2022 lines
57 KiB
C
Raw Normal View History

2007-08-10 20:34:06 +00:00
/*
**
** File: fm.c -- software implementation of Yamaha FM sound generator
**
** Copyright (C) 2001, 2002, 2003 Jarek Burczynski (bujar at mame dot net)
** Copyright (C) 1998 Tatsuyuki Satoh , MultiArcadeMachineEmulator development
**
** Version 1.4 (final beta)
**
*/
/*
** History:
**
2008-08-07 12:26:07 +00:00
** 2006-2008 Eke-Eke (Gamecube/Wii genesis plus port):
** - added DAC filtering
** - fixed internal FM timer emulation
** - removed unused multichip support and YMxxx support
** - fixed CH3 CSM mode (credits to Nemesis)
** - implemented PG overflow, aka "detune bug" (Ariel, Comix Zone, Shaq Fu, Spiderman,...), credits to Nemesis
** - implemented sample interpolation, highly based on GENS code (HQ YM2612)
** - fixed SSG-EG support, credits to Nemesis and additional fixes from Alone Coder
** - modified EG rates and frequency, tested by Nemesis on real hardware
** - fixed EG attenuation level on KEY ON (Ecco 2 splash sound)
** - fixed LFO phase update for CH3 special mode (Warlock, Alladin), thanks to AamirM
**
2007-08-10 20:34:06 +00:00
** 03-08-2003 Jarek Burczynski:
** - fixed YM2608 initial values (after the reset)
** - fixed flag and irqmask handling (YM2608)
** - fixed BUFRDY flag handling (YM2608)
**
** 14-06-2003 Jarek Burczynski:
** - implemented all of the YM2608 status register flags
** - implemented support for external memory read/write via YM2608
** - implemented support for deltat memory limit register in YM2608 emulation
**
** 22-05-2003 Jarek Burczynski:
** - fixed LFO PM calculations (copy&paste bugfix)
**
** 08-05-2003 Jarek Burczynski:
** - fixed SSG support
**
** 22-04-2003 Jarek Burczynski:
** - implemented 100% correct LFO generator (verified on real YM2610 and YM2608)
**
** 15-04-2003 Jarek Burczynski:
** - added support for YM2608's register 0x110 - status mask
**
** 01-12-2002 Jarek Burczynski:
** - fixed register addressing in YM2608, YM2610, YM2610B chips. (verified on real YM2608)
** The addressing patch used for early Neo-Geo games can be removed now.
**
** 26-11-2002 Jarek Burczynski, Nicola Salmoria:
** - recreated YM2608 ADPCM ROM using data from real YM2608's output which leads to:
** - added emulation of YM2608 drums.
** - output of YM2608 is two times lower now - same as YM2610 (verified on real YM2608)
**
** 16-08-2002 Jarek Burczynski:
** - binary exact Envelope Generator (verified on real YM2203);
** identical to YM2151
** - corrected 'off by one' error in feedback calculations (when feedback is off)
** - corrected connection (algorithm) calculation (verified on real YM2203 and YM2610)
**
** 18-12-2001 Jarek Burczynski:
** - added SSG-EG support (verified on real YM2203)
**
** 12-08-2001 Jarek Burczynski:
** - corrected sin_tab and tl_tab data (verified on real chip)
** - corrected feedback calculations (verified on real chip)
** - corrected phase generator calculations (verified on real chip)
** - corrected envelope generator calculations (verified on real chip)
** - corrected FM volume level (YM2610 and YM2610B).
** - changed YMxxxUpdateOne() functions (YM2203, YM2608, YM2610, YM2610B, YM2612) :
** this was needed to calculate YM2610 FM channels output correctly.
** (Each FM channel is calculated as in other chips, but the output of the channel
** gets shifted right by one *before* sending to accumulator. That was impossible to do
** with previous implementation).
**
** 23-07-2001 Jarek Burczynski, Nicola Salmoria:
** - corrected YM2610 ADPCM type A algorithm and tables (verified on real chip)
**
** 11-06-2001 Jarek Burczynski:
** - corrected end of sample bug in ADPCMA_calc_cha().
** Real YM2610 checks for equality between current and end addresses (only 20 LSB bits).
**
** 08-12-98 hiro-shi:
** rename ADPCMA -> ADPCMB, ADPCMB -> ADPCMA
** move ROM limit check.(CALC_CH? -> 2610Write1/2)
** test program (ADPCMB_TEST)
** move ADPCM A/B end check.
** ADPCMB repeat flag(no check)
** change ADPCM volume rate (8->16) (32->48).
**
** 09-12-98 hiro-shi:
** change ADPCM volume. (8->16, 48->64)
** replace ym2610 ch0/3 (YM-2610B)
** change ADPCM_SHIFT (10->8) missing bank change 0x4000-0xffff.
** add ADPCM_SHIFT_MASK
** change ADPCMA_DECODE_MIN/MAX.
*/
/************************************************************************/
/* comment of hiro-shi(Hiromitsu Shioya) */
/* YM2610(B) = OPN-B */
/* YM2610 : PSG:3ch FM:4ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */
/* YM2610B : PSG:3ch FM:6ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */
/************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <math.h>
2008-08-07 12:26:07 +00:00
#include "shared.h"
2007-08-10 20:34:06 +00:00
/* globals */
#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
#define EG_SH 16 /* 16.16 fixed point (envelope generator timing) */
#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */
#define FREQ_MASK ((1<<FREQ_SH)-1)
#define ENV_BITS 10
#define ENV_LEN (1<<ENV_BITS)
#define ENV_STEP (128.0/ENV_LEN)
#define MAX_ATT_INDEX (ENV_LEN-1) /* 1023 */
#define MIN_ATT_INDEX (0) /* 0 */
#define EG_ATT 4
#define EG_DEC 3
#define EG_SUS 2
#define EG_REL 1
#define EG_OFF 0
#define SIN_BITS 10
#define SIN_LEN (1<<SIN_BITS)
#define SIN_MASK (SIN_LEN-1)
#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
2008-08-07 12:26:07 +00:00
#define MAXOUT (+16383)
#define MINOUT (-16384)
2007-08-10 20:34:06 +00:00
/* TL_TAB_LEN is calculated as:
* 13 - sinus amplitude bits (Y axis)
