonRecType == CommonRecommendationType.ReverseAddressbookTweet
|
||||||
|
}
|
||||||
|
|
||||||
|
numberReturnedCandidates.add(ebCandidates.length)
|
||||||
|
buildRawCandidates(
|
||||||
|
inputTarget,
|
||||||
|
ebCandidates
|
||||||
|
)
|
||||||
|
}
|
||||||
|
case _ => Future.None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def get(inputTarget: Target): Future[Option[Seq[RawCandidate with TweetCandidate]]] = {
|
||||||
|
totalRequests.incr()
|
||||||
|
val enableResultsFromFrs =
|
||||||
|
inputTarget.params(PushFeatureSwitchParams.EnableResultFromFrsCandidates)
|
||||||
|
getTweetCandidatesFromCrMixer(inputTarget, enableResultsFromFrs)
|
||||||
|
}
|
||||||
|
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
lazy val enableFrsCandidates = target.params(PushFeatureSwitchParams.EnableFrsCandidates)
|
||||||
|
PushDeviceUtil.isRecommendationsEligible(target).flatMap { isEnabledForRecosSetting =>
|
||||||
|
PushDeviceUtil.isTopicsEligible(target).map { topicSettingEnabled =>
|
||||||
|
val isEnabledForTopics =
|
||||||
|
topicSettingEnabled && target.params(
|
||||||
|
PushFeatureSwitchParams.EnableFrsTweetCandidatesTopicSetting)
|
||||||
|
(isEnabledForRecosSetting || isEnabledForTopics) && enableFrsCandidates
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,107 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base._
|
||||||
|
import com.twitter.frigate.common.candidate._
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.PushParams
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.util.Future
|
||||||
|
|
||||||
|
object GenericCandidates {
|
||||||
|
type Target =
|
||||||
|
TargetUser
|
||||||
|
with UserDetails
|
||||||
|
with TargetDecider
|
||||||
|
with TargetABDecider
|
||||||
|
with TweetImpressionHistory
|
||||||
|
with HTLVisitHistory
|
||||||
|
with MaxTweetAge
|
||||||
|
with NewUserDetails
|
||||||
|
with FrigateHistory
|
||||||
|
with TargetWithSeedUsers
|
||||||
|
}
|
||||||
|
|
||||||
|
case class GenericCandidateAdaptor(
|
||||||
|
genericCandidates: CandidateSource[GenericCandidates.Target, Candidate],
|
||||||
|
tweetyPieStore: ReadableStore[Long, TweetyPieResult],
|
||||||
|
tweetyPieStoreNoVF: ReadableStore[Long, TweetyPieResult],
|
||||||
|
stats: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
|
||||||
|
override val name: String = genericCandidates.name
|
||||||
|
|
||||||
|
private def generateTweetFavCandidate(
|
||||||
|
_target: Target,
|
||||||
|
_tweetId: Long,
|
||||||
|
_socialContextActions: Seq[SocialContextAction],
|
||||||
|
socialContextActionsAllTypes: Seq[SocialContextAction],
|
||||||
|
_tweetyPieResult: Option[TweetyPieResult]
|
||||||
|
): RawCandidate = {
|
||||||
|
new RawCandidate with TweetFavoriteCandidate {
|
||||||
|
override val socialContextActions = _socialContextActions
|
||||||
|
override val socialContextAllTypeActions =
|
||||||
|
socialContextActionsAllTypes
|
||||||
|
val tweetId = _tweetId
|
||||||
|
val target = _target
|
||||||
|
val tweetyPieResult = _tweetyPieResult
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def generateTweetRetweetCandidate(
|
||||||
|
_target: Target,
|
||||||
|
_tweetId: Long,
|
||||||
|
_socialContextActions: Seq[SocialContextAction],
|
||||||
|
socialContextActionsAllTypes: Seq[SocialContextAction],
|
||||||
|
_tweetyPieResult: Option[TweetyPieResult]
|
||||||
|
): RawCandidate = {
|
||||||
|
new RawCandidate with TweetRetweetCandidate {
|
||||||
|
override val socialContextActions = _socialContextActions
|
||||||
|
override val socialContextAllTypeActions = socialContextActionsAllTypes
|
||||||
|
val tweetId = _tweetId
|
||||||
|
val target = _target
|
||||||
|
val tweetyPieResult = _tweetyPieResult
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def get(inputTarget: Target): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
genericCandidates.get(inputTarget).map { candidatesOpt =>
|
||||||
|
candidatesOpt
|
||||||
|
.map { candidates =>
|
||||||
|
val candidatesSeq =
|
||||||
|
candidates.collect {
|
||||||
|
case tweetRetweet: TweetRetweetCandidate
|
||||||
|
if inputTarget.params(PushParams.MRTweetRetweetRecsParam) =>
|
||||||
|
generateTweetRetweetCandidate(
|
||||||
|
inputTarget,
|
||||||
|
tweetRetweet.tweetId,
|
||||||
|
tweetRetweet.socialContextActions,
|
||||||
|
tweetRetweet.socialContextAllTypeActions,
|
||||||
|
tweetRetweet.tweetyPieResult)
|
||||||
|
case tweetFavorite: TweetFavoriteCandidate
|
||||||
|
if inputTarget.params(PushParams.MRTweetFavRecsParam) =>
|
||||||
|
generateTweetFavCandidate(
|
||||||
|
inputTarget,
|
||||||
|
tweetFavorite.tweetId,
|
||||||
|
tweetFavorite.socialContextActions,
|
||||||
|
tweetFavorite.socialContextAllTypeActions,
|
||||||
|
tweetFavorite.tweetyPieResult)
|
||||||
|
}
|
||||||
|
candidatesSeq.foreach { candidate =>
|
||||||
|
stats.counter(s"${candidate.commonRecType}_count").incr()
|
||||||
|
}
|
||||||
|
candidatesSeq
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
PushDeviceUtil.isRecommendationsEligible(target).map { isAvailable =>
|
||||||
|
isAvailable && target.params(PushParams.GenericCandidateAdaptorDecider)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,280 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.finagle.stats.Stat
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base.CandidateSource
|
||||||
|
import com.twitter.frigate.common.base.CandidateSourceEligible
|
||||||
|
import com.twitter.frigate.common.store.interests.InterestsLookupRequestWithContext
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.HighQualityCandidateGroupEnum
|
||||||
|
import com.twitter.frigate.pushservice.params.HighQualityCandidateGroupEnum._
|
||||||
|
import com.twitter.frigate.pushservice.params.PushConstants.targetUserAgeFeatureName
|
||||||
|
import com.twitter.frigate.pushservice.params.PushConstants.targetUserPreferredLanguage
|
||||||
|
import com.twitter.frigate.pushservice.params.{PushFeatureSwitchParams => FS}
|
||||||
|
import com.twitter.frigate.pushservice.predicate.TargetPredicates
|
||||||
|
import com.twitter.frigate.pushservice.util.MediaCRT
|
||||||
|
import com.twitter.frigate.pushservice.util.PushAdaptorUtil
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.frigate.pushservice.util.TopicsUtil
|
||||||
|
import com.twitter.frigate.thriftscala.CommonRecommendationType
|
||||||
|
import com.twitter.interests.thriftscala.InterestId.SemanticCore
|
||||||
|
import com.twitter.interests.thriftscala.UserInterests
|
||||||
|
import com.twitter.language.normalization.UserDisplayLanguage
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.trends.trip_v1.trip_tweets.thriftscala.TripDomain
|
||||||
|
import com.twitter.trends.trip_v1.trip_tweets.thriftscala.TripTweet
|
||||||
|
import com.twitter.trends.trip_v1.trip_tweets.thriftscala.TripTweets
|
||||||
|
import com.twitter.util.Future
|
||||||
|
|
||||||
|
object HighQualityTweetsHelper {
|
||||||
|
def getFollowedTopics(
|
||||||
|
target: Target,
|
||||||
|
interestsWithLookupContextStore: ReadableStore[
|
||||||
|
InterestsLookupRequestWithContext,
|
||||||
|
UserInterests
|
||||||
|
],
|
||||||
|
followedTopicsStats: Stat
|
||||||
|
): Future[Seq[Long]] = {
|
||||||
|
TopicsUtil
|
||||||
|
.getTopicsFollowedByUser(target, interestsWithLookupContextStore, followedTopicsStats).map {
|
||||||
|
userInterestsOpt =>
|
||||||
|
val userInterests = userInterestsOpt.getOrElse(Seq.empty)
|
||||||
|
val extractedTopicIds = userInterests.flatMap {
|
||||||
|
_.interestId match {
|
||||||
|
case SemanticCore(semanticCore) => Some(semanticCore.id)
|
||||||
|
case _ => None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
extractedTopicIds
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def getTripQueries(
|
||||||
|
target: Target,
|
||||||
|
enabledGroups: Set[HighQualityCandidateGroupEnum.Value],
|
||||||
|
interestsWithLookupContextStore: ReadableStore[
|
||||||
|
InterestsLookupRequestWithContext,
|
||||||
|
UserInterests
|
||||||
|
],
|
||||||
|
sourceIds: Seq[String],
|
||||||
|
stat: Stat
|
||||||
|
): Future[Set[TripDomain]] = {
|
||||||
|
|
||||||
|
val followedTopicIdsSetFut: Future[Set[Long]] = if (enabledGroups.contains(Topic)) {
|
||||||
|
getFollowedTopics(target, interestsWithLookupContextStore, stat).map(topicIds =>
|
||||||
|
topicIds.toSet)
|
||||||
|
} else {
|
||||||
|
Future.value(Set.empty)
|
||||||
|
}
|
||||||
|
|
||||||
|
Future
|
||||||
|
.join(target.featureMap, target.inferredUserDeviceLanguage, followedTopicIdsSetFut).map {
|
||||||
|
case (
|
||||||
|
featureMap,
|
||||||
|
deviceLanguageOpt,
|
||||||
|
followedTopicIds
|
||||||
|
) =>
|
||||||
|
val ageBucketOpt = if (enabledGroups.contains(AgeBucket)) {
|
||||||
|
featureMap.categoricalFeatures.get(targetUserAgeFeatureName)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
|
||||||
|
val languageOptions: Set[Option[String]] = if (enabledGroups.contains(Language)) {
|
||||||
|
val userPreferredLanguages = featureMap.sparseBinaryFeatures
|
||||||
|
.getOrElse(targetUserPreferredLanguage, Set.empty[String])
|
||||||
|
if (userPreferredLanguages.nonEmpty) {
|
||||||
|
userPreferredLanguages.map(lang => Some(UserDisplayLanguage.toTweetLanguage(lang)))
|
||||||
|
} else {
|
||||||
|
Set(deviceLanguageOpt.map(UserDisplayLanguage.toTweetLanguage))
|
||||||
|
}
|
||||||
|
} else Set(None)
|
||||||
|
|
||||||
|
val followedTopicOptions: Set[Option[Long]] = if (followedTopicIds.nonEmpty) {
|
||||||
|
followedTopicIds.map(topic => Some(topic))
|
||||||
|
} else Set(None)
|
||||||
|
|
||||||
|
val tripQueries = followedTopicOptions.flatMap { topicOption =>
|
||||||
|
languageOptions.flatMap { languageOption =>
|
||||||
|
sourceIds.map { sourceId =>
|
||||||
|
TripDomain(
|
||||||
|
sourceId = sourceId,
|
||||||
|
language = languageOption,
|
||||||
|
placeId = None,
|
||||||
|
topicId = topicOption,
|
||||||
|
gender = None,
|
||||||
|
ageBucket = ageBucketOpt
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
tripQueries
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
case class HighQualityTweetsAdaptor(
|
||||||
|
tripTweetCandidateStore: ReadableStore[TripDomain, TripTweets],
|
||||||
|
interestsWithLookupContextStore: ReadableStore[InterestsLookupRequestWithContext, UserInterests],
|
||||||
|
tweetyPieStore: ReadableStore[Long, TweetyPieResult],
|
||||||
|
tweetyPieStoreNoVF: ReadableStore[Long, TweetyPieResult],
|
||||||
|
globalStats: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
|
||||||
|
override def name: String = this.getClass.getSimpleName
|
||||||
|
|
||||||
|
private val stats = globalStats.scope("HighQualityCandidateAdaptor")
|
||||||
|
private val followedTopicsStats = stats.stat("followed_topics")
|
||||||
|
private val missingResponseCounter = stats.counter("missing_respond_counter")
|
||||||
|
private val crtFatigueCounter = stats.counter("fatigue_by_crt")
|
||||||
|
private val fallbackRequestsCounter = stats.counter("fallback_requests")
|
||||||
|
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
PushDeviceUtil.isRecommendationsEligible(target).map {
|
||||||
|
_ && target.params(FS.HighQualityCandidatesEnableCandidateSource)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private val highQualityCandidateFrequencyPredicate = {
|
||||||
|
TargetPredicates
|
||||||
|
.pushRecTypeFatiguePredicate(
|
||||||
|
CommonRecommendationType.TripHqTweet,
|
||||||
|
FS.HighQualityTweetsPushInterval,
|
||||||
|
FS.MaxHighQualityTweetsPushGivenInterval,
|
||||||
|
stats
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getTripCandidatesStrato(
|
||||||
|
target: Target
|
||||||
|
): Future[Map[Long, Set[TripDomain]]] = {
|
||||||
|
val tripQueriesF: Future[Set[TripDomain]] = HighQualityTweetsHelper.getTripQueries(
|
||||||
|
target = target,
|
||||||
|
enabledGroups = target.params(FS.HighQualityCandidatesEnableGroups).toSet,
|
||||||
|
interestsWithLookupContextStore = interestsWithLookupContextStore,
|
||||||
|
sourceIds = target.params(FS.TripTweetCandidateSourceIds),
|
||||||
|
stat = followedTopicsStats
|
||||||
|
)
|
||||||
|
|
||||||
|
lazy val fallbackTripQueriesFut: Future[Set[TripDomain]] =
|
||||||
|
if (target.params(FS.HighQualityCandidatesEnableFallback))
|
||||||
|
HighQualityTweetsHelper.getTripQueries(
|
||||||
|
target = target,
|
||||||
|
enabledGroups = target.params(FS.HighQualityCandidatesFallbackEnabledGroups).toSet,
|
||||||
|
interestsWithLookupContextStore = interestsWithLookupContextStore,
|
||||||
|
sourceIds = target.params(FS.HighQualityCandidatesFallbackSourceIds),
|
||||||
|
stat = followedTopicsStats
|
||||||
|
)
|
||||||
|
else Future.value(Set.empty)
|
||||||
|
|
||||||
|
val initialTweetsFut: Future[Map[TripDomain, Seq[TripTweet]]] = tripQueriesF.flatMap {
|
||||||
|
tripQueries => getTripTweetsByDomains(tripQueries)
|
||||||
|
}
|
||||||
|
|
||||||
|
val tweetsByDomainFut: Future[Map[TripDomain, Seq[TripTweet]]] =
|
||||||
|
if (target.params(FS.HighQualityCandidatesEnableFallback)) {
|
||||||
|
initialTweetsFut.flatMap { candidates =>
|
||||||
|
val minCandidatesForFallback: Int =
|
||||||
|
target.params(FS.HighQualityCandidatesMinNumOfCandidatesToFallback)
|
||||||
|
val validCandidates = candidates.filter(_._2.size >= minCandidatesForFallback)
|
||||||
|
|
||||||
|
if (validCandidates.nonEmpty) {
|
||||||
|
Future.value(validCandidates)
|
||||||
|
} else {
|
||||||
|
fallbackTripQueriesFut.flatMap { fallbackTripDomains =>
|
||||||
|
fallbackRequestsCounter.incr(fallbackTripDomains.size)
|
||||||
|
getTripTweetsByDomains(fallbackTripDomains)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
initialTweetsFut
|
||||||
|
}
|
||||||
|
|
||||||
|
val numOfCandidates: Int = target.params(FS.HighQualityCandidatesNumberOfCandidates)
|
||||||
|
tweetsByDomainFut.map(tweetsByDomain => reformatDomainTweetMap(tweetsByDomain, numOfCandidates))
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getTripTweetsByDomains(
|
||||||
|
tripQueries: Set[TripDomain]
|
||||||
|
): Future[Map[TripDomain, Seq[TripTweet]]] = {
|
||||||
|
Future.collect(tripTweetCandidateStore.multiGet(tripQueries)).map { response =>
|
||||||
|
response
|
||||||
|
.filter(p => p._2.exists(_.tweets.nonEmpty))
|
||||||
|
.mapValues(_.map(_.tweets).getOrElse(Seq.empty))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def reformatDomainTweetMap(
|
||||||
|
tweetsByDomain: Map[TripDomain, Seq[TripTweet]],
|
||||||
|
numOfCandidates: Int
|
||||||
|
): Map[Long, Set[TripDomain]] = tweetsByDomain
|
||||||
|
.flatMap {
|
||||||
|
case (tripDomain, tripTweets) =>
|
||||||
|
tripTweets
|
||||||
|
.sortBy(_.score)(Ordering[Double].reverse)
|
||||||
|
.take(numOfCandidates)
|
||||||
|
.map { tweet => (tweet.tweetId, tripDomain) }
|
||||||
|
}.groupBy(_._1).mapValues(_.map(_._2).toSet)
|
||||||
|
|
||||||
|
private def buildRawCandidate(
|
||||||
|
target: Target,
|
||||||
|
tweetyPieResult: TweetyPieResult,
|
||||||
|
tripDomain: Option[scala.collection.Set[TripDomain]]
|
||||||
|
): RawCandidate = {
|
||||||
|
PushAdaptorUtil.generateOutOfNetworkTweetCandidates(
|
||||||
|
inputTarget = target,
|
||||||
|
id = tweetyPieResult.tweet.id,
|
||||||
|
mediaCRT = MediaCRT(
|
||||||
|
CommonRecommendationType.TripHqTweet,
|
||||||
|
CommonRecommendationType.TripHqTweet,
|
||||||
|
CommonRecommendationType.TripHqTweet
|
||||||
|
),
|
||||||
|
result = Some(tweetyPieResult),
|
||||||
|
tripTweetDomain = tripDomain
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getTweetyPieResults(
|
||||||
|
target: Target,
|
||||||
|
tweetToTripDomain: Map[Long, Set[TripDomain]]
|
||||||
|
): Future[Map[Long, Option[TweetyPieResult]]] = {
|
||||||
|
Future.collect((if (target.params(FS.EnableVFInTweetypie)) {
|
||||||
|
tweetyPieStore
|
||||||
|
} else {
|
||||||
|
tweetyPieStoreNoVF
|
||||||
|
}).multiGet(tweetToTripDomain.keySet))
|
||||||
|
}
|
||||||
|
|
||||||
|
override def get(target: Target): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
for {
|
||||||
|
tweetsToTripDomainMap <- getTripCandidatesStrato(target)
|
||||||
|
tweetyPieResults <- getTweetyPieResults(target, tweetsToTripDomainMap)
|
||||||
|
} yield {
|
||||||
|
val candidates = tweetyPieResults.flatMap {
|
||||||
|
case (tweetId, tweetyPieResultOpt) =>
|
||||||
|
tweetyPieResultOpt.map(buildRawCandidate(target, _, tweetsToTripDomainMap.get(tweetId)))
|
||||||
|
}
|
||||||
|
if (candidates.nonEmpty) {
|
||||||
|
highQualityCandidateFrequencyPredicate(Seq(target))
|
||||||
|
.map(_.head)
|
||||||
|
.map { isTargetFatigueEligible =>
|
||||||
|
if (isTargetFatigueEligible) Some(candidates)
|
||||||
|
else {
|
||||||
|
crtFatigueCounter.incr()
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Some(candidates.toSeq)