* 2 - sinus sign bit (Y axis)
* TL_RES_LEN - sinus resolution (X axis)
*/
#define TL_TAB_LEN (13*2*TL_RES_LEN)
static signed int tl_tab[TL_TAB_LEN];
#define ENV_QUIET (TL_TAB_LEN>>3)
/* sin waveform table in 'decibel' scale */
static unsigned int sin_tab[SIN_LEN];
/* sustain level table (3dB per step) */
/* bit0, bit1, bit2, bit3, bit4, bit5, bit6 */
/* 1, 2, 4, 8, 16, 32, 64 (value)*/
/* 0.75, 1.5, 3, 6, 12, 24, 48 (dB)*/
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
#define SC(db) (UINT32) ( db * (4.0/ENV_STEP) )
static const UINT32 sl_table[16]={
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
};
#undef SC
#define RATE_STEPS (8)
static const UINT8 eg_inc[19*RATE_STEPS]={
/*cycle:0 1 2 3 4 5 6 7*/
/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..11 0 (increment by 0 or 1) */
/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..11 1 */
/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..11 2 */
/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..11 3 */
/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 12 0 (increment by 1) */
/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 12 1 */
/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 12 2 */
/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 12 3 */
/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 13 0 (increment by 2) */
/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 13 1 */
/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 13 2 */
/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 13 3 */
/*12 */ 4,4, 4,4, 4,4, 4,4, /* rate 14 0 (increment by 4) */
/*13 */ 4,4, 4,8, 4,4, 4,8, /* rate 14 1 */
/*14 */ 4,8, 4,8, 4,8, 4,8, /* rate 14 2 */
/*15 */ 4,8, 8,8, 4,8, 8,8, /* rate 14 3 */
/*16 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */
/*17 */ 16,16,16,16,16,16,16,16, /* rates 15 2, 15 3 for attack */
/*18 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
};
#define O(a) (a*RATE_STEPS)
/*note that there is no O(17) in this table - it's directly in the code */
static const UINT8 eg_rate_select[32+64+32]={ /* Envelope Generator rates (32 + 64 rates + 32 RKS) */
/* 32 infinite time rates */
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
/* rates 00-11 */
2008-08-07 12:26:07 +00:00
/*
2007-08-10 20:34:06 +00:00
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
2008-08-07 12:26:07 +00:00
*/
O( 18),O( 18),O( 0),O( 0),
O( 0),O( 0),O( 2),O( 2), // Nemesis's tests
2007-08-10 20:34:06 +00:00
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
/* rate 12 */
O( 4),O( 5),O( 6),O( 7),
/* rate 13 */
O( 8),O( 9),O(10),O(11),
/* rate 14 */
O(12),O(13),O(14),O(15),
/* rate 15 */
O(16),O(16),O(16),O(16),
/* 32 dummy rates (same as 15 3) */
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16)
};
#undef O
/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15*/
/*shift 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0 */
/*mask 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0, 0 */
#define O(a) (a*1)
static const UINT8 eg_rate_shift[32+64+32]={ /* Envelope Generator counter shifts (32 + 64 rates + 32 RKS) */
/* 32 infinite time rates */
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
/* rates 00-11 */
O(11),O(11),O(11),O(11),
O(10),O(10),O(10),O(10),
O( 9),O( 9),O( 9),O( 9),
O( 8),O( 8),O( 8),O( 8),
O( 7),O( 7),O( 7),O( 7),
O( 6),O( 6),O( 6),O( 6),
O( 5),O( 5),O( 5),O( 5),
O( 4),O( 4),O( 4),O( 4),
O( 3),O( 3),O( 3),O( 3),
O( 2),O( 2),O( 2),O( 2),
O( 1),O( 1),O( 1),O( 1),
O( 0),O( 0),O( 0),O( 0),
/* rate 12 */
O( 0),O( 0),O( 0),O( 0),
/* rate 13 */
O( 0),O( 0),O( 0),O( 0),
/* rate 14 */
O( 0),O( 0),O( 0),O( 0),
/* rate 15 */
O( 0),O( 0),O( 0),O( 0),
/* 32 dummy rates (same as 15 3) */
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0)
};
#undef O
static const UINT8 dt_tab[4 * 32]={
/* this is YM2151 and YM2612 phase increment data (in 10.10 fixed point format)*/
/* FD=0 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* FD=1 */
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8,
/* FD=2 */
1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
5, 6, 6, 7, 8, 8, 9,10,11,12,13,14,16,16,16,16,
/* FD=3 */
2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7,
8 , 8, 9,10,11,12,13,14,16,17,19,20,22,22,22,22
};
/* OPN key frequency number -> key code follow table */
/* fnum higher 4bit -> keycode lower 2bit */
static const UINT8 opn_fktable[16] = {0,0,0,0,0,0,0,1,2,3,3,3,3,3,3,3};
/* 8 LFO speed parameters */
/* each value represents number of samples that one LFO level will last for */
static const UINT32 lfo_samples_per_step[8] = {108, 77, 71, 67, 62, 44, 8, 5};
/*There are 4 different LFO AM depths available, they are:
0 dB, 1.4 dB, 5.9 dB, 11.8 dB
Here is how it is generated (in EG steps):
11.8 dB = 0, 2, 4, 6, 8, 10,12,14,16...126,126,124,122,120,118,....4,2,0
5.9 dB = 0, 1, 2, 3, 4, 5, 6, 7, 8....63, 63, 62, 61, 60, 59,.....2,1,0
1.4 dB = 0, 0, 0, 0, 1, 1, 1, 1, 2,...15, 15, 15, 15, 14, 14,.....0,0,0
(1.4 dB is loosing precision as you can see)
It's implemented as generator from 0..126 with step 2 then a shift
right N times, where N is:
8 for 0 dB
3 for 1.4 dB
1 for 5.9 dB
0 for 11.8 dB
*/
static const UINT8 lfo_ams_depth_shift[4] = {8, 3, 1, 0};
/*There are 8 different LFO PM depths available, they are:
0, 3.4, 6.7, 10, 14, 20, 40, 80 (cents)
Modulation level at each depth depends on F-NUMBER bits: 4,5,6,7,8,9,10
(bits 8,9,10 = FNUM MSB from OCT/FNUM register)
Here we store only first quarter (positive one) of full waveform.
Full table (lfo_pm_table) containing all 128 waveforms is build
at run (init) time.
One value in table below represents 4 (four) basic LFO steps
(1 PM step = 4 AM steps).
For example:
at LFO SPEED=0 (which is 108 samples per basic LFO step)
one value from "lfo_pm_output" table lasts for 432 consecutive
samples (4*108=432) and one full LFO waveform cycle lasts for 13824
samples (32*432=13824; 32 because we store only a quarter of whole
waveform in the table below)
*/
static const UINT8 lfo_pm_output[7*8][8]={ /* 7 bits meaningful (of F-NUMBER), 8 LFO output levels per one depth (out of 32), 8 LFO depths */
/* FNUM BIT 4: 000 0001xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 6 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 7 */ {0, 0, 0, 0, 1, 1, 1, 1},
/* FNUM BIT 5: 000 0010xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 6 */ {0, 0, 0, 0, 1, 1, 1, 1},
/* DEPTH 7 */ {0, 0, 1, 1, 2, 2, 2, 3},
/* FNUM BIT 6: 000 0100xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 1},
/* DEPTH 5 */ {0, 0, 0, 0, 1, 1, 1, 1},
/* DEPTH 6 */ {0, 0, 1, 1, 2, 2, 2, 3},
/* DEPTH 7 */ {0, 0, 2, 3, 4, 4, 5, 6},
/* FNUM BIT 7: 000 1000xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 1, 1},
/* DEPTH 3 */ {0, 0, 0, 0, 1, 1, 1, 1},
/* DEPTH 4 */ {0, 0, 0, 1, 1, 1, 1, 2},
/* DEPTH 5 */ {0, 0, 1, 1, 2, 2, 2, 3},
/* DEPTH 6 */ {0, 0, 2, 3, 4, 4, 5, 6},
/* DEPTH 7 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
/* FNUM BIT 8: 001 0000xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 1, 1, 1, 1},
/* DEPTH 2 */ {0, 0, 0, 1, 1, 1, 2, 2},
/* DEPTH 3 */ {0, 0, 1, 1, 2, 2, 3, 3},
/* DEPTH 4 */ {0, 0, 1, 2, 2, 2, 3, 4},
/* DEPTH 5 */ {0, 0, 2, 3, 4, 4, 5, 6},
/* DEPTH 6 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
/* DEPTH 7 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
/* FNUM BIT 9: 010 0000xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 2, 2, 2, 2},
/* DEPTH 2 */ {0, 0, 0, 2, 2, 2, 4, 4},
/* DEPTH 3 */ {0, 0, 2, 2, 4, 4, 6, 6},
/* DEPTH 4 */ {0, 0, 2, 4, 4, 4, 6, 8},
/* DEPTH 5 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
/* DEPTH 6 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
/* DEPTH 7 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},
/* FNUM BIT10: 100 0000xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 4, 4, 4, 4},
/* DEPTH 2 */ {0, 0, 0, 4, 4, 4, 8, 8},
/* DEPTH 3 */ {0, 0, 4, 4, 8, 8, 0xc, 0xc},
/* DEPTH 4 */ {0, 0, 4, 8, 8, 8, 0xc,0x10},
/* DEPTH 5 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
/* DEPTH 6 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},
/* DEPTH 7 */ {0, 0,0x20,0x30,0x40,0x40,0x50,0x60},
};
/* all 128 LFO PM waveforms */
static INT32 lfo_pm_table[128*8*32]; /* 128 combinations of 7 bits meaningful (of F-NUMBER), 8 LFO depths, 32 LFO output levels per one depth */
/* register number to channel number , slot offset */
#define OPN_CHAN(N) (N&3)
#define OPN_SLOT(N) ((N>>2)&3)
/* slot number */
#define SLOT1 0
#define SLOT2 2
#define SLOT3 1
#define SLOT4 3
/* struct describing a single operator (SLOT) */
typedef struct
{
INT32 *DT; /* detune :dt_tab[DT] */
UINT8 KSR; /* key scale rate :3-KSR */
UINT32 ar; /* attack rate */
UINT32 d1r; /* decay rate */
UINT32 d2r; /* sustain rate */
UINT32 rr; /* release rate */
UINT8 ksr; /* key scale rate :kcode>>(3-KSR) */
UINT32 mul; /* multiple :ML_TABLE[ML] */
/* Phase Generator */
UINT32 phase; /* phase counter */
2008-08-07 12:26:07 +00:00
INT32 Incr; /* phase step */
2007-08-10 20:34:06 +00:00
/* Envelope Generator */
UINT8 state; /* phase type */
UINT32 tl; /* total level: TL << 3 */
INT32 volume; /* envelope counter */
UINT32 sl; /* sustain level:sl_table[SL] */
UINT32 vol_out; /* current output from EG circuit (without AM from LFO) */
UINT8 eg_sh_ar; /* (attack state) */
UINT8 eg_sel_ar; /* (attack state) */
UINT8 eg_sh_d1r; /* (decay state) */
UINT8 eg_sel_d1r; /* (decay state) */
UINT8 eg_sh_d2r; /* (sustain state) */
UINT8 eg_sel_d2r; /* (sustain state) */
UINT8 eg_sh_rr; /* (release state) */
UINT8 eg_sel_rr; /* (release state) */
UINT8 ssg; /* SSG-EG waveform */
UINT8 ssgn; /* SSG-EG negated output */
UINT32 key; /* 0=last key was KEY OFF, 1=KEY ON */