|
||||||
|
} else {
|
||||||
|
missingResponseCounter.incr()
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,152 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base.CandidateSource
|
||||||
|
import com.twitter.frigate.common.base.CandidateSourceEligible
|
||||||
|
import com.twitter.frigate.common.base.ListPushCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.PushFeatureSwitchParams
|
||||||
|
import com.twitter.frigate.pushservice.predicate.TargetPredicates
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.frigate.thriftscala.CommonRecommendationType
|
||||||
|
import com.twitter.geoduck.service.thriftscala.LocationResponse
|
||||||
|
import com.twitter.interests_discovery.thriftscala.DisplayLocation
|
||||||
|
import com.twitter.interests_discovery.thriftscala.NonPersonalizedRecommendedLists
|
||||||
|
import com.twitter.interests_discovery.thriftscala.RecommendedListsRequest
|
||||||
|
import com.twitter.interests_discovery.thriftscala.RecommendedListsResponse
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.util.Future
|
||||||
|
|
||||||
|
case class ListsToRecommendCandidateAdaptor(
|
||||||
|
listRecommendationsStore: ReadableStore[String, NonPersonalizedRecommendedLists],
|
||||||
|
geoDuckV2Store: ReadableStore[Long, LocationResponse],
|
||||||
|
idsStore: ReadableStore[RecommendedListsRequest, RecommendedListsResponse],
|
||||||
|
globalStats: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
|
||||||
|
override val name: String = this.getClass.getSimpleName
|
||||||
|
|
||||||
|
private[this] val stats = globalStats.scope(name)
|
||||||
|
private[this] val noLocationCodeCounter = stats.counter("no_location_code")
|
||||||
|
private[this] val noCandidatesCounter = stats.counter("no_candidates_for_geo")
|
||||||
|
private[this] val disablePopGeoListsCounter = stats.counter("disable_pop_geo_lists")
|
||||||
|
private[this] val disableIDSListsCounter = stats.counter("disable_ids_lists")
|
||||||
|
|
||||||
|
private def getListCandidate(
|
||||||
|
targetUser: Target,
|
||||||
|
_listId: Long
|
||||||
|
): RawCandidate with ListPushCandidate = {
|
||||||
|
new RawCandidate with ListPushCandidate {
|
||||||
|
override val listId: Long = _listId
|
||||||
|
|
||||||
|
override val commonRecType: CommonRecommendationType = CommonRecommendationType.List
|
||||||
|
|
||||||
|
override val target: Target = targetUser
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getListsRecommendedFromHistory(
|
||||||
|
target: Target
|
||||||
|
): Future[Seq[Long]] = {
|
||||||
|
target.history.map { history =>
|
||||||
|
history.sortedHistory.flatMap {
|
||||||
|
case (_, notif) if notif.commonRecommendationType == List =>
|
||||||
|
notif.listNotification.map(_.listId)
|
||||||
|
case _ => None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getIDSListRecs(
|
||||||
|
target: Target,
|
||||||
|
historicalListIds: Seq[Long]
|
||||||
|
): Future[Seq[Long]] = {
|
||||||
|
val request = RecommendedListsRequest(
|
||||||
|
target.targetId,
|
||||||
|
DisplayLocation.ListDiscoveryPage,
|
||||||
|
Some(historicalListIds)
|
||||||
|
)
|
||||||
|
if (target.params(PushFeatureSwitchParams.EnableIDSListRecommendations)) {
|
||||||
|
idsStore.get(request).map {
|
||||||
|
case Some(response) =>
|
||||||
|
response.channels.map(_.id)
|
||||||
|
case _ => Nil
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
disableIDSListsCounter.incr()
|
||||||
|
Future.Nil
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getPopGeoLists(
|
||||||
|
target: Target,
|
||||||
|
historicalListIds: Seq[Long]
|
||||||
|
): Future[Seq[Long]] = {
|
||||||
|
if (target.params(PushFeatureSwitchParams.EnablePopGeoListRecommendations)) {
|
||||||
|
geoDuckV2Store.get(target.targetId).flatMap {
|
||||||
|
case Some(locationResponse) if locationResponse.geohash.isDefined =>
|
||||||
|
val geoHashLength =
|
||||||
|
target.params(PushFeatureSwitchParams.ListRecommendationsGeoHashLength)
|
||||||
|
val geoHash = locationResponse.geohash.get.take(geoHashLength)
|
||||||
|
listRecommendationsStore
|
||||||
|
.get(s"geohash_$geoHash")
|
||||||
|
.map {
|
||||||
|
case Some(recommendedLists) =>
|
||||||
|
recommendedLists.recommendedListsByAlgo.flatMap { topLists =>
|
||||||
|
topLists.lists.collect {
|
||||||
|
case list if !historicalListIds.contains(list.listId) => list.listId
|
||||||
|
}
|
||||||
|
}
|
||||||
|
case _ => Nil
|
||||||
|
}
|
||||||
|
case _ =>
|
||||||
|
noLocationCodeCounter.incr()
|
||||||
|
Future.Nil
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
disablePopGeoListsCounter.incr()
|
||||||
|
Future.Nil
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def get(target: Target): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
getListsRecommendedFromHistory(target).flatMap { historicalListIds =>
|
||||||
|
Future
|
||||||
|
.join(
|
||||||
|
getPopGeoLists(target, historicalListIds),
|
||||||
|
getIDSListRecs(target, historicalListIds)
|
||||||
|
)
|
||||||
|
.map {
|
||||||
|
case (popGeoListsIds, idsListIds) =>
|
||||||
|
val candidates = (idsListIds ++ popGeoListsIds).map(getListCandidate(target, _))
|
||||||
|
Some(candidates)
|
||||||
|
case _ =>
|
||||||
|
noCandidatesCounter.incr()
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private val pushCapFatiguePredicate = TargetPredicates.pushRecTypeFatiguePredicate(
|
||||||
|
CommonRecommendationType.List,
|
||||||
|
PushFeatureSwitchParams.ListRecommendationsPushInterval,
|
||||||
|
PushFeatureSwitchParams.MaxListRecommendationsPushGivenInterval,
|
||||||
|
stats,
|
||||||
|
)
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
|
||||||
|
val isNotFatigued = pushCapFatiguePredicate.apply(Seq(target)).map(_.head)
|
||||||
|
|
||||||
|
Future
|
||||||
|
.join(
|
||||||
|
PushDeviceUtil.isRecommendationsEligible(target),
|
||||||
|
isNotFatigued
|
||||||
|
).map {
|
||||||
|
case (userRecommendationsEligible, isUnderCAP) =>
|
||||||
|
userRecommendationsEligible && isUnderCAP && target.params(
|
||||||
|
PushFeatureSwitchParams.EnableListRecommendations)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,54 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base.CandidateSource
|
||||||
|
import com.twitter.frigate.common.base.CandidateSourceEligible
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.geoduck.service.thriftscala.LocationResponse
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.trends.trip_v1.trip_tweets.thriftscala.TripDomain
|
||||||
|
import com.twitter.trends.trip_v1.trip_tweets.thriftscala.TripTweets
|
||||||
|
import com.twitter.content_mixer.thriftscala.ContentMixerRequest
|
||||||
|
import com.twitter.content_mixer.thriftscala.ContentMixerResponse
|
||||||
|
import com.twitter.geoduck.common.thriftscala.Location
|
||||||
|
import com.twitter.hermit.pop_geo.thriftscala.PopTweetsInPlace
|
||||||
|
import com.twitter.recommendation.interests.discovery.core.model.InterestDomain
|
||||||
|
|
||||||
|
class LoggedOutPushCandidateSourceGenerator(
|
||||||
|
tripTweetCandidateStore: ReadableStore[TripDomain, TripTweets],
|
||||||
|
geoDuckV2Store: ReadableStore[Long, LocationResponse],
|
||||||
|
safeCachedTweetyPieStoreV2: ReadableStore[Long, TweetyPieResult],
|
||||||
|
cachedTweetyPieStoreV2NoVF: ReadableStore[Long, TweetyPieResult],
|
||||||
|
cachedTweetyPieStoreV2: ReadableStore[Long, TweetyPieResult],
|
||||||
|
contentMixerStore: ReadableStore[ContentMixerRequest, ContentMixerResponse],
|
||||||
|
softUserLocationStore: ReadableStore[Long, Location],
|
||||||
|
topTweetsByGeoStore: ReadableStore[InterestDomain[String], Map[String, List[(Long, Double)]]],
|
||||||
|
topTweetsByGeoV2VersionedStore: ReadableStore[String, PopTweetsInPlace],
|
||||||
|
)(
|
||||||
|
implicit val globalStats: StatsReceiver) {
|
||||||
|
val sources: Seq[CandidateSource[Target, RawCandidate] with CandidateSourceEligible[
|
||||||
|
Target,
|
||||||
|
RawCandidate
|
||||||
|
]] = {
|
||||||
|
Seq(
|
||||||
|
TripGeoCandidatesAdaptor(
|
||||||
|
tripTweetCandidateStore,
|
||||||
|
contentMixerStore,
|
||||||
|
safeCachedTweetyPieStoreV2,
|
||||||
|
cachedTweetyPieStoreV2NoVF,
|
||||||
|
globalStats
|
||||||
|
),
|
||||||
|
TopTweetsByGeoAdaptor(
|
||||||
|
geoDuckV2Store,
|
||||||
|
softUserLocationStore,
|
||||||
|
topTweetsByGeoStore,
|
||||||
|
topTweetsByGeoV2VersionedStore,
|
||||||
|
cachedTweetyPieStoreV2,
|
||||||
|
cachedTweetyPieStoreV2NoVF,
|
||||||
|
globalStats
|
||||||
|
)
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,101 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base.CandidateSource
|
||||||
|
import com.twitter.frigate.common.base.CandidateSourceEligible
|
||||||
|
import com.twitter.frigate.common.base.DiscoverTwitterCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.{PushFeatureSwitchParams => FS}
|
||||||
|
import com.twitter.frigate.pushservice.predicate.DiscoverTwitterPredicate
|
||||||
|
import com.twitter.frigate.pushservice.predicate.TargetPredicates
|
||||||
|
import com.twitter.frigate.pushservice.util.PushAppPermissionUtil
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.frigate.thriftscala.{CommonRecommendationType => CRT}
|
||||||
|
import com.twitter.util.Future
|
||||||
|
|
||||||
|
class OnboardingPushCandidateAdaptor(
|
||||||
|
globalStats: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
|
||||||
|
override val name: String = this.getClass.getSimpleName
|
||||||
|
|
||||||
|
private[this] val stats = globalStats.scope(name)
|
||||||
|
private[this] val requestNum = stats.counter("request_num")
|
||||||
|
private[this] val addressBookCandNum = stats.counter("address_book_cand_num")
|
||||||
|
private[this] val completeOnboardingCandNum = stats.counter("complete_onboarding_cand_num")
|
||||||
|
|
||||||
|
private def generateOnboardingPushRawCandidate(
|
||||||
|
_target: Target,
|
||||||
|
_commonRecType: CRT
|
||||||
|
): RawCandidate = {
|
||||||
|
new RawCandidate with DiscoverTwitterCandidate {
|
||||||
|
override val target = _target
|
||||||
|
override val commonRecType = _commonRecType
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getEligibleCandsForTarget(
|
||||||
|
target: Target
|
||||||
|
): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
val addressBookFatigue =
|
||||||
|
TargetPredicates
|
||||||
|
.pushRecTypeFatiguePredicate(
|
||||||
|
CRT.AddressBookUploadPush,
|
||||||
|
FS.FatigueForOnboardingPushes,
|
||||||
|
FS.MaxOnboardingPushInInterval,
|
||||||
|
stats)(Seq(target)).map(_.head)
|
||||||
|
val completeOnboardingFatigue =
|
||||||
|
TargetPredicates
|
||||||
|
.pushRecTypeFatiguePredicate(
|
||||||
|
CRT.CompleteOnboardingPush,
|
||||||
|
FS.FatigueForOnboardingPushes,
|
||||||
|
FS.MaxOnboardingPushInInterval,
|
||||||
|
stats)(Seq(target)).map(_.head)
|
||||||
|
|
||||||
|
Future
|
||||||
|
.join(
|
||||||
|
target.appPermissions,
|
||||||
|
addressBookFatigue,
|
||||||
|
completeOnboardingFatigue
|
||||||
|
).map {
|
||||||
|
case (appPermissionOpt, addressBookPredicate, completeOnboardingPredicate) =>
|
||||||
|
val addressBookUploaded =
|
||||||
|
PushAppPermissionUtil.hasTargetUploadedAddressBook(appPermissionOpt)
|
||||||
|
val abUploadCandidate =
|
||||||
|
if (!addressBookUploaded && addressBookPredicate && target.params(
|
||||||
|
FS.EnableAddressBookPush)) {
|
||||||
|
addressBookCandNum.incr()
|
||||||
|
Some(generateOnboardingPushRawCandidate(target, CRT.AddressBookUploadPush))
|
||||||
|
} else if (!addressBookUploaded && (completeOnboardingPredicate ||
|
||||||
|
target.params(FS.DisableOnboardingPushFatigue)) && target.params(
|
||||||
|
FS.EnableCompleteOnboardingPush)) {
|
||||||
|
completeOnboardingCandNum.incr()
|
||||||
|
Some(generateOnboardingPushRawCandidate(target, CRT.CompleteOnboardingPush))
|
||||||
|
} else None
|
||||||
|
|
||||||
|
val allCandidates =
|
||||||
|
Seq(abUploadCandidate).filter(_.isDefined).flatten
|
||||||
|
if (allCandidates.nonEmpty) Some(allCandidates) else None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def get(inputTarget: Target): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
requestNum.incr()
|
||||||
|
val minDurationForMRElapsed =
|
||||||
|
DiscoverTwitterPredicate
|
||||||
|
.minDurationElapsedSinceLastMrPushPredicate(
|
||||||
|
name,
|
||||||
|
FS.MrMinDurationSincePushForOnboardingPushes,
|
||||||
|
stats)(Seq(inputTarget)).map(_.head)
|
||||||
|
minDurationForMRElapsed.flatMap { minDurationElapsed =>
|
||||||
|
if (minDurationElapsed) getEligibleCandsForTarget(inputTarget) else Future.None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
PushDeviceUtil
|
||||||
|
.isRecommendationsEligible(target).map(_ && target.params(FS.EnableOnboardingPushes))
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,162 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.content_mixer.thriftscala.ContentMixerRequest
|
||||||
|
import com.twitter.content_mixer.thriftscala.ContentMixerResponse
|
||||||
|
import com.twitter.explore_ranker.thriftscala.ExploreRankerRequest
|
||||||
|
import com.twitter.explore_ranker.thriftscala.ExploreRankerResponse
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base._
|
||||||
|
import com.twitter.frigate.common.candidate._
|
||||||
|
import com.twitter.frigate.common.store.RecentTweetsQuery
|
||||||
|
import com.twitter.frigate.common.store.interests.InterestsLookupRequestWithContext
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.PushFeatureSwitchParams
|
||||||
|
import com.twitter.frigate.pushservice.store._
|
||||||
|
import com.twitter.geoduck.common.thriftscala.Location
|
||||||
|
import com.twitter.geoduck.service.thriftscala.LocationResponse
|
||||||
|
import com.twitter.hermit.pop_geo.thriftscala.PopTweetsInPlace
|
||||||
|
import com.twitter.hermit.predicate.socialgraph.RelationEdge
|
||||||
|
import com.twitter.hermit.store.tweetypie.UserTweet
|
||||||
|
import com.twitter.interests.thriftscala.UserInterests
|
||||||
|
import com.twitter.interests_discovery.thriftscala.NonPersonalizedRecommendedLists
|
||||||
|
import com.twitter.interests_discovery.thriftscala.RecommendedListsRequest
|
||||||
|
import com.twitter.interests_discovery.thriftscala.RecommendedListsResponse
|
||||||
|
import com.twitter.recommendation.interests.discovery.core.model.InterestDomain
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.trends.trip_v1.trip_tweets.thriftscala.TripDomain
|
||||||
|
import com.twitter.trends.trip_v1.trip_tweets.thriftscala.TripTweets
|
||||||
|
import com.twitter.tsp.thriftscala.TopicSocialProofRequest
|
||||||
|
import com.twitter.tsp.thriftscala.TopicSocialProofResponse
|
||||||
|
|
||||||
|
/**
|
||||||
|
* PushCandidateSourceGenerator generates candidate source list for a given Target user
|
||||||
|
*/
|
||||||
|
class PushCandidateSourceGenerator(
|
||||||
|
earlybirdCandidates: CandidateSource[EarlybirdCandidateSource.Query, EarlybirdCandidate],
|
||||||
|
userTweetEntityGraphCandidates: CandidateSource[UserTweetEntityGraphCandidates.Target, Candidate],
|
||||||
|
cachedTweetyPieStoreV2: ReadableStore[Long, TweetyPieResult],
|
||||||
|
safeCachedTweetyPieStoreV2: ReadableStore[Long, TweetyPieResult],
|
||||||
|
userTweetTweetyPieStore: ReadableStore[UserTweet, TweetyPieResult],
|
||||||
|
safeUserTweetTweetyPieStore: ReadableStore[UserTweet, TweetyPieResult],
|
||||||
|
cachedTweetyPieStoreV2NoVF: ReadableStore[Long, TweetyPieResult],
|
||||||
|
edgeStore: ReadableStore[RelationEdge, Boolean],
|
||||||
|
interestsLookupStore: ReadableStore[InterestsLookupRequestWithContext, UserInterests],
|
||||||
|
uttEntityHydrationStore: UttEntityHydrationStore,
|
||||||
|
geoDuckV2Store: ReadableStore[Long, LocationResponse],
|
||||||
|
topTweetsByGeoStore: ReadableStore[InterestDomain[String], Map[String, List[(Long, Double)]]],
|
||||||
|
topTweetsByGeoV2VersionedStore: ReadableStore[String, PopTweetsInPlace],
|
||||||
|
tweetImpressionsStore: TweetImpressionsStore,
|
||||||
|
recommendedTrendsCandidateSource: RecommendedTrendsCandidateSource,
|
||||||
|
recentTweetsByAuthorStore: ReadableStore[RecentTweetsQuery, Seq[Seq[Long]]],
|
||||||
|
topicSocialProofServiceStore: ReadableStore[TopicSocialProofRequest, TopicSocialProofResponse],
|
||||||
|
crMixerStore: CrMixerTweetStore,
|
||||||
|
contentMixerStore: ReadableStore[ContentMixerRequest, ContentMixerResponse],
|
||||||
|
exploreRankerStore: ReadableStore[ExploreRankerRequest, ExploreRankerResponse],
|
||||||
|
softUserLocationStore: ReadableStore[Long, Location],
|
||||||
|
tripTweetCandidateStore: ReadableStore[TripDomain, TripTweets],
|
||||||
|
listRecsStore: ReadableStore[String, NonPersonalizedRecommendedLists],