/* LFO */
UINT32 AMmask; /* AM enable flag */
} FM_SLOT;
typedef struct
{
FM_SLOT SLOT[4]; /* four SLOTs (operators) */
UINT8 ALGO; /* algorithm */
UINT8 FB; /* feedback shift */
INT32 op1_out[2]; /* op1 output for feedback */
INT32 *connect1; /* SLOT1 output pointer */
INT32 *connect3; /* SLOT3 output pointer */
INT32 *connect2; /* SLOT2 output pointer */
INT32 *connect4; /* SLOT4 output pointer */
INT32 *mem_connect;/* where to put the delayed sample (MEM) */
INT32 mem_value; /* delayed sample (MEM) value */
INT32 pms; /* channel PMS */
UINT8 ams; /* channel AMS */
UINT32 fc; /* fnum,blk:adjusted to sample rate */
UINT8 kcode; /* key code: */
UINT32 block_fnum; /* current blk/fnum value for this slot (can be different betweeen slots of one channel in 3slot mode) */
} FM_CH;
typedef struct
{
int clock; /* master clock (Hz) */
int rate; /* sampling rate (Hz) */
double freqbase; /* frequency base */
2008-08-07 12:26:07 +00:00
int TimerBase; /* Timer base time */
UINT8 address[2]; /* address register */
2007-08-10 20:34:06 +00:00
UINT8 status; /* status flag */
UINT32 mode; /* mode CSM / 3SLOT */
UINT8 fn_h; /* freq latch */
2008-08-07 12:26:07 +00:00
int TA; /* timer a value */
double TAL; /* timer a base */
double TAC; /* timer a counter */
int TB; /* timer b */
double TBL; /* timer b base */
double TBC; /* timer b counter */
2007-08-10 20:34:06 +00:00
/* local time tables */
INT32 dt_tab[8][32];/* DeTune table */
2008-08-07 12:26:07 +00:00
UINT32 Inter_Cnt; // Interpolation Counter
UINT32 Inter_Step; // Interpolation Step
2007-08-10 20:34:06 +00:00
} FM_ST;
/***********************************************************/
/* OPN unit */
/***********************************************************/
/* OPN 3slot struct */
typedef struct
{
UINT32 fc[3]; /* fnum3,blk3: calculated */
UINT8 fn_h; /* freq3 latch */
UINT8 kcode[3]; /* key code */
UINT32 block_fnum[3]; /* current fnum value for this slot (can be different betweeen slots of one channel in 3slot mode) */
} FM_3SLOT;
/* OPN/A/B common state */
typedef struct
{
FM_ST ST; /* general state */
FM_3SLOT SL3; /* 3 slot mode state */
unsigned int pan[6*2]; /* fm channels output masks (0xffffffff = enable) */
UINT32 eg_cnt; /* global envelope generator counter */
UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/64/3 */
UINT32 eg_timer_add; /* step of eg_timer */
UINT32 eg_timer_overflow;/* envelope generator timer overlfows every 3 samples (on real chip) */
/* there are 2048 FNUMs that can be generated using FNUM/BLK registers
but LFO works with one more bit of a precision so we really need 4096 elements */
UINT32 fn_table[4096]; /* fnumber->increment counter */
/* LFO */
UINT32 lfo_cnt;
UINT32 lfo_inc;
UINT32 lfo_freq[8]; /* LFO FREQ table */
} FM_OPN;
2008-08-07 12:26:07 +00:00
typedef struct
{
FM_CH CH[6]; /* channel state */
UINT8 dacen; /* DAC mode */
INT32 dacout; /* DAC output */
FM_OPN OPN; /* OPN state */
} YM2612;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
static YM2612 ym2612;
static long dac_highpass;
2007-08-10 20:34:06 +00:00
/* current chip state */
static INT32 m2,c1,c2; /* Phase Modulation input for operators 2,3,4 */
static INT32 mem; /* one sample delay memory */
2008-08-07 12:26:07 +00:00
static INT32 out_fm[8]; /* outputs of working channels */
static INT32 old_out_fm[8]; /* old outputs of working channels */
2007-08-10 20:34:06 +00:00
static UINT32 LFO_AM; /* runtime LFO calculations helper */
static INT32 LFO_PM; /* runtime LFO calculations helper */
2008-08-07 12:26:07 +00:00
static int fn_max; /* maximal phase increment (used for phase overflow) */
2007-08-10 20:34:06 +00:00
/* limitter */
#define Limit(val, max,min) { \
if ( val > max ) val = max; \
else if ( val < min ) val = min; \
}
/* OPN Mode Register Write */
2008-08-07 12:26:07 +00:00
INLINE void set_timers(int v )
2007-08-10 20:34:06 +00:00
{
/* b7 = CSM MODE */
/* b6 = 3 slot mode */
/* b5 = reset b */
/* b4 = reset a */
/* b3 = timer enable b */
/* b2 = timer enable a */
/* b1 = load b */
/* b0 = load a */
2008-08-07 12:26:07 +00:00
if ((ym2612.OPN.ST.mode ^ v) & 0xC0) ym2612.CH[2].SLOT[SLOT1].Incr=-1; /* recalculate phase (from gens) */