|
||||||
|
idsStore: ReadableStore[RecommendedListsRequest, RecommendedListsResponse]
|
||||||
|
)(
|
||||||
|
implicit val globalStats: StatsReceiver) {
|
||||||
|
|
||||||
|
private val earlyBirdFirstDegreeCandidateAdaptor = EarlyBirdFirstDegreeCandidateAdaptor(
|
||||||
|
earlybirdCandidates,
|
||||||
|
cachedTweetyPieStoreV2,
|
||||||
|
cachedTweetyPieStoreV2NoVF,
|
||||||
|
userTweetTweetyPieStore,
|
||||||
|
PushFeatureSwitchParams.NumberOfMaxEarlybirdInNetworkCandidatesParam,
|
||||||
|
globalStats
|
||||||
|
)
|
||||||
|
|
||||||
|
private val frsTweetCandidateAdaptor = FRSTweetCandidateAdaptor(
|
||||||
|
crMixerStore,
|
||||||
|
cachedTweetyPieStoreV2,
|
||||||
|
cachedTweetyPieStoreV2NoVF,
|
||||||
|
userTweetTweetyPieStore,
|
||||||
|
uttEntityHydrationStore,
|
||||||
|
topicSocialProofServiceStore,
|
||||||
|
globalStats
|
||||||
|
)
|
||||||
|
|
||||||
|
private val contentRecommenderMixerAdaptor = ContentRecommenderMixerAdaptor(
|
||||||
|
crMixerStore,
|
||||||
|
safeCachedTweetyPieStoreV2,
|
||||||
|
edgeStore,
|
||||||
|
topicSocialProofServiceStore,
|
||||||
|
uttEntityHydrationStore,
|
||||||
|
globalStats
|
||||||
|
)
|
||||||
|
|
||||||
|
private val tripGeoCandidatesAdaptor = TripGeoCandidatesAdaptor(
|
||||||
|
tripTweetCandidateStore,
|
||||||
|
contentMixerStore,
|
||||||
|
safeCachedTweetyPieStoreV2,
|
||||||
|
cachedTweetyPieStoreV2NoVF,
|
||||||
|
globalStats
|
||||||
|
)
|
||||||
|
|
||||||
|
val sources: Seq[
|
||||||
|
CandidateSource[Target, RawCandidate] with CandidateSourceEligible[
|
||||||
|
Target,
|
||||||
|
RawCandidate
|
||||||
|
]
|
||||||
|
] = {
|
||||||
|
Seq(
|
||||||
|
earlyBirdFirstDegreeCandidateAdaptor,
|
||||||
|
GenericCandidateAdaptor(
|
||||||
|
userTweetEntityGraphCandidates,
|
||||||
|
cachedTweetyPieStoreV2,
|
||||||
|
cachedTweetyPieStoreV2NoVF,
|
||||||
|
globalStats.scope("UserTweetEntityGraphCandidates")
|
||||||
|
),
|
||||||
|
new OnboardingPushCandidateAdaptor(globalStats),
|
||||||
|
TopTweetsByGeoAdaptor(
|
||||||
|
geoDuckV2Store,
|
||||||
|
softUserLocationStore,
|
||||||
|
topTweetsByGeoStore,
|
||||||
|
topTweetsByGeoV2VersionedStore,
|
||||||
|
cachedTweetyPieStoreV2,
|
||||||
|
cachedTweetyPieStoreV2NoVF,
|
||||||
|
globalStats
|
||||||
|
),
|
||||||
|
frsTweetCandidateAdaptor,
|
||||||
|
TopTweetImpressionsCandidateAdaptor(
|
||||||
|
recentTweetsByAuthorStore,
|
||||||
|
cachedTweetyPieStoreV2,
|
||||||
|
cachedTweetyPieStoreV2NoVF,
|
||||||
|
tweetImpressionsStore,
|
||||||
|
globalStats
|
||||||
|
),
|
||||||
|
TrendsCandidatesAdaptor(
|
||||||
|
softUserLocationStore,
|
||||||
|
recommendedTrendsCandidateSource,
|
||||||
|
safeCachedTweetyPieStoreV2,
|
||||||
|
cachedTweetyPieStoreV2NoVF,
|
||||||
|
safeUserTweetTweetyPieStore,
|
||||||
|
globalStats
|
||||||
|
),
|
||||||
|
contentRecommenderMixerAdaptor,
|
||||||
|
tripGeoCandidatesAdaptor,
|
||||||
|
HighQualityTweetsAdaptor(
|
||||||
|
tripTweetCandidateStore,
|
||||||
|
interestsLookupStore,
|
||||||
|
cachedTweetyPieStoreV2,
|
||||||
|
cachedTweetyPieStoreV2NoVF,
|
||||||
|
globalStats
|
||||||
|
),
|
||||||
|
ExploreVideoTweetCandidateAdaptor(
|
||||||
|
exploreRankerStore,
|
||||||
|
cachedTweetyPieStoreV2,
|
||||||
|
globalStats
|
||||||
|
),
|
||||||
|
ListsToRecommendCandidateAdaptor(
|
||||||
|
listRecsStore,
|
||||||
|
geoDuckV2Store,
|
||||||
|
idsStore,
|
||||||
|
globalStats
|
||||||
|
)
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,326 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.conversions.DurationOps._
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base.CandidateSource
|
||||||
|
import com.twitter.frigate.common.base.CandidateSourceEligible
|
||||||
|
import com.twitter.frigate.common.base.TopTweetImpressionsCandidate
|
||||||
|
import com.twitter.frigate.common.store.RecentTweetsQuery
|
||||||
|
import com.twitter.frigate.common.util.SnowflakeUtils
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.{PushFeatureSwitchParams => FS}
|
||||||
|
import com.twitter.frigate.pushservice.store.TweetImpressionsStore
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.FutureOps
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.util.Future
|
||||||
|
|
||||||
|
case class TweetImpressionsCandidate(
|
||||||
|
tweetId: Long,
|
||||||
|
tweetyPieResultOpt: Option[TweetyPieResult],
|
||||||
|
impressionsCountOpt: Option[Long])
|
||||||
|
|
||||||
|
case class TopTweetImpressionsCandidateAdaptor(
|
||||||
|
recentTweetsFromTflockStore: ReadableStore[RecentTweetsQuery, Seq[Seq[Long]]],
|
||||||
|
tweetyPieStore: ReadableStore[Long, TweetyPieResult],
|
||||||
|
tweetyPieStoreNoVF: ReadableStore[Long, TweetyPieResult],
|
||||||
|
tweetImpressionsStore: TweetImpressionsStore,
|
||||||
|
globalStats: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
|
||||||
|
private val stats = globalStats.scope("TopTweetImpressionsAdaptor")
|
||||||
|
private val tweetImpressionsCandsStat = stats.stat("top_tweet_impressions_cands_dist")
|
||||||
|
|
||||||
|
private val eligibleUsersCounter = stats.counter("eligible_users")
|
||||||
|
private val noneligibleUsersCounter = stats.counter("noneligible_users")
|
||||||
|
private val meetsMinTweetsRequiredCounter = stats.counter("meets_min_tweets_required")
|
||||||
|
private val belowMinTweetsRequiredCounter = stats.counter("below_min_tweets_required")
|
||||||
|
private val aboveMaxInboundFavoritesCounter = stats.counter("above_max_inbound_favorites")
|
||||||
|
private val meetsImpressionsRequiredCounter = stats.counter("meets_impressions_required")
|
||||||
|
private val belowImpressionsRequiredCounter = stats.counter("below_impressions_required")
|
||||||
|
private val meetsFavoritesThresholdCounter = stats.counter("meets_favorites_threshold")
|
||||||
|
private val aboveFavoritesThresholdCounter = stats.counter("above_favorites_threshold")
|
||||||
|
private val emptyImpressionsMapCounter = stats.counter("empty_impressions_map")
|
||||||
|
|
||||||
|
private val tflockResultsStat = stats.stat("tflock", "results")
|
||||||
|
private val emptyTflockResult = stats.counter("tflock", "empty_result")
|
||||||
|
private val nonEmptyTflockResult = stats.counter("tflock", "non_empty_result")
|
||||||
|
|
||||||
|
private val originalTweetsStat = stats.stat("tweets", "original_tweets")
|
||||||
|
private val retweetsStat = stats.stat("tweets", "retweets")
|
||||||
|
private val allRetweetsOnlyCounter = stats.counter("tweets", "all_retweets_only")
|
||||||
|
private val allOriginalTweetsOnlyCounter = stats.counter("tweets", "all_original_tweets_only")
|
||||||
|
|
||||||
|
private val emptyTweetypieMap = stats.counter("", "empty_tweetypie_map")
|
||||||
|
private val emptyTweetyPieResult = stats.stat("", "empty_tweetypie_result")
|
||||||
|
private val allEmptyTweetypieResults = stats.counter("", "all_empty_tweetypie_results")
|
||||||
|
|
||||||
|
private val eligibleUsersAfterImpressionsFilter =
|
||||||
|
stats.counter("eligible_users_after_impressions_filter")
|
||||||
|
private val eligibleUsersAfterFavoritesFilter =
|
||||||
|
stats.counter("eligible_users_after_favorites_filter")
|
||||||
|
private val eligibleUsersWithEligibleTweets =
|
||||||
|
stats.counter("eligible_users_with_eligible_tweets")
|
||||||
|
|
||||||
|
private val eligibleTweetCands = stats.stat("eligible_tweet_cands")
|
||||||
|
private val getCandsRequestCounter =
|
||||||
|
stats.counter("top_tweet_impressions_get_request")
|
||||||
|
|
||||||
|
override val name: String = this.getClass.getSimpleName
|
||||||
|
|
||||||
|
override def get(inputTarget: Target): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
getCandsRequestCounter.incr()
|
||||||
|
val eligibleCandidatesFut = getTweetImpressionsCandidates(inputTarget)
|
||||||
|
eligibleCandidatesFut.map { eligibleCandidates =>
|
||||||
|
if (eligibleCandidates.nonEmpty) {
|
||||||
|
eligibleUsersWithEligibleTweets.incr()
|
||||||
|
eligibleTweetCands.add(eligibleCandidates.size)
|
||||||
|
val candidate = getMostImpressionsTweet(eligibleCandidates)
|
||||||
|
Some(
|
||||||
|
Seq(
|
||||||
|
generateTopTweetImpressionsCandidate(
|
||||||
|
inputTarget,
|
||||||
|
candidate.tweetId,
|
||||||
|
candidate.tweetyPieResultOpt,
|
||||||
|
candidate.impressionsCountOpt.getOrElse(0L))))
|
||||||
|
} else None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getTweetImpressionsCandidates(
|
||||||
|
inputTarget: Target
|
||||||
|
): Future[Seq[TweetImpressionsCandidate]] = {
|
||||||
|
val originalTweets = getRecentOriginalTweetsForUser(inputTarget)
|
||||||
|
originalTweets.flatMap { tweetyPieResultsMap =>
|
||||||
|
val numDaysSearchForOriginalTweets =
|
||||||
|
inputTarget.params(FS.TopTweetImpressionsOriginalTweetsNumDaysSearch)
|
||||||
|
val moreRecentTweetIds =
|
||||||
|
getMoreRecentTweetIds(tweetyPieResultsMap.keySet.toSeq, numDaysSearchForOriginalTweets)
|
||||||
|
val isEligible = isEligibleUser(inputTarget, tweetyPieResultsMap, moreRecentTweetIds)
|
||||||
|
if (isEligible) filterByEligibility(inputTarget, tweetyPieResultsMap, moreRecentTweetIds)
|
||||||
|
else Future.Nil
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getRecentOriginalTweetsForUser(
|
||||||
|
targetUser: Target
|
||||||
|
): Future[Map[Long, TweetyPieResult]] = {
|
||||||
|
val tweetyPieResultsMapFut = getTflockStoreResults(targetUser).flatMap { recentTweetIds =>
|
||||||
|
FutureOps.mapCollect((targetUser.params(FS.EnableVFInTweetypie) match {
|
||||||
|
case true => tweetyPieStore
|
||||||
|
case false => tweetyPieStoreNoVF
|
||||||
|
}).multiGet(recentTweetIds.toSet))
|
||||||
|
}
|
||||||
|
tweetyPieResultsMapFut.map { tweetyPieResultsMap =>
|
||||||
|
if (tweetyPieResultsMap.isEmpty) {
|
||||||
|
emptyTweetypieMap.incr()
|
||||||
|
Map.empty
|
||||||
|
} else removeRetweets(tweetyPieResultsMap)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getTflockStoreResults(targetUser: Target): Future[Seq[Long]] = {
|
||||||
|
val maxResults = targetUser.params(FS.TopTweetImpressionsRecentTweetsByAuthorStoreMaxResults)
|
||||||
|
val maxAge = targetUser.params(FS.TopTweetImpressionsTotalFavoritesLimitNumDaysSearch)
|
||||||
|
val recentTweetsQuery =
|
||||||
|
RecentTweetsQuery(
|
||||||
|
userIds = Seq(targetUser.targetId),
|
||||||
|
maxResults = maxResults,
|
||||||
|
maxAge = maxAge.days
|
||||||
|
)
|
||||||
|
recentTweetsFromTflockStore
|
||||||
|
.get(recentTweetsQuery).map {
|
||||||
|
case Some(tweetIdsAll) =>
|
||||||
|
val tweetIds = tweetIdsAll.headOption.getOrElse(Seq.empty)
|
||||||
|
val numTweets = tweetIds.size
|
||||||
|
if (numTweets > 0) {
|
||||||
|
tflockResultsStat.add(numTweets)
|
||||||
|
nonEmptyTflockResult.incr()
|
||||||
|
} else emptyTflockResult.incr()
|
||||||
|
tweetIds
|
||||||
|
case _ => Nil
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def removeRetweets(
|
||||||
|
tweetyPieResultsMap: Map[Long, Option[TweetyPieResult]]
|
||||||
|
): Map[Long, TweetyPieResult] = {
|
||||||
|
val nonEmptyTweetyPieResults: Map[Long, TweetyPieResult] = tweetyPieResultsMap.collect {
|
||||||
|
case (key, Some(value)) => (key, value)
|
||||||
|
}
|
||||||
|
emptyTweetyPieResult.add(tweetyPieResultsMap.size - nonEmptyTweetyPieResults.size)
|
||||||
|
|
||||||
|
if (nonEmptyTweetyPieResults.nonEmpty) {
|
||||||
|
val originalTweets = nonEmptyTweetyPieResults.filter {
|
||||||
|
case (_, tweetyPieResult) =>
|
||||||
|
tweetyPieResult.sourceTweet.isEmpty
|
||||||
|
}
|
||||||
|
val numOriginalTweets = originalTweets.size
|
||||||
|
val numRetweets = nonEmptyTweetyPieResults.size - originalTweets.size
|
||||||
|
originalTweetsStat.add(numOriginalTweets)
|
||||||
|
retweetsStat.add(numRetweets)
|
||||||
|
if (numRetweets == 0) allOriginalTweetsOnlyCounter.incr()
|
||||||
|
if (numOriginalTweets == 0) allRetweetsOnlyCounter.incr()
|
||||||
|
originalTweets
|
||||||
|
} else {
|
||||||
|
allEmptyTweetypieResults.incr()
|
||||||
|
Map.empty
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getMoreRecentTweetIds(
|
||||||
|
tweetIds: Seq[Long],
|
||||||
|
numDays: Int
|
||||||
|
): Seq[Long] = {
|
||||||
|
tweetIds.filter { tweetId =>
|
||||||
|
SnowflakeUtils.isRecent(tweetId, numDays.days)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def isEligibleUser(
|
||||||
|
inputTarget: Target,
|
||||||
|
tweetyPieResults: Map[Long, TweetyPieResult],
|
||||||
|
recentTweetIds: Seq[Long]
|
||||||
|
): Boolean = {
|
||||||
|
val minNumTweets = inputTarget.params(FS.TopTweetImpressionsMinNumOriginalTweets)
|
||||||
|
lazy val totalFavoritesLimit =
|
||||||
|
inputTarget.params(FS.TopTweetImpressionsTotalInboundFavoritesLimit)
|
||||||
|
if (recentTweetIds.size >= minNumTweets) {
|
||||||
|
meetsMinTweetsRequiredCounter.incr()
|
||||||
|
val isUnderLimit = isUnderTotalInboundFavoritesLimit(tweetyPieResults, totalFavoritesLimit)
|
||||||
|
if (isUnderLimit) eligibleUsersCounter.incr()
|
||||||
|
else {
|
||||||
|
aboveMaxInboundFavoritesCounter.incr()
|
||||||
|
noneligibleUsersCounter.incr()
|
||||||
|
}
|
||||||
|
isUnderLimit
|
||||||
|
} else {
|
||||||
|
belowMinTweetsRequiredCounter.incr()
|
||||||
|
noneligibleUsersCounter.incr()
|
||||||
|
false
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getFavoriteCounts(
|
||||||
|
tweetyPieResult: TweetyPieResult
|
||||||
|
): Long = tweetyPieResult.tweet.counts.flatMap(_.favoriteCount).getOrElse(0L)
|
||||||
|
|
||||||
|
private def isUnderTotalInboundFavoritesLimit(
|
||||||
|
tweetyPieResults: Map[Long, TweetyPieResult],
|
||||||
|
totalFavoritesLimit: Long
|
||||||
|
): Boolean = {
|
||||||
|
val favoritesIterator = tweetyPieResults.valuesIterator.map(getFavoriteCounts)
|
||||||
|
val totalInboundFavorites = favoritesIterator.sum
|
||||||
|
totalInboundFavorites <= totalFavoritesLimit
|
||||||
|
}
|
||||||
|
|
||||||
|
def filterByEligibility(
|
||||||
|
inputTarget: Target,
|
||||||
|
tweetyPieResults: Map[Long, TweetyPieResult],
|
||||||
|
tweetIds: Seq[Long]
|
||||||
|
): Future[Seq[TweetImpressionsCandidate]] = {
|
||||||
|
lazy val minNumImpressions: Long = inputTarget.params(FS.TopTweetImpressionsMinRequired)
|
||||||
|
lazy val maxNumLikes: Long = inputTarget.params(FS.TopTweetImpressionsMaxFavoritesPerTweet)
|
||||||
|
for {
|
||||||
|
filteredImpressionsMap <- getFilteredImpressionsMap(tweetIds, minNumImpressions)
|
||||||
|
tweetIdsFilteredByFavorites <-
|
||||||
|
getTweetIdsFilteredByFavorites(filteredImpressionsMap.keySet, tweetyPieResults, maxNumLikes)
|
||||||
|
} yield {
|
||||||
|
if (filteredImpressionsMap.nonEmpty) eligibleUsersAfterImpressionsFilter.incr()
|
||||||
|
if (tweetIdsFilteredByFavorites.nonEmpty) eligibleUsersAfterFavoritesFilter.incr()
|
||||||
|
|
||||||
|
val candidates = tweetIdsFilteredByFavorites.map { tweetId =>
|
||||||
|
TweetImpressionsCandidate(
|
||||||
|
tweetId,
|
||||||
|
tweetyPieResults.get(tweetId),
|
||||||
|
filteredImpressionsMap.get(tweetId))
|
||||||
|
}
|
||||||
|
tweetImpressionsCandsStat.add(candidates.length)
|
||||||
|
candidates
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getFilteredImpressionsMap(
|
||||||
|
tweetIds: Seq[Long],
|
||||||
|
minNumImpressions: Long
|
||||||
|
): Future[Map[Long, Long]] = {
|
||||||
|
getImpressionsCounts(tweetIds).map { impressionsMap =>
|
||||||
|
if (impressionsMap.isEmpty) emptyImpressionsMapCounter.incr()
|
||||||
|
impressionsMap.filter {
|
||||||
|
case (_, numImpressions) =>
|
||||||
|
val isValid = numImpressions >= minNumImpressions
|
||||||
|
if (isValid) {
|
||||||
|
meetsImpressionsRequiredCounter.incr()
|
||||||
|
} else {
|
||||||
|
belowImpressionsRequiredCounter.incr()
|
||||||
|
}
|
||||||
|
isValid
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getTweetIdsFilteredByFavorites(
|
||||||
|
filteredTweetIds: Set[Long],
|
||||||
|
tweetyPieResults: Map[Long, TweetyPieResult],
|
||||||
|
maxNumLikes: Long
|
||||||
|
): Future[Seq[Long]] = {
|
||||||
|
val filteredByFavoritesTweetIds = filteredTweetIds.filter { tweetId =>
|
||||||
|
val tweetyPieResultOpt = tweetyPieResults.get(tweetId)
|
||||||
|
val isValid = tweetyPieResultOpt.exists { tweetyPieResult =>
|
||||||
|
getFavoriteCounts(tweetyPieResult) <= maxNumLikes
|
||||||
|
}
|
||||||
|
if (isValid) meetsFavoritesThresholdCounter.incr()
|
||||||
|
else aboveFavoritesThresholdCounter.incr()
|
||||||
|
isValid
|
||||||
|
}
|
||||||
|
Future(filteredByFavoritesTweetIds.toSeq)
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getMostImpressionsTweet(
|
||||||
|
filteredResults: Seq[TweetImpressionsCandidate]
|
||||||
|
): TweetImpressionsCandidate = {
|
||||||
|
val maxImpressions: Long = filteredResults.map {
|
||||||
|
_.impressionsCountOpt.getOrElse(0L)
|
||||||
|
}.max
|
||||||
|
|
||||||
|
val mostImpressionsCandidates: Seq[TweetImpressionsCandidate] =
|
||||||
|
filteredResults.filter(_.impressionsCountOpt.getOrElse(0L) == maxImpressions)
|
||||||
|
|
||||||
|
mostImpressionsCandidates.maxBy(_.tweetId)
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getImpressionsCounts(
|
||||||
|
tweetIds: Seq[Long]
|
||||||
|
): Future[Map[Long, Long]] = {
|
||||||
|
val impressionCountMap = tweetIds.map { tweetId =>
|
||||||
|
tweetId -> tweetImpressionsStore
|
||||||
|
.getCounts(tweetId).map(_.getOrElse(0L))
|
||||||
|
}.toMap
|
||||||
|
Future.collect(impressionCountMap)
|
||||||
|
}
|
||||||
|
|
||||||
|
private def generateTopTweetImpressionsCandidate(
|
||||||
|
inputTarget: Target,
|
||||||
|
_tweetId: Long,
|
||||||
|
result: Option[TweetyPieResult],
|
||||||
|
_impressionsCount: Long
|
||||||
|
): RawCandidate = {
|
||||||
|
new RawCandidate with TopTweetImpressionsCandidate {
|
||||||
|
override val target: Target = inputTarget
|
||||||
|
override val tweetId: Long = _tweetId
|
||||||
|
override val tweetyPieResult: Option[TweetyPieResult] = result
|
||||||
|
override val impressionsCount: Long = _impressionsCount
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
val enabledTopTweetImpressionsNotification =
|
||||||
|
target.params(FS.EnableTopTweetImpressionsNotification)
|
||||||
|
|
||||||
|
PushDeviceUtil
|
||||||
|
.isRecommendationsEligible(target).map(_ && enabledTopTweetImpressionsNotification)
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,413 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.finagle.stats.Counter
|
||||||
|
import com.twitter.finagle.stats.Stat
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base.CandidateSource
|
||||||
|
import com.twitter.frigate.common.base.CandidateSourceEligible
|
||||||
|
import com.twitter.frigate.common.base.TweetCandidate
|
||||||
|
import com.twitter.frigate.common.predicate.CommonOutNetworkTweetCandidatesSourcePredicates.filterOutReplyTweet
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes
|
||||||
|
import com.twitter.frigate.pushservice.params.PopGeoTweetVersion
|
||||||
|
import com.twitter.frigate.pushservice.params.PushParams
|
||||||
|
import com.twitter.frigate.pushservice.params.TopTweetsForGeoCombination
|
||||||
|
import com.twitter.frigate.pushservice.params.TopTweetsForGeoRankingFunction
|
||||||
|
import com.twitter.frigate.pushservice.params.{PushFeatureSwitchParams => FS}
|
||||||
|
import com.twitter.frigate.pushservice.predicate.DiscoverTwitterPredicate
|
||||||
|
import com.twitter.frigate.pushservice.predicate.TargetPredicates
|
||||||
|
import com.twitter.frigate.pushservice.util.MediaCRT
|
||||||
|
import com.twitter.frigate.pushservice.util.PushAdaptorUtil
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.frigate.thriftscala.CommonRecommendationType
|
||||||
|
import com.twitter.geoduck.common.thriftscala.{Location => GeoLocation}
|
||||||
|
import com.twitter.geoduck.service.thriftscala.LocationResponse
|
||||||
|
import com.twitter.gizmoduck.thriftscala.UserType
|
||||||
|
import com.twitter.hermit.pop_geo.thriftscala.PopTweetsInPlace
|
||||||
|
import com.twitter.recommendation.interests.discovery.core.model.InterestDomain
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.FutureOps
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.util.Future
|
||||||
|
import com.twitter.util.Time
|
||||||
|
import scala.collection.Map
|
||||||
|
|
||||||
|
case class PlaceTweetScore(place: String, tweetId: Long, score: Double) {
|
||||||
|
def toTweetScore: (Long, Double) = (tweetId, score)
|
||||||
|
}
|
||||||
|
case class TopTweetsByGeoAdaptor(
|
||||||
|
geoduckStoreV2: ReadableStore[Long, LocationResponse],
|
||||||
|
softUserGeoLocationStore: ReadableStore[Long, GeoLocation],
|
||||||
|
topTweetsByGeoStore: ReadableStore[InterestDomain[String], Map[String, List[(Long, Double)]]],
|
||||||
|
topTweetsByGeoStoreV2: ReadableStore[String, PopTweetsInPlace],
|
||||||
|
tweetyPieStore: ReadableStore[Long, TweetyPieResult],
|
||||||
|
tweetyPieStoreNoVF: ReadableStore[Long, TweetyPieResult],
|
||||||
|
globalStats: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
|
||||||
|
override def name: String = this.getClass.getSimpleName
|
||||||
|
|
||||||
|
private[this] val stats = globalStats.scope("TopTweetsByGeoAdaptor")
|
||||||
|
private[this] val noGeohashUserCounter: Counter = stats.counter("users_with_no_geohash_counter")
|
||||||
|
private[this] val incomingRequestCounter: Counter = stats.counter("incoming_request_counter")
|
||||||
|
private[this] val incomingLoggedOutRequestCounter: Counter =
|
||||||
|
stats.counter("incoming_logged_out_request_counter")
|
||||||
|
private[this] val loggedOutRawCandidatesCounter =
|
||||||
|
stats.counter("logged_out_raw_candidates_counter")
|
||||||
|
private[this] val emptyLoggedOutRawCandidatesCounter =
|
||||||
|
stats.counter("logged_out_empty_raw_candidates")
|
||||||
|
private[this] val outputTopTweetsByGeoCounter: Stat =
|
||||||
|
stats.stat("output_top_tweets_by_geo_counter")
|
||||||
|
private[this] val loggedOutPopByGeoV2CandidatesCounter: Counter =
|
||||||
|
stats.counter("logged_out_pop_by_geo_candidates")
|
||||||
|
private[this] val dormantUsersSince14DaysCounter: Counter =
|
||||||
|
stats.counter("dormant_user_since_14_days_counter")
|
||||||
|
private[this] val dormantUsersSince30DaysCounter: Counter =
|
||||||
|
stats.counter("dormant_user_since_30_days_counter")
|
||||||
|
private[this] val nonDormantUsersSince14DaysCounter: Counter =
|
||||||
|
stats.counter("non_dormant_user_since_14_days_counter")
|
||||||
|
private[this] val topTweetsByGeoTake100Counter: Counter =
|
||||||
|
stats.counter("top_tweets_by_geo_take_100_counter")
|
||||||
|
private[this] val combinationRequestsCounter =
|
||||||
|
stats.scope("combination_method_request_counter")
|
||||||
|
private[this] val popGeoTweetVersionCounter =
|
||||||
|
stats.scope("popgeo_tweet_version_counter")
|
||||||
|
private[this] val nonReplyTweetsCounter = stats.counter("non_reply_tweets")
|
||||||
|
|
||||||
|
val MaxGeoHashSize = 4
|
||||||
|
|
||||||
|
private def constructKeys(
|
||||||
|
geohash: Option[String],
|
||||||
|
accountCountryCode: Option[String],
|
||||||
|
keyLengths: Seq[Int],
|
||||||
|
version: PopGeoTweetVersion.Value
|
||||||
|
): Set[String] = {
|
||||||
|
val geohashKeys = geohash match {
|
||||||
|
case Some(hash) => keyLengths.map { version + "_geohash_" + hash.take(_) }
|
||||||
|
case _ => Seq.empty
|
||||||
|
}
|
||||||
|
|
||||||
|
val accountCountryCodeKeys =
|
||||||
|
accountCountryCode.toSeq.map(version + "_country_" + _.toUpperCase)
|
||||||
|
(geohashKeys ++ accountCountryCodeKeys).toSet
|
||||||
|
}
|
||||||
|
|
||||||
|
def convertToPlaceTweetScore(
|
||||||
|
popTweetsInPlace: Seq[PopTweetsInPlace]
|
||||||
|
): Seq[PlaceTweetScore] = {
|
||||||
|
popTweetsInPlace.flatMap {
|
||||||
|
case p =>
|
||||||
|
p.popTweets.map {
|
||||||
|
case popTweet => PlaceTweetScore(p.place, popTweet.tweetId, popTweet.score)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def sortGeoHashTweets(
|
||||||
|
placeTweetScores: Seq[PlaceTweetScore],
|
||||||
|
rankingFunction: TopTweetsForGeoRankingFunction.Value
|
||||||
|
): Seq[PlaceTweetScore] = {
|
||||||
|
rankingFunction match {
|
||||||
|
case TopTweetsForGeoRankingFunction.Score =>
|
||||||
|
placeTweetScores.sortBy(_.score)(Ordering[Double].reverse)
|
||||||
|
case TopTweetsForGeoRankingFunction.GeohashLengthAndThenScore =>
|
||||||
|
placeTweetScores
|
||||||
|
.sortBy(row => (row.place.length, row.score))(Ordering[(Int, Double)].reverse)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def getResultsForLambdaStore(
|
||||||
|
inputTarget: Target,
|
||||||
|
geohash: Option[String],
|
||||||
|
store: ReadableStore[String, PopTweetsInPlace],
|
||||||
|
topk: Int,
|
||||||
|
version: PopGeoTweetVersion.Value
|
||||||
|
): Future[Seq[(Long, Double)]] = {
|
||||||
|
inputTarget.accountCountryCode.flatMap { countryCode =>
|
||||||
|
val keys = {
|
||||||
|
if (inputTarget.params(FS.EnableCountryCodeBackoffTopTweetsByGeo))
|
||||||
|
constructKeys(geohash, countryCode, inputTarget.params(FS.GeoHashLengthList), version)
|
||||||
|
else
|
||||||
|
constructKeys(geohash, None, inputTarget.params(FS.GeoHashLengthList), version)
|
||||||
|
}
|
||||||
|
FutureOps
|
||||||
|
.mapCollect(store.multiGet(keys)).map {
|
||||||
|
case geohashTweetMap =>
|
||||||
|
val popTweets =
|
||||||
|
geohashTweetMap.values.flatten.toSeq
|
||||||
|
val results = sortGeoHashTweets(
|
||||||
|
convertToPlaceTweetScore(popTweets),
|
||||||
|
inputTarget.params(FS.RankingFunctionForTopTweetsByGeo))
|
||||||
|
.map(_.toTweetScore).take(topk)
|
||||||
|
results
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def getPopGeoTweetsForLoggedOutUsers(
|
||||||
|
inputTarget: Target,
|
||||||
|
store: ReadableStore[String, PopTweetsInPlace]
|
||||||
|
): Future[Seq[(Long, Double)]] = {
|
||||||
|
inputTarget.countryCode.flatMap { countryCode =>
|
||||||
|
val keys = constructKeys(None, countryCode, Seq(4), PopGeoTweetVersion.Prod)
|
||||||
|
FutureOps.mapCollect(store.multiGet(keys)).map {
|
||||||
|
case tweetMap =>
|
||||||
|
val tweets = tweetMap.values.flatten.toSeq
|
||||||
|
loggedOutPopByGeoV2CandidatesCounter.incr(tweets.size)
|
||||||
|
val popTweets = sortGeoHashTweets(
|
||||||
|
convertToPlaceTweetScore(tweets),
|
||||||
|
TopTweetsForGeoRankingFunction.Score).map(_.toTweetScore)
|
||||||
|
popTweets
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def getRankedTweets(
|
||||||
|
inputTarget: Target,
|
||||||
|
geohash: Option[String]
|
||||||
|
): Future[Seq[(Long, Double)]] = {
|
||||||
|
val MaxTopTweetsByGeoCandidatesToTake =
|
||||||
|
inputTarget.params(FS.MaxTopTweetsByGeoCandidatesToTake)
|
||||||
|
val scoringFn: String = inputTarget.params(FS.ScoringFuncForTopTweetsByGeo)
|
||||||
|
val combinationMethod = inputTarget.params(FS.TopTweetsByGeoCombinationParam)
|
||||||
|
val popGeoTweetVersion = inputTarget.params(FS.PopGeoTweetVersionParam)
|
||||||
|
|
||||||
|
inputTarget.isHeavyUserState.map { isHeavyUser =>
|
||||||
|
stats
|
||||||
|
.scope(combinationMethod.toString).scope(popGeoTweetVersion.toString).scope(
|
||||||
|
"IsHeavyUser_" + isHeavyUser.toString).counter().incr()
|
||||||
|
}
|
||||||
|
combinationRequestsCounter.scope(combinationMethod.toString).counter().incr()
|
||||||
|
popGeoTweetVersionCounter.scope(popGeoTweetVersion.toString).counter().incr()
|
||||||
|
lazy val geoStoreResults = if (geohash.isDefined) {
|
||||||
|
val hash = geohash.get.take(MaxGeoHashSize)
|
||||||
|
topTweetsByGeoStore
|
||||||
|
.get(
|
||||||
|
InterestDomain[String](hash)
|
||||||
|
)
|
||||||
|
.map {
|
||||||
|
case Some(scoringFnToTweetsMapOpt) =>
|
||||||
|
val tweetsWithScore = scoringFnToTweetsMapOpt
|
||||||
|
.getOrElse(scoringFn, List.empty)
|
||||||
|
val sortedResults = sortGeoHashTweets(
|
||||||
|
tweetsWithScore.map {
|
||||||
|
case (tweetId, score) => PlaceTweetScore(hash, tweetId, score)
|
||||||
|
},
|
||||||
|
TopTweetsForGeoRankingFunction.Score
|
||||||
|
).map(_.toTweetScore).take(
|
||||||
|
MaxTopTweetsByGeoCandidatesToTake
|
||||||
|
)
|
||||||
|
sortedResults
|
||||||
|
case _ => Seq.empty
|
||||||
|
}
|
||||||
|
} else Future.value(Seq.empty)
|
||||||
|
lazy val versionPopGeoTweetResults =
|
||||||
|
getResultsForLambdaStore(
|
||||||
|
inputTarget,
|
||||||
|
geohash,
|
||||||
|
topTweetsByGeoStoreV2,
|
||||||
|
MaxTopTweetsByGeoCandidatesToTake,
|
||||||
|
popGeoTweetVersion
|
||||||
|
)
|
||||||
|
combinationMethod match {
|
||||||
|
case TopTweetsForGeoCombination.Default => geoStoreResults
|
||||||
|
case TopTweetsForGeoCombination.AccountsTweetFavAsBackfill =>
|
||||||
|
Future.join(geoStoreResults, versionPopGeoTweetResults).map {
|
||||||
|
case (geoStoreTweets, versionPopGeoTweets) =>
|
||||||
|
(geoStoreTweets ++ versionPopGeoTweets).take(MaxTopTweetsByGeoCandidatesToTake)
|
||||||
|
}
|
||||||
|
case TopTweetsForGeoCombination.AccountsTweetFavIntermixed =>
|
||||||
|
Future.join(geoStoreResults, versionPopGeoTweetResults).map {
|
||||||
|
case (geoStoreTweets, versionPopGeoTweets) =>
|
||||||
|
CandidateSource.interleaveSeqs(Seq(geoStoreTweets, versionPopGeoTweets))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def get(inputTarget: Target): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
if (inputTarget.isLoggedOutUser) {
|
||||||
|
incomingLoggedOutRequestCounter.incr()
|
||||||
|
val rankedTweets = getPopGeoTweetsForLoggedOutUsers(inputTarget, topTweetsByGeoStoreV2)
|
||||||
|
val rawCandidates = {
|
||||||
|
rankedTweets.map { rt =>
|
||||||
|
FutureOps
|
||||||
|
.mapCollect(
|
||||||
|
tweetyPieStore
|
||||||
|
.multiGet(rt.map { case (tweetId, _) => tweetId }.toSet))
|
||||||
|
.map { tweetyPieResultMap =>
|
||||||
|
val results = buildTopTweetsByGeoRawCandidates(
|
||||||
|
inputTarget,
|
||||||
|
None,
|
||||||
|
tweetyPieResultMap
|
||||||
|
)
|
||||||
|
if (results.isEmpty) {
|
||||||
|
emptyLoggedOutRawCandidatesCounter.incr()
|
||||||
|
}
|
||||||
|
loggedOutRawCandidatesCounter.incr(results.size)
|
||||||
|
Some(results)
|
||||||
|
}
|
||||||
|
}.flatten
|
||||||
|
}
|
||||||
|
rawCandidates
|
||||||
|
} else {
|
||||||
|
incomingRequestCounter.incr()
|
||||||
|
getGeoHashForUsers(inputTarget).flatMap { geohash =>
|
||||||
|
if (geohash.isEmpty) noGeohashUserCounter.incr()
|
||||||
|
getRankedTweets(inputTarget, geohash).map { rt =>
|
||||||
|
if (rt.size == 100) {
|
||||||
|
topTweetsByGeoTake100Counter.incr(1)
|
||||||
|
}
|
||||||
|
FutureOps
|
||||||
|
.mapCollect((inputTarget.params(FS.EnableVFInTweetypie) match {
|
||||||
|
case true => tweetyPieStore
|
||||||
|
case false => tweetyPieStoreNoVF
|
||||||
|
}).multiGet(rt.map { case (tweetId, _) => tweetId }.toSet))
|
||||||
|
.map { tweetyPieResultMap =>
|
||||||
|
Some(
|
||||||
|
buildTopTweetsByGeoRawCandidates(
|
||||||
|
inputTarget,
|
||||||
|
None,
|
||||||
|
filterOutReplyTweet(
|
||||||
|
tweetyPieResultMap,
|
||||||
|
nonReplyTweetsCounter
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}.flatten
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getGeoHashForUsers(
|
||||||
|
inputTarget: Target
|
||||||
|
): Future[Option[String]] = {
|
||||||
|
|
||||||
|
inputTarget.targetUser.flatMap {
|
||||||
|
case Some(user) =>
|
||||||
|
user.userType match {
|
||||||
|
case UserType.Soft =>
|
||||||
|
softUserGeoLocationStore
|
||||||
|
.get(inputTarget.targetId)
|
||||||
|
.map(_.flatMap(_.geohash.flatMap(_.stringGeohash)))
|
||||||
|
|
||||||
|
case _ =>
|
||||||
|
geoduckStoreV2.get(inputTarget.targetId).map(_.flatMap(_.geohash))
|
||||||
|
}
|
||||||
|
|
||||||
|
case None => Future.None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def buildTopTweetsByGeoRawCandidates(
|
||||||
|
target: PushTypes.Target,
|
||||||
|
locationName: Option[String],
|
||||||
|
topTweets: Map[Long, Option[TweetyPieResult]]
|
||||||
|
): Seq[RawCandidate with TweetCandidate] = {
|
||||||
|
val candidates = topTweets.map { tweetIdTweetyPieResultMap =>
|
||||||
|
PushAdaptorUtil.generateOutOfNetworkTweetCandidates(
|
||||||
|
inputTarget = target,
|
||||||
|
id = tweetIdTweetyPieResultMap._1,
|
||||||
|
mediaCRT = MediaCRT(
|
||||||
|
CommonRecommendationType.GeoPopTweet,
|
||||||
|
CommonRecommendationType.GeoPopTweet,
|
||||||
|
CommonRecommendationType.GeoPopTweet
|
||||||
|
),
|
||||||
|
result = tweetIdTweetyPieResultMap._2,
|
||||||
|
localizedEntity = None
|
||||||
|
)
|
||||||
|
}.toSeq
|
||||||
|
outputTopTweetsByGeoCounter.add(candidates.length)
|
||||||
|
candidates
|
||||||
|
}
|
||||||
|
|
||||||
|
private val topTweetsByGeoFrequencyPredicate = {
|
||||||
|
TargetPredicates
|
||||||
|
.pushRecTypeFatiguePredicate(
|
||||||
|
CommonRecommendationType.GeoPopTweet,
|
||||||
|
FS.TopTweetsByGeoPushInterval,
|
||||||
|
FS.MaxTopTweetsByGeoPushGivenInterval,
|
||||||
|
stats
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
def getAvailabilityForDormantUser(target: Target): Future[Boolean] = {
|
||||||
|
lazy val isDormantUserNotFatigued = topTweetsByGeoFrequencyPredicate(Seq(target)).map(_.head)
|
||||||
|
lazy val enableTopTweetsByGeoForDormantUsers =
|
||||||
|
target.params(FS.EnableTopTweetsByGeoCandidatesForDormantUsers)
|
||||||
|
|
||||||
|
target.lastHTLVisitTimestamp.flatMap {
|
||||||
|
case Some(lastHTLTimestamp) =>
|
||||||
|
val minTimeSinceLastLogin =
|
||||||
|
target.params(FS.MinimumTimeSinceLastLoginForGeoPopTweetPush).ago
|
||||||
|
val timeSinceInactive = target.params(FS.TimeSinceLastLoginForGeoPopTweetPush).ago
|
||||||
|