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* reload Timers */
if ((v&1) & !(ym2612.OPN.ST.mode&1)) ym2612.OPN.ST.TAC = ym2612.OPN.ST.TAL;
if ((v&2) & !(ym2612.OPN.ST.mode&2)) ym2612.OPN.ST.TBC = ym2612.OPN.ST.TBL;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* reset Timers flags */
ym2612.OPN.ST.status &= (~v >> 4);
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
ym2612.OPN.ST.mode = v;
2007-08-10 20:34:06 +00:00
}
INLINE void FM_KEYON(FM_CH *CH , int s )
{
FM_SLOT *SLOT = &CH->SLOT[s];
if( !SLOT->key )
{
SLOT->key = 1;
SLOT->phase = 0; /* restart Phase Generator */
2008-08-07 12:26:07 +00:00
if ((SLOT->ar + SLOT->ksr) < 94 /*32+62*/)
{
SLOT->state = EG_ATT; /* phase -> Attack */
SLOT->volume = MAX_ATT_INDEX; /* fix Ecco 2 splash sound */
}
else
{
/* directly switch to Decay */
SLOT->state = EG_DEC;
SLOT->volume = MIN_ATT_INDEX;
}
2007-08-10 20:34:06 +00:00
}
}
INLINE void FM_KEYOFF(FM_CH *CH , int s )
{
FM_SLOT *SLOT = &CH->SLOT[s];
if( SLOT->key )
{
SLOT->key = 0;
if (SLOT->state>EG_REL)
2008-08-07 12:26:07 +00:00
{
SLOT->state = EG_REL; /* phase -> Release */
SLOT->ssgn = 0; /* reset Invert Flag (from Nemesis) */
}
}
2007-08-10 20:34:06 +00:00
}
/* set algorithm connection */
static void setup_connection( FM_CH *CH, int ch )
{
INT32 *carrier = &out_fm[ch];
INT32 **om1 = &CH->connect1;
INT32 **om2 = &CH->connect3;
INT32 **oc1 = &CH->connect2;
INT32 **memc = &CH->mem_connect;
switch( CH->ALGO ){
2008-08-07 12:26:07 +00:00
case 0:
/* M1---C1---MEM---M2---C2---OUT */
*om1 = &c1;
*oc1 = &mem;
*om2 = &c2;
*memc= &m2;
break;
case 1:
/* M1------+-MEM---M2---C2---OUT */
/* C1-+ */
*om1 = &mem;
*oc1 = &mem;
*om2 = &c2;
*memc= &m2;
break;
case 2:
/* M1-----------------+-C2---OUT */
/* C1---MEM---M2-+ */
*om1 = &c2;
*oc1 = &mem;
*om2 = &c2;
*memc= &m2;
break;
case 3:
/* M1---C1---MEM------+-C2---OUT */
/* M2-+ */
*om1 = &c1;
*oc1 = &mem;
*om2 = &c2;
*memc= &c2;
break;
case 4:
/* M1---C1-+-OUT */
/* M2---C2-+ */
/* MEM: not used */
*om1 = &c1;
*oc1 = carrier;
*om2 = &c2;
*memc= &mem; /* store it anywhere where it will not be used */
break;
case 5:
/* +----C1----+ */
/* M1-+-MEM---M2-+-OUT */
/* +----C2----+ */
*om1 = 0; /* special mark */
*oc1 = carrier;
*om2 = carrier;
*memc= &m2;
break;
case 6:
/* M1---C1-+ */
/* M2-+-OUT */
/* C2-+ */
/* MEM: not used */
*om1 = &c1;
*oc1 = carrier;
*om2 = carrier;
*memc= &mem; /* store it anywhere where it will not be used */
break;
case 7:
/* M1-+ */
/* C1-+-OUT */
/* M2-+ */
/* C2-+ */
/* MEM: not used*/
*om1 = carrier;
*oc1 = carrier;
*om2 = carrier;
*memc= &mem; /* store it anywhere where it will not be used */
break;
2007-08-10 20:34:06 +00:00
}
CH->connect4 = carrier;
}
/* set detune & multiple */
2008-08-07 12:26:07 +00:00
INLINE void set_det_mul(FM_CH *CH,FM_SLOT *SLOT,int v)
2007-08-10 20:34:06 +00:00
{
SLOT->mul = (v&0x0f)? (v&0x0f)*2 : 1;
2008-08-07 12:26:07 +00:00
SLOT->DT = ym2612.OPN.ST.dt_tab[(v>>4)&7];
2007-08-10 20:34:06 +00:00
CH->SLOT[SLOT1].Incr=-1;
}
/* set total level */
INLINE void set_tl(FM_CH *CH,FM_SLOT *SLOT , int v)
{
SLOT->tl = (v&0x7f)<<(ENV_BITS-7); /* 7bit TL */
}
/* set attack rate & key scale */
INLINE void set_ar_ksr(FM_CH *CH,FM_SLOT *SLOT,int v)
{
UINT8 old_KSR = SLOT->KSR;
SLOT->ar = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
SLOT->KSR = 3-(v>>6);
if (SLOT->KSR != old_KSR)
{
CH->SLOT[SLOT1].Incr=-1;
}
2008-08-07 12:26:07 +00:00
//else /* fix Batman&Robin */
2007-08-10 20:34:06 +00:00
{
/* refresh Attack rate */
2008-08-07 12:26:07 +00:00
if ((SLOT->ar + SLOT->ksr) < 94 /*32+62*/)
2007-08-10 20:34:06 +00:00
{
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
}
else
{
SLOT->eg_sh_ar = 0;
SLOT->eg_sel_ar = 17*RATE_STEPS;
}
}
}
/* set decay rate */
INLINE void set_dr(FM_SLOT *SLOT,int v)
{
SLOT->d1r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
SLOT->eg_sh_d1r = eg_rate_shift [SLOT->d1r + SLOT->ksr];
SLOT->eg_sel_d1r= eg_rate_select[SLOT->d1r + SLOT->ksr];
}
/* set sustain rate */
INLINE void set_sr(FM_SLOT *SLOT,int v)
{
SLOT->d2r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
SLOT->eg_sh_d2r = eg_rate_shift [SLOT->d2r + SLOT->ksr];
SLOT->eg_sel_d2r= eg_rate_select[SLOT->d2r + SLOT->ksr];
}
/* set release rate */
INLINE void set_sl_rr(FM_SLOT *SLOT,int v)
{
SLOT->sl = sl_table[ v>>4 ];
SLOT->rr = 34 + ((v&0x0f)<<2);
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr];
}
INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm)
{
UINT32 p;
p = (env<<3) + sin_tab[ ( ((signed int)((phase & ~FREQ_MASK) + (pm<<15))) >> FREQ_SH ) & SIN_MASK ];
if (p >= TL_TAB_LEN)
return 0;
return tl_tab[p];
}
INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm)
{
UINT32 p;
p = (env<<3) + sin_tab[ ( ((signed int)((phase & ~FREQ_MASK) + pm )) >> FREQ_SH ) & SIN_MASK ];
if (p >= TL_TAB_LEN)
return 0;
return tl_tab[p];
}
/* advance LFO to next sample */
2008-08-07 12:26:07 +00:00
INLINE void advance_lfo()
2007-08-10 20:34:06 +00:00
{
UINT8 pos;
UINT8 prev_pos;
2008-08-07 12:26:07 +00:00
if (ym2612.OPN.lfo_inc) /* LFO enabled ? */
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
prev_pos = ym2612.OPN.lfo_cnt>>LFO_SH & 127;
ym2612.OPN.lfo_cnt += ym2612.OPN.lfo_inc;
pos = ( ym2612.OPN.lfo_cnt >> LFO_SH) & 127;
2007-08-10 20:34:06 +00:00
/* update AM when LFO output changes */
/*if (prev_pos != pos)*/
/* actually I can't optimize is this way without rewritting chan_calc()
to use chip->lfo_am instead of global lfo_am */
{
/* triangle */
/* AM: 0 to 126 step +2, 126 to 0 step -2 */
if (pos<64)
LFO_AM = (pos&63) * 2;
else
LFO_AM = 126 - ((pos&63) * 2);
}
/* PM works with 4 times slower clock */
prev_pos >>= 2;
pos >>= 2;
/* update PM when LFO output changes */
/*if (prev_pos != pos)*/ /* can't use global lfo_pm for this optimization, must be chip->lfo_pm instead*/
{
LFO_PM = pos;
}
}
else
{
LFO_AM = 0;
LFO_PM = 0;
}
}
2008-08-07 12:26:07 +00:00
INLINE void advance_eg_channel(FM_SLOT *SLOT)
2007-08-10 20:34:06 +00:00
{
unsigned int out;
unsigned int swap_flag = 0;
unsigned int i;
i = 4; /* four operators per channel */
do
{
switch(SLOT->state)
{
2008-08-07 12:26:07 +00:00
case EG_ATT: /* attack phase */
if (!(ym2612.OPN.eg_cnt & ((1<<SLOT->eg_sh_ar)-1)))
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
SLOT->volume += (~SLOT->volume *
(eg_inc[SLOT->eg_sel_ar + ((ym2612.OPN.eg_cnt>>SLOT->eg_sh_ar)&7)])
)>>4;
if (SLOT->volume <= MIN_ATT_INDEX)
{
SLOT->volume = MIN_ATT_INDEX;
SLOT->state = EG_DEC;
}
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case EG_DEC: /* decay phase */
if (SLOT->ssg&0x08) /* SSG EG type envelope selected */
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
if ( !(ym2612.OPN.eg_cnt & ((1<<SLOT->eg_sh_d1r)-1) ) )
{
//SLOT->volume += 4 * eg_inc[SLOT->eg_sel_d1r + ((ym2612.OPN.eg_cnt>>SLOT->eg_sh_d1r)&7)];
SLOT->volume += 6 * eg_inc[SLOT->eg_sel_d1r + ((ym2612.OPN.eg_cnt>>SLOT->eg_sh_d1r)&7)]; /* from Nemesis */
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
if ( SLOT->volume >= (INT32)(SLOT->sl) )
SLOT->state = EG_SUS;
}
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
else
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
if ( !(ym2612.OPN.eg_cnt & ((1<<SLOT->eg_sh_d1r)-1) ) )
{
SLOT->volume += eg_inc[SLOT->eg_sel_d1r + ((ym2612.OPN.eg_cnt>>SLOT->eg_sh_d1r)&7)];
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
if ( SLOT->volume >= (INT32)(SLOT->sl) )
SLOT->state = EG_SUS;
}
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case EG_SUS: /* sustain phase */
if (SLOT->ssg&0x08) /* SSG EG type envelope selected */
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
if ( !(ym2612.OPN.eg_cnt & ((1<<SLOT->eg_sh_d2r)-1) ) )
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
//SLOT->volume += 4 * eg_inc[SLOT->eg_sel_d2r + ((ym2612.OPN.eg_cnt>>SLOT->eg_sh_d2r)&7)];
SLOT->volume += 6 * eg_inc[SLOT->eg_sel_d2r + ((ym2612.OPN.eg_cnt>>SLOT->eg_sh_d2r)&7)]; /* from Nemesis */
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
if ( SLOT->volume >= 512 /* <20><><EFBFBD><EFBFBD> MAX_ATT_INDEX */ ) //Alone Coder
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
SLOT->volume = MAX_ATT_INDEX;
if (SLOT->ssg&0x01) /* bit 0 = hold */
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
if (SLOT->ssgn&1) /* have we swapped once ??? */
{
/* yes, so do nothing, just hold current level */