val lastActiveTimestamp = Time.fromMilliseconds(lastHTLTimestamp)
|
||||||
|
if (lastActiveTimestamp > minTimeSinceLastLogin) {
|
||||||
|
nonDormantUsersSince14DaysCounter.incr()
|
||||||
|
Future.False
|
||||||
|
} else {
|
||||||
|
dormantUsersSince14DaysCounter.incr()
|
||||||
|
isDormantUserNotFatigued.map { isUserNotFatigued =>
|
||||||
|
lastActiveTimestamp < timeSinceInactive &&
|
||||||
|
enableTopTweetsByGeoForDormantUsers &&
|
||||||
|
isUserNotFatigued
|
||||||
|
}
|
||||||
|
}
|
||||||
|
case _ =>
|
||||||
|
dormantUsersSince30DaysCounter.incr()
|
||||||
|
isDormantUserNotFatigued.map { isUserNotFatigued =>
|
||||||
|
enableTopTweetsByGeoForDormantUsers && isUserNotFatigued
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def getAvailabilityForPlaybookSetUp(target: Target): Future[Boolean] = {
|
||||||
|
lazy val enableTopTweetsByGeoForNewUsers = target.params(FS.EnableTopTweetsByGeoCandidates)
|
||||||
|
val isTargetEligibleForMrFatigueCheck = target.isAccountAtleastNDaysOld(
|
||||||
|
target.params(FS.MrMinDurationSincePushForTopTweetsByGeoPushes))
|
||||||
|
val isMrFatigueCheckEnabled =
|
||||||
|
target.params(FS.EnableMrMinDurationSinceMrPushFatigue)
|
||||||
|
val applyPredicateForTopTweetsByGeo =
|
||||||
|
if (isMrFatigueCheckEnabled) {
|
||||||
|
if (isTargetEligibleForMrFatigueCheck) {
|
||||||
|
DiscoverTwitterPredicate
|
||||||
|
.minDurationElapsedSinceLastMrPushPredicate(
|
||||||
|
name,
|
||||||
|
FS.MrMinDurationSincePushForTopTweetsByGeoPushes,
|
||||||
|
stats
|
||||||
|
).andThen(
|
||||||
|
topTweetsByGeoFrequencyPredicate
|
||||||
|
)(Seq(target)).map(_.head)
|
||||||
|
} else {
|
||||||
|
Future.False
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
topTweetsByGeoFrequencyPredicate(Seq(target)).map(_.head)
|
||||||
|
}
|
||||||
|
applyPredicateForTopTweetsByGeo.map { predicateResult =>
|
||||||
|
predicateResult && enableTopTweetsByGeoForNewUsers
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
if (target.isLoggedOutUser) {
|
||||||
|
Future.True
|
||||||
|
} else {
|
||||||
|
PushDeviceUtil
|
||||||
|
.isRecommendationsEligible(target).map(
|
||||||
|
_ && target.params(PushParams.PopGeoCandidatesDecider)).flatMap { isAvailable =>
|
||||||
|
if (isAvailable) {
|
||||||
|
Future
|
||||||
|
.join(getAvailabilityForDormantUser(target), getAvailabilityForPlaybookSetUp(target))
|
||||||
|
.map {
|
||||||
|
case (isAvailableForDormantUser, isAvailableForPlaybook) =>
|
||||||
|
isAvailableForDormantUser || isAvailableForPlaybook
|
||||||
|
case _ => false
|
||||||
|
}
|
||||||
|
} else Future.False
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,215 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.events.recos.thriftscala.DisplayLocation
|
||||||
|
import com.twitter.events.recos.thriftscala.TrendsContext
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base.CandidateSource
|
||||||
|
import com.twitter.frigate.common.base.CandidateSourceEligible
|
||||||
|
import com.twitter.frigate.common.base.TrendTweetCandidate
|
||||||
|
import com.twitter.frigate.common.base.TrendsCandidate
|
||||||
|
import com.twitter.frigate.common.candidate.RecommendedTrendsCandidateSource
|
||||||
|
import com.twitter.frigate.common.candidate.RecommendedTrendsCandidateSource.Query
|
||||||
|
import com.twitter.frigate.common.predicate.CommonOutNetworkTweetCandidatesSourcePredicates.filterOutReplyTweet
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.adaptor.TrendsCandidatesAdaptor._
|
||||||
|
import com.twitter.frigate.pushservice.params.PushFeatureSwitchParams
|
||||||
|
import com.twitter.frigate.pushservice.params.PushParams
|
||||||
|
import com.twitter.frigate.pushservice.predicate.TargetPredicates
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.frigate.thriftscala.CommonRecommendationType
|
||||||
|
import com.twitter.geoduck.common.thriftscala.Location
|
||||||
|
import com.twitter.gizmoduck.thriftscala.UserType
|
||||||
|
import com.twitter.hermit.store.tweetypie.UserTweet
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.util.Future
|
||||||
|
import scala.collection.Map
|
||||||
|
|
||||||
|
object TrendsCandidatesAdaptor {
|
||||||
|
type TweetId = Long
|
||||||
|
type EventId = Long
|
||||||
|
}
|
||||||
|
|
||||||
|
case class TrendsCandidatesAdaptor(
|
||||||
|
softUserGeoLocationStore: ReadableStore[Long, Location],
|
||||||
|
recommendedTrendsCandidateSource: RecommendedTrendsCandidateSource,
|
||||||
|
tweetyPieStore: ReadableStore[Long, TweetyPieResult],
|
||||||
|
tweetyPieStoreNoVF: ReadableStore[Long, TweetyPieResult],
|
||||||
|
safeUserTweetTweetyPieStore: ReadableStore[UserTweet, TweetyPieResult],
|
||||||
|
statsReceiver: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
override val name = this.getClass.getSimpleName
|
||||||
|
|
||||||
|
private val trendAdaptorStats = statsReceiver.scope("TrendsCandidatesAdaptor")
|
||||||
|
private val trendTweetCandidateNumber = trendAdaptorStats.counter("trend_tweet_candidate")
|
||||||
|
private val nonReplyTweetsCounter = trendAdaptorStats.counter("non_reply_tweets")
|
||||||
|
|
||||||
|
private def getQuery(target: Target): Future[Query] = {
|
||||||
|
def getUserCountryCode(target: Target): Future[Option[String]] = {
|
||||||
|
target.targetUser.flatMap {
|
||||||
|
case Some(user) if user.userType == UserType.Soft =>
|
||||||
|
softUserGeoLocationStore
|
||||||
|
.get(user.id)
|
||||||
|
.map(_.flatMap(_.simpleRgcResult.flatMap(_.countryCodeAlpha2)))
|
||||||
|
|
||||||
|
case _ => target.accountCountryCode
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for {
|
||||||
|
countryCode <- getUserCountryCode(target)
|
||||||
|
inferredLanguage <- target.inferredUserDeviceLanguage
|
||||||
|
} yield {
|
||||||
|
Query(
|
||||||
|
userId = target.targetId,
|
||||||
|
displayLocation = DisplayLocation.MagicRecs,
|
||||||
|
languageCode = inferredLanguage,
|
||||||
|
countryCode = countryCode,
|
||||||
|
maxResults = target.params(PushFeatureSwitchParams.MaxRecommendedTrendsToQuery)
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Query candidates only if sent at most [[PushFeatureSwitchParams.MaxTrendTweetNotificationsInDuration]]
|
||||||
|
* trend tweet notifications in [[PushFeatureSwitchParams.TrendTweetNotificationsFatigueDuration]]
|
||||||
|
*/
|
||||||
|
val trendTweetFatiguePredicate = TargetPredicates.pushRecTypeFatiguePredicate(
|
||||||
|
CommonRecommendationType.TrendTweet,
|
||||||
|
PushFeatureSwitchParams.TrendTweetNotificationsFatigueDuration,
|
||||||
|
PushFeatureSwitchParams.MaxTrendTweetNotificationsInDuration,
|
||||||
|
trendAdaptorStats
|
||||||
|
)
|
||||||
|
|
||||||
|
private val recommendedTrendsWithTweetsCandidateSource: CandidateSource[
|
||||||
|
Target,
|
||||||
|
RawCandidate with TrendsCandidate
|
||||||
|
] = recommendedTrendsCandidateSource
|
||||||
|
.convert[Target, TrendsCandidate](
|
||||||
|
getQuery,
|
||||||
|
recommendedTrendsCandidateSource.identityCandidateMapper
|
||||||
|
)
|
||||||
|
.batchMapValues[Target, RawCandidate with TrendsCandidate](
|
||||||
|
trendsCandidatesToTweetCandidates(_, _, getTweetyPieResults))
|
||||||
|
|
||||||
|
private def getTweetyPieResults(
|
||||||
|
tweetIds: Seq[TweetId],
|
||||||
|
target: Target
|
||||||
|
): Future[Map[TweetId, TweetyPieResult]] = {
|
||||||
|
if (target.params(PushFeatureSwitchParams.EnableSafeUserTweetTweetypieStore)) {
|
||||||
|
Future
|
||||||
|
.collect(
|
||||||
|
safeUserTweetTweetyPieStore.multiGet(
|
||||||
|
tweetIds.toSet.map(UserTweet(_, Some(target.targetId))))).map {
|
||||||
|
_.collect {
|
||||||
|
case (userTweet, Some(tweetyPieResult)) => userTweet.tweetId -> tweetyPieResult
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
Future
|
||||||
|
.collect((target.params(PushFeatureSwitchParams.EnableVFInTweetypie) match {
|
||||||
|
case true => tweetyPieStore
|
||||||
|
case false => tweetyPieStoreNoVF
|
||||||
|
}).multiGet(tweetIds.toSet)).map { tweetyPieResultMap =>
|
||||||
|
filterOutReplyTweet(tweetyPieResultMap, nonReplyTweetsCounter).collect {
|
||||||
|
case (tweetId, Some(tweetyPieResult)) => tweetId -> tweetyPieResult
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* @param _target: [[Target]] object representing notificaion recipient user
|
||||||
|
* @param trendsCandidates: Sequence of [[TrendsCandidate]] returned from ERS
|
||||||
|
* @return: Seq of trends candidates expanded to associated tweets.
|
||||||
|
*/
|
||||||
|
private def trendsCandidatesToTweetCandidates(
|
||||||
|
_target: Target,
|
||||||
|
trendsCandidates: Seq[TrendsCandidate],
|
||||||
|
getTweetyPieResults: (Seq[TweetId], Target) => Future[Map[TweetId, TweetyPieResult]]
|
||||||
|
): Future[Seq[RawCandidate with TrendsCandidate]] = {
|
||||||
|
|
||||||
|
def generateTrendTweetCandidates(
|
||||||
|
trendCandidate: TrendsCandidate,
|
||||||
|
tweetyPieResults: Map[TweetId, TweetyPieResult]
|
||||||
|
) = {
|
||||||
|
val tweetIds = trendCandidate.context.curatedRepresentativeTweets.getOrElse(Seq.empty) ++
|
||||||
|
trendCandidate.context.algoRepresentativeTweets.getOrElse(Seq.empty)
|
||||||
|
|
||||||
|
tweetIds.flatMap { tweetId =>
|
||||||
|
tweetyPieResults.get(tweetId).map { _tweetyPieResult =>
|
||||||
|
new RawCandidate with TrendTweetCandidate {
|
||||||
|
override val trendId: String = trendCandidate.trendId
|
||||||
|
override val trendName: String = trendCandidate.trendName
|
||||||
|
override val landingUrl: String = trendCandidate.landingUrl
|
||||||
|
override val timeBoundedLandingUrl: Option[String] =
|
||||||
|
trendCandidate.timeBoundedLandingUrl
|
||||||
|
override val context: TrendsContext = trendCandidate.context
|
||||||
|
override val tweetyPieResult: Option[TweetyPieResult] = Some(_tweetyPieResult)
|
||||||
|
override val tweetId: TweetId = _tweetyPieResult.tweet.id
|
||||||
|
override val target: Target = _target
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// collect all tweet ids associated with all trends
|
||||||
|
val allTweetIds = trendsCandidates.flatMap { trendsCandidate =>
|
||||||
|
val context = trendsCandidate.context
|
||||||
|
context.curatedRepresentativeTweets.getOrElse(Seq.empty) ++
|
||||||
|
context.algoRepresentativeTweets.getOrElse(Seq.empty)
|
||||||
|
}
|
||||||
|
|
||||||
|
getTweetyPieResults(allTweetIds, _target)
|
||||||
|
.map { tweetIdToTweetyPieResult =>
|
||||||
|
val trendTweetCandidates = trendsCandidates.flatMap { trendCandidate =>
|
||||||
|
val allTrendTweetCandidates = generateTrendTweetCandidates(
|
||||||
|
trendCandidate,
|
||||||
|
tweetIdToTweetyPieResult
|
||||||
|
)
|
||||||
|
|
||||||
|
val (tweetCandidatesFromCuratedTrends, tweetCandidatesFromNonCuratedTrends) =
|
||||||
|
allTrendTweetCandidates.partition(_.isCuratedTrend)
|
||||||
|
|
||||||
|
tweetCandidatesFromCuratedTrends.filter(
|
||||||
|
_.target.params(PushFeatureSwitchParams.EnableCuratedTrendTweets)) ++
|
||||||
|
tweetCandidatesFromNonCuratedTrends.filter(
|
||||||
|
_.target.params(PushFeatureSwitchParams.EnableNonCuratedTrendTweets))
|
||||||
|
}
|
||||||
|
|
||||||
|
trendTweetCandidateNumber.incr(trendTweetCandidates.size)
|
||||||
|
trendTweetCandidates
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* @param target: [[Target]] user
|
||||||
|
* @return: true if customer is eligible to receive trend tweet notifications
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
PushDeviceUtil
|
||||||
|
.isRecommendationsEligible(target)
|
||||||
|
.map(target.params(PushParams.TrendsCandidateDecider) && _)
|
||||||
|
}
|
||||||
|
|
||||||
|
override def get(target: Target): Future[Option[Seq[RawCandidate with TrendsCandidate]]] = {
|
||||||
|
recommendedTrendsWithTweetsCandidateSource
|
||||||
|
.get(target)
|
||||||
|
.flatMap {
|
||||||
|
case Some(candidates) if candidates.nonEmpty =>
|
||||||
|
trendTweetFatiguePredicate(Seq(target))
|
||||||
|
.map(_.head)
|
||||||
|
.map { isTargetFatigueEligible =>
|
||||||
|
if (isTargetFatigueEligible) Some(candidates)
|
||||||
|
else None
|
||||||
|
}
|
||||||
|
|
||||||
|
case _ => Future.None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,188 @@
|
|||||||
|
package com.twitter.frigate.pushservice.adaptor
|
||||||
|
|
||||||
|
import com.twitter.content_mixer.thriftscala.ContentMixerProductResponse
|
||||||
|
import com.twitter.content_mixer.thriftscala.ContentMixerRequest
|
||||||
|
import com.twitter.content_mixer.thriftscala.ContentMixerResponse
|
||||||
|
import com.twitter.content_mixer.thriftscala.NotificationsTripTweetsProductContext
|
||||||
|
import com.twitter.content_mixer.thriftscala.Product
|
||||||
|
import com.twitter.content_mixer.thriftscala.ProductContext
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.base.CandidateSource
|
||||||
|
import com.twitter.frigate.common.base.CandidateSourceEligible
|
||||||
|
import com.twitter.frigate.common.predicate.CommonOutNetworkTweetCandidatesSourcePredicates.filterOutReplyTweet
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.RawCandidate
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.PushFeatureSwitchParams
|
||||||
|
import com.twitter.frigate.pushservice.params.PushParams
|
||||||
|
import com.twitter.frigate.pushservice.util.MediaCRT
|
||||||
|
import com.twitter.frigate.pushservice.util.PushAdaptorUtil
|
||||||
|
import com.twitter.frigate.pushservice.util.PushDeviceUtil
|
||||||
|
import com.twitter.frigate.thriftscala.CommonRecommendationType
|
||||||
|
import com.twitter.geoduck.util.country.CountryInfo
|
||||||
|
import com.twitter.product_mixer.core.thriftscala.ClientContext
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.trends.trip_v1.trip_tweets.thriftscala.TripDomain
|
||||||
|
import com.twitter.trends.trip_v1.trip_tweets.thriftscala.TripTweets
|
||||||
|
import com.twitter.util.Future
|
||||||
|
|
||||||
|
case class TripGeoCandidatesAdaptor(
|
||||||
|
tripTweetCandidateStore: ReadableStore[TripDomain, TripTweets],
|
||||||
|
contentMixerStore: ReadableStore[ContentMixerRequest, ContentMixerResponse],
|
||||||
|
tweetyPieStore: ReadableStore[Long, TweetyPieResult],
|
||||||
|
tweetyPieStoreNoVF: ReadableStore[Long, TweetyPieResult],
|
||||||
|
statsReceiver: StatsReceiver)
|
||||||
|
extends CandidateSource[Target, RawCandidate]
|
||||||
|
with CandidateSourceEligible[Target, RawCandidate] {
|
||||||
|
|
||||||
|
override def name: String = this.getClass.getSimpleName
|
||||||
|
|
||||||
|
private val stats = statsReceiver.scope(name.stripSuffix("$"))
|
||||||
|
|
||||||
|
private val contentMixerRequests = stats.counter("getTripCandidatesContentMixerRequests")
|
||||||
|
private val loggedOutTripTweetIds = stats.counter("logged_out_trip_tweet_ids_count")
|
||||||
|
private val loggedOutRawCandidates = stats.counter("logged_out_raw_candidates_count")
|
||||||
|
private val rawCandidates = stats.counter("raw_candidates_count")
|
||||||
|
private val loggedOutEmptyplaceId = stats.counter("logged_out_empty_place_id_count")
|
||||||
|
private val loggedOutPlaceId = stats.counter("logged_out_place_id_count")
|
||||||
|
private val nonReplyTweetsCounter = stats.counter("non_reply_tweets")
|
||||||
|
|
||||||
|
override def isCandidateSourceAvailable(target: Target): Future[Boolean] = {
|
||||||
|
if (target.isLoggedOutUser) {
|
||||||
|
Future.True
|
||||||
|
} else {
|
||||||
|
for {
|
||||||
|
isRecommendationsSettingEnabled <- PushDeviceUtil.isRecommendationsEligible(target)
|
||||||
|
inferredLanguage <- target.inferredUserDeviceLanguage
|
||||||
|
} yield {
|
||||||
|
isRecommendationsSettingEnabled &&
|
||||||
|
inferredLanguage.nonEmpty &&
|
||||||
|
target.params(PushParams.TripGeoTweetCandidatesDecider)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
private def buildRawCandidate(target: Target, tweetyPieResult: TweetyPieResult): RawCandidate = {
|
||||||
|
PushAdaptorUtil.generateOutOfNetworkTweetCandidates(
|
||||||
|
inputTarget = target,
|
||||||
|
id = tweetyPieResult.tweet.id,
|
||||||
|
mediaCRT = MediaCRT(
|
||||||
|
CommonRecommendationType.TripGeoTweet,
|
||||||
|
CommonRecommendationType.TripGeoTweet,
|
||||||
|
CommonRecommendationType.TripGeoTweet
|
||||||
|
),
|
||||||
|
result = Some(tweetyPieResult),
|
||||||
|
localizedEntity = None
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
override def get(target: Target): Future[Option[Seq[RawCandidate]]] = {
|
||||||
|
if (target.isLoggedOutUser) {
|
||||||
|
for {
|
||||||
|
tripTweetIds <- getTripCandidatesForLoggedOutTarget(target)
|
||||||
|
tweetyPieResults <- Future.collect(tweetyPieStoreNoVF.multiGet(tripTweetIds))
|
||||||
|
} yield {
|
||||||
|
val candidates = tweetyPieResults.values.flatten.map(buildRawCandidate(target, _))
|
||||||
|
if (candidates.nonEmpty) {
|
||||||
|
loggedOutRawCandidates.incr(candidates.size)
|
||||||
|
Some(candidates.toSeq)
|
||||||
|
} else None
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for {
|
||||||
|
tripTweetIds <- getTripCandidatesContentMixer(target)
|
||||||
|
tweetyPieResults <-
|
||||||
|
Future.collect((target.params(PushFeatureSwitchParams.EnableVFInTweetypie) match {
|
||||||
|
case true => tweetyPieStore
|
||||||
|
case false => tweetyPieStoreNoVF
|
||||||
|
}).multiGet(tripTweetIds))
|
||||||
|
} yield {
|
||||||
|
val nonReplyTweets = filterOutReplyTweet(tweetyPieResults, nonReplyTweetsCounter)
|
||||||
|
val candidates = nonReplyTweets.values.flatten.map(buildRawCandidate(target, _))
|
||||||
|
if (candidates.nonEmpty && target.params(
|
||||||
|
PushFeatureSwitchParams.TripTweetCandidateReturnEnable)) {
|
||||||
|
rawCandidates.incr(candidates.size)
|
||||||
|
Some(candidates.toSeq)
|
||||||
|
} else None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getTripCandidatesContentMixer(
|
||||||
|
target: Target
|
||||||
|
): Future[Set[Long]] = {
|
||||||
|
contentMixerRequests.incr()
|
||||||
|
Future
|
||||||
|
.join(
|
||||||
|
target.inferredUserDeviceLanguage,
|
||||||
|
target.deviceInfo
|
||||||
|
)
|
||||||
|
.flatMap {
|
||||||
|
case (languageOpt, deviceInfoOpt) =>
|
||||||
|
contentMixerStore
|
||||||
|
.get(
|
||||||
|
ContentMixerRequest(
|
||||||
|
clientContext = ClientContext(
|
||||||
|
userId = Some(target.targetId),
|
||||||
|
languageCode = languageOpt,
|
||||||
|
userAgent = deviceInfoOpt.flatMap(_.guessedPrimaryDeviceUserAgent.map(_.toString))
|
||||||
|
),
|
||||||
|
product = Product.NotificationsTripTweets,
|
||||||
|
productContext = Some(
|
||||||
|
ProductContext.NotificationsTripTweetsProductContext(
|
||||||
|
NotificationsTripTweetsProductContext()
|
||||||
|
)),
|
||||||
|
cursor = None,
|
||||||
|
maxResults =
|
||||||
|
Some(target.params(PushFeatureSwitchParams.TripTweetMaxTotalCandidates))
|
||||||
|
)
|
||||||
|
).map {
|
||||||
|
_.map { rawResponse =>
|
||||||
|
val tripResponse =
|
||||||
|
rawResponse.contentMixerProductResponse
|
||||||
|
.asInstanceOf[
|
||||||
|
ContentMixerProductResponse.NotificationsTripTweetsProductResponse]
|
||||||
|
.notificationsTripTweetsProductResponse
|
||||||
|
|
||||||
|
tripResponse.results.map(_.tweetResult.tweetId).toSet
|
||||||
|
}.getOrElse(Set.empty)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private def getTripCandidatesForLoggedOutTarget(
|
||||||
|
target: Target
|
||||||
|
): Future[Set[Long]] = {
|
||||||
|
Future.join(target.targetLanguage, target.countryCode).flatMap {
|
||||||
|
case (Some(lang), Some(country)) =>
|
||||||
|
val placeId = CountryInfo.lookupByCode(country).map(_.placeIdLong)
|
||||||
|
if (placeId.nonEmpty) {
|
||||||
|
loggedOutPlaceId.incr()
|
||||||
|
} else {
|
||||||
|
loggedOutEmptyplaceId.incr()
|
||||||
|
}
|
||||||
|
val tripSource = "TOP_GEO_V3_LR"
|
||||||
|
val tripQuery = TripDomain(
|
||||||
|
sourceId = tripSource,
|
||||||
|
language = Some(lang),
|
||||||
|
placeId = placeId,
|
||||||
|
topicId = None
|
||||||
|
)
|
||||||
|
val response = tripTweetCandidateStore.get(tripQuery)
|
||||||
|
val tripTweetIds =
|
||||||
|
response.map { res =>
|
||||||
|
if (res.isDefined) {
|
||||||
|
res.get.tweets
|
||||||
|
.sortBy(_.score)(Ordering[Double].reverse).map(_.tweetId).toSet
|
||||||
|
} else {
|
||||||
|
Set.empty[Long]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
tripTweetIds.map { ids => loggedOutTripTweetIds.incr(ids.size) }
|
||||||
|
tripTweetIds
|
||||||
|
|
||||||
|
case (_, _) => Future.value(Set.empty)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,461 @@
|
|||||||
|
package com.twitter.frigate.pushservice.config
|
||||||
|
|
||||||
|
import com.twitter.abdecider.LoggingABDecider
|
||||||
|
import com.twitter.abuse.detection.scoring.thriftscala.TweetScoringRequest
|
||||||
|
import com.twitter.abuse.detection.scoring.thriftscala.TweetScoringResponse
|
||||||
|
import com.twitter.audience_rewards.thriftscala.HasSuperFollowingRelationshipRequest
|
||||||
|
import com.twitter.channels.common.thriftscala.ApiList
|
||||||
|
import com.twitter.datatools.entityservice.entities.sports.thriftscala._
|
||||||
|
import com.twitter.decider.Decider
|
||||||
|
import com.twitter.discovery.common.configapi.ConfigParamsBuilder
|
||||||
|
import com.twitter.escherbird.common.thriftscala.QualifiedId
|
||||||
|
import com.twitter.escherbird.metadata.thriftscala.EntityMegadata
|
||||||
|
import com.twitter.eventbus.client.EventBusPublisher
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.finagle.thrift.ClientId
|
||||||
|
import com.twitter.frigate.common.base._
|
||||||
|
import com.twitter.frigate.common.candidate._
|
||||||
|
import com.twitter.frigate.common.history._
|
||||||
|
import com.twitter.frigate.common.ml.base._
|
||||||
|
import com.twitter.frigate.common.ml.feature._
|
||||||
|
import com.twitter.frigate.common.store._
|
||||||
|
import com.twitter.frigate.common.store.deviceinfo.DeviceInfo
|
||||||
|
import com.twitter.frigate.common.store.interests.InterestsLookupRequestWithContext
|
||||||
|
import com.twitter.frigate.common.store.interests.UserId
|
||||||
|
import com.twitter.frigate.common.util._
|
||||||
|
import com.twitter.frigate.data_pipeline.features_common._
|
||||||
|
import com.twitter.frigate.data_pipeline.thriftscala.UserHistoryKey
|
||||||
|
import com.twitter.frigate.data_pipeline.thriftscala.UserHistoryValue
|
||||||
|
import com.twitter.frigate.dau_model.thriftscala.DauProbability
|
||||||
|
import com.twitter.frigate.magic_events.thriftscala.FanoutEvent
|
||||||
|
import com.twitter.frigate.pushcap.thriftscala.PushcapUserHistory
|
||||||
|
import com.twitter.frigate.pushservice.ml._
|
||||||
|
import com.twitter.frigate.pushservice.params.DeciderKey
|
||||||
|
import com.twitter.frigate.pushservice.params.PushFeatureSwitchParams
|
||||||
|
import com.twitter.frigate.pushservice.params.PushFeatureSwitches
|
||||||
|
import com.twitter.frigate.pushservice.params.PushParams
|
||||||
|
import com.twitter.frigate.pushservice.send_handler.SendHandlerPushCandidateHydrator
|
||||||
|
import com.twitter.frigate.pushservice.refresh_handler.PushCandidateHydrator
|
||||||
|
import com.twitter.frigate.pushservice.store._
|
||||||
|
import com.twitter.frigate.pushservice.store.{Ibis2Store => PushIbis2Store}
|
||||||
|
import com.twitter.frigate.pushservice.take.NotificationServiceRequest
|
||||||
|
import com.twitter.frigate.pushservice.thriftscala.PushRequestScribe
|
||||||
|
import com.twitter.frigate.scribe.thriftscala.NotificationScribe
|
||||||
|
import com.twitter.frigate.thriftscala._
|
||||||
|
import com.twitter.frigate.user_states.thriftscala.MRUserHmmState
|
||||||
|
import com.twitter.geoduck.common.thriftscala.{Location => GeoLocation}
|
||||||
|
import com.twitter.geoduck.service.thriftscala.LocationResponse
|
||||||
|
import com.twitter.gizmoduck.thriftscala.User
|
||||||
|
import com.twitter.hermit.pop_geo.thriftscala.PopTweetsInPlace
|
||||||
|
import com.twitter.hermit.predicate.socialgraph.RelationEdge
|
||||||
|
import com.twitter.hermit.predicate.tweetypie.Perspective
|
||||||
|
import com.twitter.hermit.predicate.tweetypie.UserTweet
|
||||||
|
import com.twitter.hermit.store.semantic_core.SemanticEntityForQuery
|
||||||
|
import com.twitter.hermit.store.tweetypie.{UserTweet => TweetyPieUserTweet}
|
||||||
|
import com.twitter.hermit.stp.thriftscala.STPResult
|
||||||
|
import com.twitter.hss.api.thriftscala.UserHealthSignalResponse
|
||||||
|
import com.twitter.interests.thriftscala.InterestId
|
||||||
|
import com.twitter.interests.thriftscala.{UserInterests => Interests}
|
||||||
|
import com.twitter.interests_discovery.thriftscala.NonPersonalizedRecommendedLists
|
||||||
|
import com.twitter.interests_discovery.thriftscala.RecommendedListsRequest
|
||||||
|
import com.twitter.interests_discovery.thriftscala.RecommendedListsResponse
|
||||||
|
import com.twitter.livevideo.timeline.domain.v2.{Event => LiveEvent}
|
||||||
|
import com.twitter.ml.api.thriftscala.{DataRecord => ThriftDataRecord}
|
||||||
|
import com.twitter.ml.featurestore.lib.dynamic.DynamicFeatureStoreClient
|
||||||
|
import com.twitter.notificationservice.genericfeedbackstore.FeedbackPromptValue
|
||||||
|
import com.twitter.notificationservice.genericfeedbackstore.GenericFeedbackStore
|
||||||
|
import com.twitter.notificationservice.scribe.manhattan.GenericNotificationsFeedbackRequest
|
||||||
|
import com.twitter.notificationservice.thriftscala.CaretFeedbackDetails
|
||||||
|
import com.twitter.notificationservice.thriftscala.CreateGenericNotificationResponse
|
||||||
|
import com.twitter.nrel.heavyranker.CandidateFeatureHydrator
|
||||||
|
import com.twitter.nrel.heavyranker.{FeatureHydrator => MRFeatureHydrator}
|
||||||
|
import com.twitter.nrel.heavyranker.{TargetFeatureHydrator => RelevanceTargetFeatureHydrator}
|
||||||
|
import com.twitter.onboarding.task.service.thriftscala.FatigueFlowEnrollment
|
||||||
|
import com.twitter.permissions_storage.thriftscala.AppPermission
|
||||||
|
import com.twitter.recommendation.interests.discovery.core.model.InterestDomain
|
||||||
|
import com.twitter.recos.user_tweet_entity_graph.thriftscala.RecommendTweetEntityRequest
|
||||||
|
import com.twitter.recos.user_tweet_entity_graph.thriftscala.RecommendTweetEntityResponse
|
||||||
|
import com.twitter.recos.user_user_graph.thriftscala.RecommendUserRequest
|
||||||
|
import com.twitter.recos.user_user_graph.thriftscala.RecommendUserResponse
|
||||||
|
import com.twitter.rux.common.strato.thriftscala.UserTargetingProperty
|
||||||
|
import com.twitter.scio.nsfw_user_segmentation.thriftscala.NSFWProducer
|
||||||
|
import com.twitter.scio.nsfw_user_segmentation.thriftscala.NSFWUserSegmentation
|
||||||
|
import com.twitter.search.common.features.thriftscala.ThriftSearchResultFeatures
|
||||||
|
import com.twitter.search.earlybird.thriftscala.EarlybirdRequest
|
||||||
|
import com.twitter.search.earlybird.thriftscala.ThriftSearchResult
|
||||||
|
import com.twitter.service.gen.scarecrow.thriftscala.Event
|
||||||
|
import com.twitter.service.gen.scarecrow.thriftscala.TieredActionResult
|
||||||
|
import com.twitter.service.metastore.gen.thriftscala.Location
|
||||||
|
import com.twitter.service.metastore.gen.thriftscala.UserLanguages
|
||||||
|
import com.twitter.servo.decider.DeciderGateBuilder
|
||||||
|
import com.twitter.simclusters_v2.thriftscala.SimClustersInferredEntities
|
||||||
|
import com.twitter.stitch.tweetypie.TweetyPie.TweetyPieResult
|
||||||
|
import com.twitter.storehaus.ReadableStore
|
||||||
|
import com.twitter.strato.columns.frigate.logged_out_web_notifications.thriftscala.LOWebNotificationMetadata
|
||||||
|
import com.twitter.strato.columns.notifications.thriftscala.SourceDestUserRequest
|
||||||
|
import com.twitter.strato.client.{UserId => StratoUserId}
|
||||||
|
import com.twitter.timelines.configapi
|
||||||
|
import com.twitter.timelines.configapi.CompositeConfig
|
||||||
|
import com.twitter.timelinescorer.thriftscala.v1.ScoredTweet
|
||||||
|
import com.twitter.topiclisting.TopicListing
|
||||||
|
import com.twitter.trends.trip_v1.trip_tweets.thriftscala.TripDomain
|
||||||
|
import com.twitter.trends.trip_v1.trip_tweets.thriftscala.TripTweets
|
||||||
|
import com.twitter.tsp.thriftscala.TopicSocialProofRequest
|
||||||
|
import com.twitter.tsp.thriftscala.TopicSocialProofResponse
|
||||||
|
import com.twitter.ubs.thriftscala.SellerTrack
|
||||||
|
import com.twitter.ubs.thriftscala.AudioSpace
|
||||||
|
import com.twitter.ubs.thriftscala.Participants
|
||||||
|
import com.twitter.ubs.thriftscala.SellerApplicationState
|
||||||
|
import com.twitter.user_session_store.thriftscala.UserSession
|
||||||
|
import com.twitter.util.Duration
|
||||||
|
import com.twitter.util.Future
|
||||||
|
import com.twitter.wtf.scalding.common.thriftscala.UserFeatures
|
||||||
|
|
||||||
|
trait Config {
|
||||||
|
self =>
|
||||||
|
|
||||||
|
def isServiceLocal: Boolean
|
||||||
|
|
||||||
|
def localConfigRepoPath: String
|
||||||
|
|
||||||
|
def inMemCacheOff: Boolean
|
||||||
|
|
||||||
|
def historyStore: PushServiceHistoryStore
|
||||||
|
|
||||||
|
def emailHistoryStore: PushServiceHistoryStore
|
||||||
|
|
||||||
|
def strongTiesStore: ReadableStore[Long, STPResult]
|
||||||
|
|
||||||
|
def safeUserStore: ReadableStore[Long, User]
|
||||||
|
|
||||||
|
def deviceInfoStore: ReadableStore[Long, DeviceInfo]
|
||||||
|
|
||||||
|
def edgeStore: ReadableStore[RelationEdge, Boolean]
|
||||||
|
|
||||||
|
def socialGraphServiceProcessStore: ReadableStore[RelationEdge, Boolean]
|
||||||
|
|
||||||
|
def userUtcOffsetStore: ReadableStore[Long, Duration]
|
||||||
|
|
||||||
|
def cachedTweetyPieStoreV2: ReadableStore[Long, TweetyPieResult]
|
||||||
|
|
||||||
|
def safeCachedTweetyPieStoreV2: ReadableStore[Long, TweetyPieResult]
|
||||||
|
|
||||||
|
def userTweetTweetyPieStore: ReadableStore[TweetyPieUserTweet, TweetyPieResult]
|
||||||
|
|
||||||
|
def safeUserTweetTweetyPieStore: ReadableStore[TweetyPieUserTweet, TweetyPieResult]
|
||||||
|
|
||||||
|
def cachedTweetyPieStoreV2NoVF: ReadableStore[Long, TweetyPieResult]
|
||||||
|
|
||||||
|
def tweetContentFeatureCacheStore: ReadableStore[Long, ThriftDataRecord]
|
||||||
|
|
||||||
|
def scarecrowCheckEventStore: ReadableStore[Event, TieredActionResult]
|
||||||
|
|
||||||
|
def userTweetPerspectiveStore: ReadableStore[UserTweet, Perspective]
|
||||||
|
|
||||||
|
def userCountryStore: ReadableStore[Long, Location]
|
||||||
|
|
||||||
|
def pushInfoStore: ReadableStore[Long, UserForPushTargeting]
|
||||||
|
|
||||||
|
def loggedOutPushInfoStore: ReadableStore[Long, LOWebNotificationMetadata]
|
||||||
|
|
||||||
|
def tweetImpressionStore: ReadableStore[Long, Seq[Long]]
|
||||||
|
|
||||||
|
def audioSpaceStore: ReadableStore[String, AudioSpace]
|
||||||
|
|
||||||
|
def basketballGameScoreStore: ReadableStore[QualifiedId, BasketballGameLiveUpdate]
|
||||||
|
|
||||||
|
def baseballGameScoreStore: ReadableStore[QualifiedId, BaseballGameLiveUpdate]
|
||||||
|
|
||||||
|
def cricketMatchScoreStore: ReadableStore[QualifiedId, CricketMatchLiveUpdate]
|
||||||
|
|
||||||
|
def soccerMatchScoreStore: ReadableStore[QualifiedId, SoccerMatchLiveUpdate]
|
||||||
|
|
||||||
|
def nflGameScoreStore: ReadableStore[QualifiedId, NflFootballGameLiveUpdate]
|
||||||
|
|
||||||
|
def topicSocialProofServiceStore: ReadableStore[TopicSocialProofRequest, TopicSocialProofResponse]
|
||||||
|
|
||||||
|
def spaceDeviceFollowStore: ReadableStore[SourceDestUserRequest, Boolean]
|
||||||
|
|
||||||
|
def audioSpaceParticipantsStore: ReadableStore[String, Participants]
|
||||||
|
|
||||||
|
def notificationServiceSender: ReadableStore[
|
||||||
|
NotificationServiceRequest,
|
||||||
|
CreateGenericNotificationResponse
|
||||||
|
]
|
||||||
|
|
||||||
|
def ocfFatigueStore: ReadableStore[OCFHistoryStoreKey, FatigueFlowEnrollment]
|
||||||
|
|
||||||
|
def dauProbabilityStore: ReadableStore[Long, DauProbability]
|
||||||
|
|
||||||
|
def hydratedLabeledPushRecsStore: ReadableStore[UserHistoryKey, UserHistoryValue]
|
||||||
|
|
||||||
|
def userHTLLastVisitStore: ReadableStore[Long, Seq[Long]]
|
||||||
|
|
||||||
|
def userLanguagesStore: ReadableStore[Long, UserLanguages]
|
||||||
|
|
||||||
|
def topTweetsByGeoStore: ReadableStore[InterestDomain[String], Map[String, List[
|
||||||
|
(Long, Double)
|
||||||
|
]]]
|
||||||
|
|
||||||
|
def topTweetsByGeoV2VersionedStore: ReadableStore[String, PopTweetsInPlace]
|
||||||
|
|
||||||
|
lazy val pushRecItemStore: ReadableStore[PushRecItemsKey, RecItems] = PushRecItemStore(
|
||||||
|
hydratedLabeledPushRecsStore
|
||||||
|
)
|
||||||
|
|
||||||
|
lazy val labeledPushRecsVerifyingStore: ReadableStore[
|
||||||
|
LabeledPushRecsVerifyingStoreKey,
|
||||||
|
LabeledPushRecsVerifyingStoreResponse
|
||||||
|
] =
|
||||||
|
LabeledPushRecsVerifyingStore(
|
||||||
|
hydratedLabeledPushRecsStore,
|
||||||
|
historyStore
|
||||||
|
)
|
||||||
|
|
||||||
|
lazy val labeledPushRecsDecideredStore: ReadableStore[LabeledPushRecsStoreKey, UserHistoryValue] =
|
||||||
|
LabeledPushRecsDecideredStore(
|
||||||
|
labeledPushRecsVerifyingStore,
|
||||||
|
useHydratedLabeledSendsForFeaturesDeciderKey,
|
||||||
|
verifyHydratedLabeledSendsForFeaturesDeciderKey
|
||||||
|
)
|
||||||
|
|
||||||
|
def onlineUserHistoryStore: ReadableStore[OnlineUserHistoryKey, UserHistoryValue]
|
||||||
|
|
||||||
|
def nsfwConsumerStore: ReadableStore[Long, NSFWUserSegmentation]
|