}
else
swap_flag = (SLOT->ssg&0x02) | 1 ; /* bit 1 = alternate */
2007-08-10 20:34:06 +00:00
}
else
2008-08-07 12:26:07 +00:00
{
/* same as KEY-ON operation */
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* restart of the Phase Generator should be here,
only if AR is not maximum ??? ALWAYS! */
SLOT->phase = 0; //Alone Coder
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* phase -> Attack */
SLOT->volume = 511; //Alone Coder
SLOT->state = EG_ATT;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
swap_flag = (SLOT->ssg&0x02); /* bit 1 = alternate */
}
2007-08-10 20:34:06 +00:00
}
}
}
2008-08-07 12:26:07 +00:00
else
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
if ( !(ym2612.OPN.eg_cnt & ((1<<SLOT->eg_sh_d2r)-1) ) )
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
SLOT->volume += eg_inc[SLOT->eg_sel_d2r + ((ym2612.OPN.eg_cnt>>SLOT->eg_sh_d2r)&7)];
if ( SLOT->volume >= MAX_ATT_INDEX )
{
SLOT->volume = MAX_ATT_INDEX;
/* do not change SLOT->state (verified on real chip) */
}
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
}
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case EG_REL: /* release phase */
if ( !(ym2612.OPN.eg_cnt & ((1<<SLOT->eg_sh_rr)-1) ) )
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
if (SLOT->ssg&0x08)
SLOT->volume += 6 * eg_inc[SLOT->eg_sel_rr + ((ym2612.OPN.eg_cnt>>SLOT->eg_sh_rr)&7)]; /* from Nemesis */
else
SLOT->volume += eg_inc[SLOT->eg_sel_rr + ((ym2612.OPN.eg_cnt>>SLOT->eg_sh_rr)&7)];
2007-08-10 20:34:06 +00:00
if ( SLOT->volume >= MAX_ATT_INDEX )
{
SLOT->volume = MAX_ATT_INDEX;
SLOT->state = EG_OFF;
}
}
2008-08-07 12:26:07 +00:00
break;
2007-08-10 20:34:06 +00:00
}
out = SLOT->tl + ((UINT32)SLOT->volume);
2008-08-07 12:26:07 +00:00
if ((SLOT->ssg&0x08) && (SLOT->ssgn&2) && (SLOT->state != EG_OFF/*Alone Coder*/)) /* negate output (changes come from alternate bit, init comes from attack bit) */
out ^= 511/*Alone Coder*/; //((1<<ENV_BITS)-1); /* 1023 */
2007-08-10 20:34:06 +00:00
/* we need to store the result here because we are going to change ssgn
in next instruction */
SLOT->vol_out = out;
SLOT->ssgn ^= swap_flag;
SLOT++;
i--;
2008-08-07 12:26:07 +00:00
} while (i);
2007-08-10 20:34:06 +00:00
}
#define volume_calc(OP) ((OP)->vol_out + (AM & (OP)->AMmask))
2008-08-07 12:26:07 +00:00
INLINE void update_phase_lfo_slot(FM_SLOT *SLOT , INT32 pms, UINT32 block_fnum)
{
UINT32 fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;
INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + pms + LFO_PM ];
if (lfo_fn_table_index_offset) /* LFO phase modulation active */
{
block_fnum = block_fnum*2 + lfo_fn_table_index_offset;
UINT8 blk = (block_fnum&0x7000) >> 12;
UINT32 fn = block_fnum & 0xfff;
/* keyscale code */
int kc = (blk<<2) | opn_fktable[fn >> 8];
/* phase increment counter */
int fc = (ym2612.OPN.fn_table[fn]>>(7-blk)) + SLOT->DT[kc];
/* detects frequency overflow (credits to Nemesis) */
if (fc < 0) fc += fn_max;
/* update phase */
SLOT->phase += (fc * SLOT->mul) >> 1;
}
else /* LFO phase modulation = zero */
{
SLOT->phase += SLOT->Incr;
}
}
INLINE void update_phase_lfo_channel(FM_CH *CH)
{
UINT32 block_fnum = CH->block_fnum;
UINT32 fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;
INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + CH->pms + LFO_PM ];
if (lfo_fn_table_index_offset) /* LFO phase modulation active */
{
block_fnum = block_fnum*2 + lfo_fn_table_index_offset;
UINT8 blk = (block_fnum&0x7000) >> 12;
UINT32 fn = block_fnum & 0xfff;
/* keyscale code */
int kc = (blk<<2) | opn_fktable[fn >> 8];
/* phase increment counter */
int fc = (ym2612.OPN.fn_table[fn]>>(7-blk));
/* detects frequency overflow (credits to Nemesis) */
int finc = fc + CH->SLOT[SLOT1].DT[kc];
if (finc < 0) finc += fn_max;
CH->SLOT[SLOT1].phase += (finc*CH->SLOT[SLOT1].mul) >> 1;
finc = fc + CH->SLOT[SLOT2].DT[kc];
if (finc < 0) finc += fn_max;
CH->SLOT[SLOT2].phase += (finc*CH->SLOT[SLOT2].mul) >> 1;
finc = fc + CH->SLOT[SLOT3].DT[kc];
if (finc < 0) finc += fn_max;
CH->SLOT[SLOT3].phase += (finc*CH->SLOT[SLOT3].mul) >> 1;
finc = fc + CH->SLOT[SLOT4].DT[kc];
if (finc < 0) finc += fn_max;
CH->SLOT[SLOT4].phase += (finc*CH->SLOT[SLOT4].mul) >> 1;