||||||
|
|
||||||
|
def nsfwProducerStore: ReadableStore[Long, NSFWProducer]
|
||||||
|
|
||||||
|
def popGeoLists: ReadableStore[String, NonPersonalizedRecommendedLists]
|
||||||
|
|
||||||
|
def listAPIStore: ReadableStore[Long, ApiList]
|
||||||
|
|
||||||
|
def openedPushByHourAggregatedStore: ReadableStore[Long, Map[Int, Int]]
|
||||||
|
|
||||||
|
def userHealthSignalStore: ReadableStore[Long, UserHealthSignalResponse]
|
||||||
|
|
||||||
|
def reactivatedUserInfoStore: ReadableStore[Long, String]
|
||||||
|
|
||||||
|
def weightedOpenOrNtabClickModelScorer: PushMLModelScorer
|
||||||
|
|
||||||
|
def optoutModelScorer: PushMLModelScorer
|
||||||
|
|
||||||
|
def filteringModelScorer: PushMLModelScorer
|
||||||
|
|
||||||
|
def recentFollowsStore: ReadableStore[Long, Seq[Long]]
|
||||||
|
|
||||||
|
def geoDuckV2Store: ReadableStore[UserId, LocationResponse]
|
||||||
|
|
||||||
|
def realGraphScoresTop500InStore: ReadableStore[Long, Map[Long, Double]]
|
||||||
|
|
||||||
|
def tweetEntityGraphStore: ReadableStore[
|
||||||
|
RecommendTweetEntityRequest,
|
||||||
|
RecommendTweetEntityResponse
|
||||||
|
]
|
||||||
|
|
||||||
|
def userUserGraphStore: ReadableStore[RecommendUserRequest, RecommendUserResponse]
|
||||||
|
|
||||||
|
def userFeaturesStore: ReadableStore[Long, UserFeatures]
|
||||||
|
|
||||||
|
def userTargetingPropertyStore: ReadableStore[Long, UserTargetingProperty]
|
||||||
|
|
||||||
|
def timelinesUserSessionStore: ReadableStore[Long, UserSession]
|
||||||
|
|
||||||
|
def optOutUserInterestsStore: ReadableStore[UserId, Seq[InterestId]]
|
||||||
|
|
||||||
|
def ntabCaretFeedbackStore: ReadableStore[GenericNotificationsFeedbackRequest, Seq[
|
||||||
|
CaretFeedbackDetails
|
||||||
|
]]
|
||||||
|
|
||||||
|
def genericFeedbackStore: ReadableStore[FeedbackRequest, Seq[
|
||||||
|
FeedbackPromptValue
|
||||||
|
]]
|
||||||
|
|
||||||
|
def genericNotificationFeedbackStore: GenericFeedbackStore
|
||||||
|
|
||||||
|
def semanticCoreMegadataStore: ReadableStore[
|
||||||
|
SemanticEntityForQuery,
|
||||||
|
EntityMegadata
|
||||||
|
]
|
||||||
|
|
||||||
|
def tweetHealthScoreStore: ReadableStore[TweetScoringRequest, TweetScoringResponse]
|
||||||
|
|
||||||
|
def earlybirdFeatureStore: ReadableStore[Long, ThriftSearchResultFeatures]
|
||||||
|
|
||||||
|
def earlybirdFeatureBuilder: FeatureBuilder[Long]
|
||||||
|
|
||||||
|
// Feature builders
|
||||||
|
|
||||||
|
def tweetAuthorLocationFeatureBuilder: FeatureBuilder[Location]
|
||||||
|
|
||||||
|
def tweetAuthorLocationFeatureBuilderById: FeatureBuilder[Long]
|
||||||
|
|
||||||
|
def socialContextActionsFeatureBuilder: FeatureBuilder[SocialContextActions]
|
||||||
|
|
||||||
|
def tweetContentFeatureBuilder: FeatureBuilder[Long]
|
||||||
|
|
||||||
|
def tweetAuthorRecentRealGraphFeatureBuilder: FeatureBuilder[RealGraphEdge]
|
||||||
|
|
||||||
|
def socialContextRecentRealGraphFeatureBuilder: FeatureBuilder[Set[RealGraphEdge]]
|
||||||
|
|
||||||
|
def tweetSocialProofFeatureBuilder: FeatureBuilder[TweetSocialProofKey]
|
||||||
|
|
||||||
|
def targetUserFullRealGraphFeatureBuilder: FeatureBuilder[TargetFullRealGraphFeatureKey]
|
||||||
|
|
||||||
|
def postProcessingFeatureBuilder: PostProcessingFeatureBuilder
|
||||||
|
|
||||||
|
def mrOfflineUserCandidateSparseAggregatesFeatureBuilder: FeatureBuilder[
|
||||||
|
OfflineSparseAggregateKey
|
||||||
|
]
|
||||||
|
|
||||||
|
def mrOfflineUserAggregatesFeatureBuilder: FeatureBuilder[Long]
|
||||||
|
|
||||||
|
def mrOfflineUserCandidateAggregatesFeatureBuilder: FeatureBuilder[OfflineAggregateKey]
|
||||||
|
|
||||||
|
def tweetAnnotationsFeatureBuilder: FeatureBuilder[Long]
|
||||||
|
|
||||||
|
def targetUserMediaRepresentationFeatureBuilder: FeatureBuilder[Long]
|
||||||
|
|
||||||
|
def targetLevelFeatureBuilder: FeatureBuilder[MrRequestContextForFeatureStore]
|
||||||
|
|
||||||
|
def candidateLevelFeatureBuilder: FeatureBuilder[EntityRequestContextForFeatureStore]
|
||||||
|
|
||||||
|
def targetFeatureHydrator: RelevanceTargetFeatureHydrator
|
||||||
|
|
||||||
|
def useHydratedLabeledSendsForFeaturesDeciderKey: String =
|
||||||
|
DeciderKey.useHydratedLabeledSendsForFeaturesDeciderKey.toString
|
||||||
|
|
||||||
|
def verifyHydratedLabeledSendsForFeaturesDeciderKey: String =
|
||||||
|
DeciderKey.verifyHydratedLabeledSendsForFeaturesDeciderKey.toString
|
||||||
|
|
||||||
|
def lexServiceStore: ReadableStore[EventRequest, LiveEvent]
|
||||||
|
|
||||||
|
def userMediaRepresentationStore: ReadableStore[Long, UserMediaRepresentation]
|
||||||
|
|
||||||
|
def producerMediaRepresentationStore: ReadableStore[Long, UserMediaRepresentation]
|
||||||
|
|
||||||
|
def mrUserStatePredictionStore: ReadableStore[Long, MRUserHmmState]
|
||||||
|
|
||||||
|
def pushcapDynamicPredictionStore: ReadableStore[Long, PushcapUserHistory]
|
||||||
|
|
||||||
|
def earlybirdCandidateSource: EarlybirdCandidateSource
|
||||||
|
|
||||||
|
def earlybirdSearchStore: ReadableStore[EarlybirdRequest, Seq[ThriftSearchResult]]
|
||||||
|
|
||||||
|
def earlybirdSearchDest: String
|
||||||
|
|
||||||
|
def pushserviceThriftClientId: ClientId
|
||||||
|
|
||||||
|
def simClusterToEntityStore: ReadableStore[Int, SimClustersInferredEntities]
|
||||||
|
|
||||||
|
def fanoutMetadataStore: ReadableStore[(Long, Long), FanoutEvent]
|
||||||
|
|
||||||
|
/**
|
||||||
|
* PostRanking Feature Store Client
|
||||||
|
*/
|
||||||
|
def postRankingFeatureStoreClient: DynamicFeatureStoreClient[MrRequestContextForFeatureStore]
|
||||||
|
|
||||||
|
/**
|
||||||
|
* ReadableStore to fetch [[UserInterests]] from INTS service
|
||||||
|
*/
|
||||||
|
def interestsWithLookupContextStore: ReadableStore[InterestsLookupRequestWithContext, Interests]
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* @return: [[TopicListing]] object to fetch paused topics and scope from productId
|
||||||
|
*/
|
||||||
|
def topicListing: TopicListing
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* @return: [[UttEntityHydrationStore]] object
|
||||||
|
*/
|
||||||
|
def uttEntityHydrationStore: UttEntityHydrationStore
|
||||||
|
|
||||||
|
def appPermissionStore: ReadableStore[(Long, (String, String)), AppPermission]
|
||||||
|
|
||||||
|
lazy val userTweetEntityGraphCandidates: UserTweetEntityGraphCandidates =
|
||||||
|
UserTweetEntityGraphCandidates(
|
||||||
|
cachedTweetyPieStoreV2,
|
||||||
|
tweetEntityGraphStore,
|
||||||
|
PushParams.UTEGTweetCandidateSourceParam,
|
||||||
|
PushFeatureSwitchParams.NumberOfMaxUTEGCandidatesQueriedParam,
|
||||||
|
PushParams.AllowOneSocialProofForTweetInUTEGParam,
|
||||||
|
PushParams.OutNetworkTweetsOnlyForUTEGParam,
|
||||||
|
PushFeatureSwitchParams.MaxTweetAgeParam
|
||||||
|
)(statsReceiver)
|
||||||
|
|
||||||
|
def pushSendEventBusPublisher: EventBusPublisher[NotificationScribe]
|
||||||
|
|
||||||
|
// miscs.
|
||||||
|
|
||||||
|
def isProd: Boolean
|
||||||
|
|
||||||
|
implicit def statsReceiver: StatsReceiver
|
||||||
|
|
||||||
|
def decider: Decider
|
||||||
|
|
||||||
|
def abDecider: LoggingABDecider
|
||||||
|
|
||||||
|
def casLock: CasLock
|
||||||
|
|
||||||
|
def pushIbisV2Store: PushIbis2Store
|
||||||
|
|
||||||
|
// scribe
|
||||||
|
def notificationScribe(data: NotificationScribe): Unit
|
||||||
|
|
||||||
|
def requestScribe(data: PushRequestScribe): Unit
|
||||||
|
|
||||||
|
def init(): Future[Unit] = Future.Done
|
||||||
|
|
||||||
|
def configParamsBuilder: ConfigParamsBuilder
|
||||||
|
|
||||||
|
def candidateFeatureHydrator: CandidateFeatureHydrator
|
||||||
|
|
||||||
|
def featureHydrator: MRFeatureHydrator
|
||||||
|
|
||||||
|
def candidateHydrator: PushCandidateHydrator
|
||||||
|
|
||||||
|
def sendHandlerCandidateHydrator: SendHandlerPushCandidateHydrator
|
||||||
|
|
||||||
|
lazy val overridesConfig: configapi.Config = {
|
||||||
|
val pushFeatureSwitchConfigs: configapi.Config = PushFeatureSwitches(
|
||||||
|
deciderGateBuilder = new DeciderGateBuilder(decider),
|
||||||
|
statsReceiver = statsReceiver
|
||||||
|
).config
|
||||||
|
|
||||||
|
new CompositeConfig(Seq(pushFeatureSwitchConfigs))
|
||||||
|
}
|
||||||
|
|
||||||
|
def realTimeClientEventStore: RealTimeClientEventStore
|
||||||
|
|
||||||
|
def inlineActionHistoryStore: ReadableStore[Long, Seq[(Long, String)]]
|
||||||
|
|
||||||
|
def softUserGeoLocationStore: ReadableStore[Long, GeoLocation]
|
||||||
|
|
||||||
|
def tweetTranslationStore: ReadableStore[TweetTranslationStore.Key, TweetTranslationStore.Value]
|
||||||
|
|
||||||
|
def tripTweetCandidateStore: ReadableStore[TripDomain, TripTweets]
|
||||||
|
|
||||||
|
def softUserFollowingStore: ReadableStore[User, Seq[Long]]
|
||||||
|
|
||||||
|
def superFollowEligibilityUserStore: ReadableStore[Long, Boolean]
|
||||||
|
|
||||||
|
def superFollowCreatorTweetCountStore: ReadableStore[StratoUserId, Int]
|
||||||
|
|
||||||
|
def hasSuperFollowingRelationshipStore: ReadableStore[
|
||||||
|
HasSuperFollowingRelationshipRequest,
|
||||||
|
Boolean
|
||||||
|
]
|
||||||
|
|
||||||
|
def superFollowApplicationStatusStore: ReadableStore[(Long, SellerTrack), SellerApplicationState]
|
||||||
|
|
||||||
|
def recentHistoryCacheClient: RecentHistoryCacheClient
|
||||||
|
|
||||||
|
def openAppUserStore: ReadableStore[Long, Boolean]
|
||||||
|
|
||||||
|
def loggedOutHistoryStore: PushServiceHistoryStore
|
||||||
|
|
||||||
|
def idsStore: ReadableStore[RecommendedListsRequest, RecommendedListsResponse]
|
||||||
|
|
||||||
|
def htlScoreStore(userId: Long): ReadableStore[Long, ScoredTweet]
|
||||||
|
}
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,16 @@
|
|||||||
|
package com.twitter.frigate.pushservice.config
|
||||||
|
|
||||||
|
import com.twitter.frigate.common.util.Experiments
|
||||||
|
|
||||||
|
object ExperimentsWithStats {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add an experiment here to collect detailed pushservice stats.
|
||||||
|
*
|
||||||
|
* ! Important !
|
||||||
|
* Keep this set small and remove experiments when you don't need the stats anymore.
|
||||||
|
*/
|
||||||
|
final val PushExperiments: Set[String] = Set(
|
||||||
|
Experiments.MRAndroidInlineActionHoldback.exptName,
|
||||||
|
)
|
||||||
|
}
|
@ -0,0 +1,230 @@
|
|||||||
|
package com.twitter.frigate.pushservice.config
|
||||||
|
|
||||||
|
import com.twitter.abdecider.LoggingABDecider
|
||||||
|
import com.twitter.bijection.scrooge.BinaryScalaCodec
|
||||||
|
import com.twitter.bijection.Base64String
|
||||||
|
import com.twitter.bijection.Injection
|
||||||
|
import com.twitter.conversions.DurationOps._
|
||||||
|
import com.twitter.decider.Decider
|
||||||
|
import com.twitter.featureswitches.v2.FeatureSwitches
|
||||||
|
import com.twitter.finagle.mtls.authentication.ServiceIdentifier
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.finagle.thrift.ClientId
|
||||||
|
import com.twitter.finagle.thrift.RichClientParam
|
||||||
|
import com.twitter.finagle.util.DefaultTimer
|
||||||
|
import com.twitter.frigate.common.config.RateLimiterGenerator
|
||||||
|
import com.twitter.frigate.common.filter.DynamicRequestMeterFilter
|
||||||
|
import com.twitter.frigate.common.history.ManhattanHistoryStore
|
||||||
|
import com.twitter.frigate.common.history.InvalidatingAfterWritesPushServiceHistoryStore
|
||||||
|
import com.twitter.frigate.common.history.ManhattanKVHistoryStore
|
||||||
|
import com.twitter.frigate.common.history.PushServiceHistoryStore
|
||||||
|
import com.twitter.frigate.common.history.SimplePushServiceHistoryStore
|
||||||
|
import com.twitter.frigate.common.util._
|
||||||
|
import com.twitter.frigate.data_pipeline.features_common.FeatureStoreUtil
|
||||||
|
import com.twitter.frigate.data_pipeline.features_common.TargetLevelFeaturesConfig
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.DeciderKey
|
||||||
|
import com.twitter.frigate.pushservice.params.PushQPSLimitConstants
|
||||||
|
import com.twitter.frigate.pushservice.params.PushServiceTunableKeys
|
||||||
|
import com.twitter.frigate.pushservice.params.ShardParams
|
||||||
|
import com.twitter.frigate.pushservice.store.PushIbis2Store
|
||||||
|
import com.twitter.frigate.pushservice.thriftscala.PushRequestScribe
|
||||||
|
import com.twitter.frigate.scribe.thriftscala.NotificationScribe
|
||||||
|
import com.twitter.ibis2.service.thriftscala.Ibis2Service
|
||||||
|
import com.twitter.logging.Logger
|
||||||
|
import com.twitter.notificationservice.api.thriftscala.DeleteCurrentTimelineForUserRequest
|
||||||
|
import com.twitter.notificationservice.api.thriftscala.NotificationApi
|
||||||
|
import com.twitter.notificationservice.api.thriftscala.NotificationApi$FinagleClient
|
||||||
|
import com.twitter.notificationservice.thriftscala.CreateGenericNotificationRequest
|
||||||
|
import com.twitter.notificationservice.thriftscala.CreateGenericNotificationResponse
|
||||||
|
import com.twitter.notificationservice.thriftscala.DeleteGenericNotificationRequest
|
||||||
|
import com.twitter.notificationservice.thriftscala.NotificationService
|
||||||
|
import com.twitter.notificationservice.thriftscala.NotificationService$FinagleClient
|
||||||
|
import com.twitter.servo.decider.DeciderGateBuilder
|
||||||
|
import com.twitter.util.tunable.TunableMap
|
||||||
|
import com.twitter.util.Future
|
||||||
|
import com.twitter.util.Timer
|
||||||
|
|
||||||
|
case class ProdConfig(
|
||||||
|
override val isServiceLocal: Boolean,
|
||||||
|
override val localConfigRepoPath: String,
|
||||||
|
override val inMemCacheOff: Boolean,
|
||||||
|
override val decider: Decider,
|
||||||
|
override val abDecider: LoggingABDecider,
|
||||||
|
override val featureSwitches: FeatureSwitches,
|
||||||
|
override val shardParams: ShardParams,
|
||||||
|
override val serviceIdentifier: ServiceIdentifier,
|
||||||
|
override val tunableMap: TunableMap,
|
||||||
|
)(
|
||||||
|
implicit val statsReceiver: StatsReceiver)
|
||||||
|
extends {
|
||||||
|
// Due to trait initialization logic in Scala, any abstract members declared in Config or
|
||||||
|
// DeployConfig should be declared in this block. Otherwise the abstract member might initialize to
|
||||||
|
// null if invoked before object creation finishing.
|
||||||
|
|
||||||
|
val log = Logger("ProdConfig")
|
||||||
|
|
||||||
|
// Deciders
|
||||||
|
val isPushserviceCanaryDeepbirdv2CanaryClusterEnabled = decider
|
||||||
|
.feature(DeciderKey.enablePushserviceDeepbirdv2CanaryClusterDeciderKey.toString).isAvailable
|
||||||
|
|
||||||
|
// Client ids
|
||||||
|
val notifierThriftClientId = ClientId("frigate-notifier.prod")
|
||||||
|
val loggedOutNotifierThriftClientId = ClientId("frigate-logged-out-notifier.prod")
|
||||||
|
val pushserviceThriftClientId: ClientId = ClientId("frigate-pushservice.prod")
|
||||||
|
|
||||||
|
// Dests
|
||||||
|
val frigateHistoryCacheDest = "/s/cache/frigate_history"
|
||||||
|
val memcacheCASDest = "/s/cache/magic_recs_cas:twemcaches"
|
||||||
|
val historyStoreMemcacheDest =
|
||||||
|
"/srv#/prod/local/cache/magic_recs_history:twemcaches"
|
||||||
|
|
||||||
|
val deepbirdv2PredictionServiceDest =
|
||||||
|
if (serviceIdentifier.service.equals("frigate-pushservice-canary") &&
|
||||||
|
isPushserviceCanaryDeepbirdv2CanaryClusterEnabled)
|
||||||
|
"/s/frigate/deepbirdv2-magicrecs-canary"
|
||||||
|
else "/s/frigate/deepbirdv2-magicrecs"
|
||||||
|
|
||||||
|
override val fanoutMetadataColumn = "frigate/magicfanout/prod/mh/fanoutMetadata"
|
||||||
|
|
||||||
|
override val timer: Timer = DefaultTimer
|
||||||
|
override val featureStoreUtil = FeatureStoreUtil.withParams(Some(serviceIdentifier))
|
||||||
|
override val targetLevelFeaturesConfig = TargetLevelFeaturesConfig()
|
||||||
|
val pushServiceMHCacheDest = "/s/cache/pushservice_mh"
|
||||||
|
|
||||||
|
val pushServiceCoreSvcsCacheDest = "/srv#/prod/local/cache/pushservice_core_svcs"
|
||||||
|
|
||||||
|
val userTweetEntityGraphDest = "/s/cassowary/user_tweet_entity_graph"
|
||||||
|
val userUserGraphDest = "/s/cassowary/user_user_graph"
|
||||||
|
val lexServiceDest = "/s/live-video/timeline-thrift"
|
||||||
|
val entityGraphCacheDest = "/s/cache/pushservice_entity_graph"
|
||||||
|
|
||||||
|
override val pushIbisV2Store = {
|
||||||
|
val service = Finagle.readOnlyThriftService(
|
||||||
|
"ibis-v2-service",
|
||||||
|
"/s/ibis2/ibis2",
|
||||||
|
statsReceiver,
|
||||||
|
notifierThriftClientId,
|
||||||
|
requestTimeout = 3.seconds,
|
||||||
|
tries = 3,
|
||||||
|
mTLSServiceIdentifier = Some(serviceIdentifier)
|
||||||
|
)
|
||||||
|
|
||||||
|
// according to ibis team, it is safe to retry on timeout, write & channel closed exceptions.
|
||||||
|
val pushIbisClient = new Ibis2Service.FinagledClient(
|
||||||
|
new DynamicRequestMeterFilter(
|
||||||
|
tunableMap(PushServiceTunableKeys.IbisQpsLimitTunableKey),
|
||||||
|
RateLimiterGenerator.asTuple(_, shardParams.numShards, 20),
|
||||||
|
PushQPSLimitConstants.IbisOrNTabQPSForRFPH
|
||||||
|
)(timer).andThen(service),
|
||||||
|
RichClientParam(serviceName = "ibis-v2-service")
|
||||||
|
)
|
||||||
|
|
||||||
|
PushIbis2Store(pushIbisClient)
|
||||||
|
}
|
||||||
|
|
||||||
|
val notificationServiceClient: NotificationService$FinagleClient = {
|
||||||
|
val service = Finagle.readWriteThriftService(
|
||||||
|
"notificationservice",
|
||||||
|
"/s/notificationservice/notificationservice",
|
||||||
|
statsReceiver,
|
||||||
|
pushserviceThriftClientId,
|
||||||
|
requestTimeout = 10.seconds,
|
||||||
|
mTLSServiceIdentifier = Some(serviceIdentifier)
|
||||||
|
)
|
||||||
|
|
||||||
|
new NotificationService.FinagledClient(
|
||||||
|
new DynamicRequestMeterFilter(
|
||||||
|
tunableMap(PushServiceTunableKeys.NtabQpsLimitTunableKey),
|
||||||
|
RateLimiterGenerator.asTuple(_, shardParams.numShards, 20),
|
||||||
|
PushQPSLimitConstants.IbisOrNTabQPSForRFPH)(timer).andThen(service),
|
||||||
|
RichClientParam(serviceName = "notificationservice")
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
val notificationServiceApiClient: NotificationApi$FinagleClient = {
|
||||||
|
val service = Finagle.readWriteThriftService(
|
||||||
|
"notificationservice-api",
|
||||||
|
"/s/notificationservice/notificationservice-api:thrift",
|
||||||
|
statsReceiver,
|
||||||
|
pushserviceThriftClientId,
|
||||||
|
requestTimeout = 10.seconds,
|
||||||
|
mTLSServiceIdentifier = Some(serviceIdentifier)
|
||||||
|
)
|
||||||
|
|
||||||
|
new NotificationApi.FinagledClient(
|
||||||
|
new DynamicRequestMeterFilter(
|
||||||
|
tunableMap(PushServiceTunableKeys.NtabQpsLimitTunableKey),
|
||||||
|
RateLimiterGenerator.asTuple(_, shardParams.numShards, 20),
|
||||||
|
PushQPSLimitConstants.IbisOrNTabQPSForRFPH)(timer).andThen(service),
|
||||||
|
RichClientParam(serviceName = "notificationservice-api")
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
val mrRequestScriberNode = "mr_request_scribe"
|
||||||
|
val loggedOutMrRequestScriberNode = "lo_mr_request_scribe"
|
||||||
|
|
||||||
|
override val pushSendEventStreamName = "frigate_pushservice_send_event_prod"
|
||||||
|
} with DeployConfig {
|
||||||
|
// Scribe
|
||||||
|
private val notificationScribeLog = Logger("notification_scribe")
|
||||||
|
private val notificationScribeInjection: Injection[NotificationScribe, String] = BinaryScalaCodec(
|
||||||
|
NotificationScribe
|
||||||
|
) andThen Injection.connect[Array[Byte], Base64String, String]
|
||||||
|
|
||||||
|
override def notificationScribe(data: NotificationScribe): Unit = {
|
||||||
|
val logEntry: String = notificationScribeInjection(data)
|
||||||
|
notificationScribeLog.info(logEntry)
|
||||||
|
}
|
||||||
|
|
||||||
|
// History Store - Invalidates cached history after writes
|
||||||
|
override val historyStore = new InvalidatingAfterWritesPushServiceHistoryStore(
|
||||||
|
ManhattanHistoryStore(notificationHistoryStore, statsReceiver),
|
||||||
|
recentHistoryCacheClient,
|
||||||
|
new DeciderGateBuilder(decider)
|
||||||
|
.idGate(DeciderKey.enableInvalidatingCachedHistoryStoreAfterWrites)
|
||||||
|
)
|
||||||
|
|
||||||
|
override val emailHistoryStore: PushServiceHistoryStore = {
|
||||||
|
statsReceiver.scope("frigate_email_history").counter("request").incr()
|
||||||
|
new SimplePushServiceHistoryStore(emailNotificationHistoryStore)
|
||||||
|
}
|
||||||
|
|
||||||
|
override val loggedOutHistoryStore =
|
||||||
|
new InvalidatingAfterWritesPushServiceHistoryStore(
|
||||||
|
ManhattanKVHistoryStore(
|
||||||
|
manhattanKVLoggedOutHistoryStoreEndpoint,
|
||||||
|
"frigate_notification_logged_out_history"),
|
||||||
|
recentHistoryCacheClient,
|
||||||
|
new DeciderGateBuilder(decider)
|
||||||
|
.idGate(DeciderKey.enableInvalidatingCachedLoggedOutHistoryStoreAfterWrites)
|
||||||
|
)
|
||||||
|
|
||||||
|
private val requestScribeLog = Logger("request_scribe")
|
||||||
|
private val requestScribeInjection: Injection[PushRequestScribe, String] = BinaryScalaCodec(
|
||||||
|
PushRequestScribe
|
||||||
|
) andThen Injection.connect[Array[Byte], Base64String, String]
|
||||||
|
|
||||||
|
override def requestScribe(data: PushRequestScribe): Unit = {
|
||||||
|
val logEntry: String = requestScribeInjection(data)
|
||||||
|
requestScribeLog.info(logEntry)
|
||||||
|
}
|
||||||
|
|
||||||
|
// generic notification server
|
||||||
|
override def notificationServiceSend(
|
||||||
|
target: Target,
|
||||||
|
request: CreateGenericNotificationRequest
|
||||||
|
): Future[CreateGenericNotificationResponse] =
|
||||||
|
notificationServiceClient.createGenericNotification(request)
|
||||||
|
|
||||||
|
// generic notification server
|
||||||
|
override def notificationServiceDelete(
|
||||||
|
request: DeleteGenericNotificationRequest
|
||||||
|
): Future[Unit] = notificationServiceClient.deleteGenericNotification(request)
|
||||||
|
|
||||||
|
// NTab-api
|
||||||
|
override def notificationServiceDeleteTimeline(
|
||||||
|
request: DeleteCurrentTimelineForUserRequest
|
||||||
|
): Future[Unit] = notificationServiceApiClient.deleteCurrentTimelineForUser(request)
|
||||||
|
|
||||||
|
}
|
@ -0,0 +1,193 @@
|
|||||||
|
package com.twitter.frigate.pushservice.config
|
||||||
|
|
||||||
|
import com.twitter.abdecider.LoggingABDecider
|
||||||
|
import com.twitter.conversions.DurationOps._
|
||||||
|
import com.twitter.decider.Decider
|
||||||
|
import com.twitter.featureswitches.v2.FeatureSwitches
|
||||||
|
import com.twitter.finagle.mtls.authentication.ServiceIdentifier
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.finagle.thrift.ClientId
|
||||||
|
import com.twitter.finagle.thrift.RichClientParam
|
||||||
|
import com.twitter.finagle.util.DefaultTimer
|
||||||
|
import com.twitter.frigate.common.config.RateLimiterGenerator
|
||||||
|
import com.twitter.frigate.common.filter.DynamicRequestMeterFilter
|
||||||
|
import com.twitter.frigate.common.history.InvalidatingAfterWritesPushServiceHistoryStore
|
||||||
|
import com.twitter.frigate.common.history.ManhattanHistoryStore
|
||||||
|
import com.twitter.frigate.common.history.ManhattanKVHistoryStore
|
||||||
|
import com.twitter.frigate.common.history.ReadOnlyHistoryStore
|
||||||
|
import com.twitter.frigate.common.history.PushServiceHistoryStore
|
||||||
|
import com.twitter.frigate.common.history.SimplePushServiceHistoryStore
|
||||||
|
import com.twitter.frigate.common.util.Finagle
|
||||||
|
import com.twitter.frigate.data_pipeline.features_common.FeatureStoreUtil
|
||||||
|
import com.twitter.frigate.data_pipeline.features_common.TargetLevelFeaturesConfig
|
||||||
|
import com.twitter.frigate.pushservice.model.PushTypes.Target
|
||||||
|
import com.twitter.frigate.pushservice.params.DeciderKey
|
||||||
|
import com.twitter.frigate.pushservice.params.PushQPSLimitConstants
|
||||||
|
import com.twitter.frigate.pushservice.params.PushServiceTunableKeys
|
||||||
|
import com.twitter.frigate.pushservice.params.ShardParams
|
||||||
|
import com.twitter.frigate.pushservice.store._
|
||||||
|
import com.twitter.frigate.pushservice.thriftscala.PushRequestScribe
|
||||||
|
import com.twitter.frigate.scribe.thriftscala.NotificationScribe
|
||||||
|
import com.twitter.ibis2.service.thriftscala.Ibis2Service
|
||||||
|
import com.twitter.logging.Logger
|
||||||
|
import com.twitter.notificationservice.api.thriftscala.DeleteCurrentTimelineForUserRequest
|
||||||
|
import com.twitter.notificationservice.thriftscala.CreateGenericNotificationRequest
|
||||||
|
import com.twitter.notificationservice.thriftscala.CreateGenericNotificationResponse
|
||||||
|
import com.twitter.notificationservice.thriftscala.CreateGenericNotificationResponseType
|
||||||
|
import com.twitter.notificationservice.thriftscala.DeleteGenericNotificationRequest
|
||||||
|
import com.twitter.notificationservice.thriftscala.NotificationService
|
||||||
|
import com.twitter.notificationservice.thriftscala.NotificationService$FinagleClient
|
||||||
|
import com.twitter.servo.decider.DeciderGateBuilder
|
||||||
|
import com.twitter.util.tunable.TunableMap
|
||||||
|
import com.twitter.util.Future
|
||||||
|
import com.twitter.util.Timer
|
||||||
|
|
||||||
|
case class StagingConfig(
|
||||||
|
override val isServiceLocal: Boolean,
|
||||||
|
override val localConfigRepoPath: String,
|
||||||
|
override val inMemCacheOff: Boolean,
|
||||||
|
override val decider: Decider,
|
||||||
|
override val abDecider: LoggingABDecider,
|
||||||
|
override val featureSwitches: FeatureSwitches,
|
||||||
|
override val shardParams: ShardParams,
|
||||||
|
override val serviceIdentifier: ServiceIdentifier,
|
||||||
|
override val tunableMap: TunableMap,
|
||||||
|
)(
|
||||||
|
implicit val statsReceiver: StatsReceiver)
|
||||||
|
extends {
|
||||||
|
// Due to trait initialization logic in Scala, any abstract members declared in Config or
|
||||||
|
// DeployConfig should be declared in this block. Otherwise the abstract member might initialize to
|
||||||
|
// null if invoked before object creation finishing.
|
||||||
|
|
||||||
|
val log = Logger("StagingConfig")
|
||||||
|
|
||||||
|
// Client ids
|
||||||
|
val notifierThriftClientId = ClientId("frigate-notifier.dev")
|
||||||
|
val loggedOutNotifierThriftClientId = ClientId("frigate-logged-out-notifier.dev")
|
||||||
|
val pushserviceThriftClientId: ClientId = ClientId("frigate-pushservice.staging")
|
||||||
|
|
||||||
|
override val fanoutMetadataColumn = "frigate/magicfanout/staging/mh/fanoutMetadata"
|
||||||
|
|
||||||
|
// dest
|
||||||
|
val frigateHistoryCacheDest = "/srv#/test/local/cache/twemcache_frigate_history"
|
||||||
|
val memcacheCASDest = "/srv#/test/local/cache/twemcache_magic_recs_cas_dev:twemcaches"
|
||||||
|
val pushServiceMHCacheDest = "/srv#/test/local/cache/twemcache_pushservice_test"
|
||||||
|
val entityGraphCacheDest = "/srv#/test/local/cache/twemcache_pushservice_test"
|
||||||
|
val pushServiceCoreSvcsCacheDest = "/srv#/test/local/cache/twemcache_pushservice_core_svcs_test"
|
||||||
|
val historyStoreMemcacheDest = "/srv#/test/local/cache/twemcache_eventstream_test:twemcaches"
|
||||||
|
val userTweetEntityGraphDest = "/cluster/local/cassowary/staging/user_tweet_entity_graph"
|
||||||
|
val userUserGraphDest = "/cluster/local/cassowary/staging/user_user_graph"
|
||||||
|
val lexServiceDest = "/srv#/staging/local/live-video/timeline-thrift"
|
||||||
|
val deepbirdv2PredictionServiceDest = "/cluster/local/frigate/staging/deepbirdv2-magicrecs"
|
||||||
|
|
||||||
|
override val featureStoreUtil = FeatureStoreUtil.withParams(Some(serviceIdentifier))
|
||||||
|
override val targetLevelFeaturesConfig = TargetLevelFeaturesConfig()
|
||||||
|
val mrRequestScriberNode = "validation_mr_request_scribe"
|
||||||
|
val loggedOutMrRequestScriberNode = "lo_mr_request_scribe"
|
||||||
|
|
||||||
|
override val timer: Timer = DefaultTimer
|
||||||
|
|
||||||
|
override val pushSendEventStreamName = "frigate_pushservice_send_event_staging"
|
||||||
|
|
||||||
|
override val pushIbisV2Store = {
|
||||||
|
val service = Finagle.readWriteThriftService(
|
||||||
|
"ibis-v2-service",
|
||||||
|
"/s/ibis2/ibis2",
|
||||||
|
statsReceiver,
|
||||||
|
notifierThriftClientId,
|
||||||
|
requestTimeout = 6.seconds,
|
||||||
|
mTLSServiceIdentifier = Some(serviceIdentifier)
|
||||||
|
)
|
||||||
|
|
||||||
|
val pushIbisClient = new Ibis2Service.FinagledClient(
|
||||||
|
new DynamicRequestMeterFilter(
|
||||||
|
tunableMap(PushServiceTunableKeys.IbisQpsLimitTunableKey),
|
||||||
|
RateLimiterGenerator.asTuple(_, shardParams.numShards, 20),
|
||||||
|
PushQPSLimitConstants.IbisOrNTabQPSForRFPH
|
||||||
|
)(timer).andThen(service),
|
||||||
|
RichClientParam(serviceName = "ibis-v2-service")
|
||||||
|
)
|
||||||
|
|
||||||
|
StagingIbis2Store(PushIbis2Store(pushIbisClient))
|
||||||
|
}
|
||||||
|
|
||||||
|
val notificationServiceClient: NotificationService$FinagleClient = {
|
||||||
|
val service = Finagle.readWriteThriftService(
|
||||||
|
"notificationservice",
|
||||||
|
"/s/notificationservice/notificationservice",
|
||||||
|
statsReceiver,
|
||||||
|
pushserviceThriftClientId,
|
||||||
|
requestTimeout = 10.seconds,
|
||||||
|
mTLSServiceIdentifier = Some(serviceIdentifier)
|
||||||
|
)
|
||||||
|
|
||||||
|
new NotificationService.FinagledClient(
|
||||||
|
new DynamicRequestMeterFilter(
|
||||||
|
tunableMap(PushServiceTunableKeys.NtabQpsLimitTunableKey),
|
||||||
|
RateLimiterGenerator.asTuple(_, shardParams.numShards, 20),
|
||||||
|
PushQPSLimitConstants.IbisOrNTabQPSForRFPH)(timer).andThen(service),
|
||||||
|
RichClientParam(serviceName = "notificationservice")
|
||||||
|
)
|
||||||
|
}
|
||||||
|
} with DeployConfig {
|
||||||
|
|
||||||
|
// Scribe
|
||||||
|
private val notificationScribeLog = Logger("StagingNotificationScribe")
|
||||||
|
|
||||||
|
override def notificationScribe(data: NotificationScribe): Unit = {
|
||||||
|
notificationScribeLog.info(data.toString)
|
||||||
|
}
|
||||||
|
private val requestScribeLog = Logger("StagingRequestScribe")
|
||||||
|
|
||||||
|
override def requestScribe(data: PushRequestScribe): Unit = {
|
||||||
|
requestScribeLog.info(data.toString)
|
||||||
|
}
|
||||||
|
|
||||||
|
// history store
|
||||||
|
override val historyStore = new InvalidatingAfterWritesPushServiceHistoryStore(
|
||||||
|
ReadOnlyHistoryStore(
|
||||||
|
ManhattanHistoryStore(notificationHistoryStore, statsReceiver)
|
||||||
|
),
|
||||||
|
recentHistoryCacheClient,
|
||||||
|
new DeciderGateBuilder(decider)
|
||||||
|
.idGate(DeciderKey.enableInvalidatingCachedHistoryStoreAfterWrites)
|
||||||
|
)
|
||||||
|
|
||||||
|
override val emailHistoryStore: PushServiceHistoryStore = new SimplePushServiceHistoryStore(
|
||||||
|
emailNotificationHistoryStore)
|
||||||
|
|
||||||
|
// history store
|
||||||
|
override val loggedOutHistoryStore =
|
||||||
|
new InvalidatingAfterWritesPushServiceHistoryStore(
|
||||||
|
ReadOnlyHistoryStore(
|
||||||
|
ManhattanKVHistoryStore(
|
||||||
|
manhattanKVLoggedOutHistoryStoreEndpoint,
|
||||||
|
"frigate_notification_logged_out_history")),
|
||||||
|
recentHistoryCacheClient,
|
||||||
|
new DeciderGateBuilder(decider)
|
||||||
|
.idGate(DeciderKey.enableInvalidatingCachedLoggedOutHistoryStoreAfterWrites)
|
||||||
|
)
|
||||||
|
|
||||||
|
override def notificationServiceSend(
|
||||||
|
target: Target,
|
||||||
|
request: CreateGenericNotificationRequest
|
||||||
|
): Future[CreateGenericNotificationResponse] =
|
||||||
|
target.isTeamMember.flatMap { isTeamMember =>
|
||||||
|
if (isTeamMember) {
|
||||||
|
notificationServiceClient.createGenericNotification(request)
|
||||||
|
} else {
|
||||||
|
log.info(s"Mock creating generic notification $request for user: ${target.targetId}")
|
||||||
|
Future.value(
|
||||||
|
CreateGenericNotificationResponse(CreateGenericNotificationResponseType.Success)
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override def notificationServiceDelete(
|
||||||
|
request: DeleteGenericNotificationRequest
|
||||||
|
): Future[Unit] = Future.Unit
|
||||||
|
|
||||||
|
override def notificationServiceDeleteTimeline(
|
||||||
|
request: DeleteCurrentTimelineForUserRequest
|
||||||
|
): Future[Unit] = Future.Unit
|
||||||
|
}
|
@ -0,0 +1,23 @@
|
|||||||
|
package com.twitter.frigate.pushservice.config.mlconfig
|
||||||
|
|
||||||
|
import com.twitter.cortex.deepbird.thriftjava.DeepbirdPredictionService
|
||||||
|
import com.twitter.finagle.stats.StatsReceiver
|
||||||
|
import com.twitter.frigate.common.ml.prediction.DeepbirdPredictionEngineServiceStore
|
||||||
|
import com.twitter.nrel.heavyranker.PushDBv2PredictionServiceStore
|
||||||
|
|
||||||
|
object DeepbirdV2ModelConfig {
|
||||||
|
def buildPredictionServiceScoreStore(
|
||||||
|
predictionServiceClient: DeepbirdPredictionService.ServiceToClient,
|
||||||
|
serviceName: String
|
||||||
|
)(
|
||||||
|
implicit statsReceiver: StatsReceiver
|
||||||
|
): PushDBv2PredictionServiceStore = {
|
||||||
|
|
||||||
|
val stats = statsReceiver.scope(serviceName)
|
||||||
|
val serviceStats = statsReceiver.scope("dbv2PredictionServiceStore")
|
||||||
|
|
||||||
|
new PushDBv2PredictionServiceStore(
|
||||||
|
DeepbirdPredictionEngineServiceStore(predictionServiceClient, batchSize = Some(32))(stats)
|
||||||
|
)(serviceStats)
|
||||||
|
}
|
||||||
|
}
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user