}
else /* LFO phase modulation = zero */
{
CH->SLOT[SLOT1].phase += CH->SLOT[SLOT1].Incr;
CH->SLOT[SLOT2].phase += CH->SLOT[SLOT2].Incr;
CH->SLOT[SLOT3].phase += CH->SLOT[SLOT3].Incr;
CH->SLOT[SLOT4].phase += CH->SLOT[SLOT4].Incr;
}
}
INLINE void chan_calc(FM_CH *CH)
2007-08-10 20:34:06 +00:00
{
unsigned int eg_out;
UINT32 AM = LFO_AM >> CH->ams;
m2 = c1 = c2 = mem = 0;
*CH->mem_connect = CH->mem_value; /* restore delayed sample (MEM) value to m2 or c2 */
eg_out = volume_calc(&CH->SLOT[SLOT1]);
{
INT32 out = CH->op1_out[0] + CH->op1_out[1];
CH->op1_out[0] = CH->op1_out[1];
if( !CH->connect1 ){
/* algorithm 5 */
mem = c1 = c2 = CH->op1_out[0];
}else{
/* other algorithms */
*CH->connect1 += CH->op1_out[0];
}
CH->op1_out[1] = 0;
if( eg_out < ENV_QUIET ) /* SLOT 1 */
{
if (!CH->FB)
out=0;
CH->op1_out[1] = op_calc1(CH->SLOT[SLOT1].phase, eg_out, (out<<CH->FB) );
}
}
eg_out = volume_calc(&CH->SLOT[SLOT3]);
if( eg_out < ENV_QUIET ) /* SLOT 3 */
*CH->connect3 += op_calc(CH->SLOT[SLOT3].phase, eg_out, m2);
eg_out = volume_calc(&CH->SLOT[SLOT2]);
if( eg_out < ENV_QUIET ) /* SLOT 2 */
*CH->connect2 += op_calc(CH->SLOT[SLOT2].phase, eg_out, c1);
eg_out = volume_calc(&CH->SLOT[SLOT4]);
if( eg_out < ENV_QUIET ) /* SLOT 4 */
*CH->connect4 += op_calc(CH->SLOT[SLOT4].phase, eg_out, c2);
/* store current MEM */
CH->mem_value = mem;
/* update phase counters AFTER output calculations */
if(CH->pms)
{
2008-08-07 12:26:07 +00:00
/* add support for 3 slot mode */
if ((ym2612.OPN.ST.mode & 0xC0) && (CH == &ym2612.CH[2]))
{
update_phase_lfo_slot(&ym2612.CH[2].SLOT[SLOT1], ym2612.CH[2].pms, ym2612.OPN.SL3.block_fnum[1]);
update_phase_lfo_slot(&ym2612.CH[2].SLOT[SLOT2], ym2612.CH[2].pms, ym2612.OPN.SL3.block_fnum[2]);
update_phase_lfo_slot(&ym2612.CH[2].SLOT[SLOT3], ym2612.CH[2].pms, ym2612.OPN.SL3.block_fnum[0]);
update_phase_lfo_slot(&ym2612.CH[2].SLOT[SLOT4], ym2612.CH[2].pms, ym2612.CH[2].block_fnum);
}
else update_phase_lfo_channel(CH);
2007-08-10 20:34:06 +00:00
}
else /* no LFO phase modulation */
{
CH->SLOT[SLOT1].phase += CH->SLOT[SLOT1].Incr;
CH->SLOT[SLOT2].phase += CH->SLOT[SLOT2].Incr;
CH->SLOT[SLOT3].phase += CH->SLOT[SLOT3].Incr;
CH->SLOT[SLOT4].phase += CH->SLOT[SLOT4].Incr;
}
}
/* update phase increment and envelope generator */
INLINE void refresh_fc_eg_slot(FM_SLOT *SLOT , int fc , int kc )
{
2008-08-07 12:26:07 +00:00
int ksr = kc >> SLOT->KSR;
fc += SLOT->DT[kc];
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* detects frequency overflow (credits to Nemesis) */
if (fc < 0) fc += fn_max;
/* (frequency) phase increment counter */
SLOT->Incr = (fc * SLOT->mul) >> 1;
2007-08-10 20:34:06 +00:00
if( SLOT->ksr != ksr )
{
SLOT->ksr = ksr;
/* calculate envelope generator rates */
2008-08-07 12:26:07 +00:00
if ((SLOT->ar + SLOT->ksr) < 94/*32+62*/)
2007-08-10 20:34:06 +00:00
{
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
}
else
{
SLOT->eg_sh_ar = 0;
SLOT->eg_sel_ar = 17*RATE_STEPS;
}
SLOT->eg_sh_d1r = eg_rate_shift [SLOT->d1r + SLOT->ksr];
SLOT->eg_sel_d1r= eg_rate_select[SLOT->d1r + SLOT->ksr];
SLOT->eg_sh_d2r = eg_rate_shift [SLOT->d2r + SLOT->ksr];
SLOT->eg_sel_d2r= eg_rate_select[SLOT->d2r + SLOT->ksr];
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr];
}
}
/* update phase increment counters */
INLINE void refresh_fc_eg_chan(FM_CH *CH )
{
if( CH->SLOT[SLOT1].Incr==-1){
int fc = CH->fc;
int kc = CH->kcode;
refresh_fc_eg_slot(&CH->SLOT[SLOT1] , fc , kc );
refresh_fc_eg_slot(&CH->SLOT[SLOT2] , fc , kc );
refresh_fc_eg_slot(&CH->SLOT[SLOT3] , fc , kc );
refresh_fc_eg_slot(&CH->SLOT[SLOT4] , fc , kc );
}
}
/* initialize time tables */
2008-08-07 12:26:07 +00:00
static void init_timetables(const UINT8 *dttable )
2007-08-10 20:34:06 +00:00
{
int i,d;
double rate;
/* DeTune table */
2008-08-07 12:26:07 +00:00
for (d = 0;d <= 3;d++)
{
for (i = 0;i <= 31;i++)
{
rate = ((double)dttable[d*32 + i]) * SIN_LEN * ym2612.OPN.ST.freqbase * (1<<FREQ_SH) / ((double)(1<<20));
ym2612.OPN.ST.dt_tab[d][i] = (INT32) rate;
ym2612.OPN.ST.dt_tab[d+4][i] = -ym2612.OPN.ST.dt_tab[d][i];
2007-08-10 20:34:06 +00:00
}
}
}
2008-08-07 12:26:07 +00:00
static void reset_channels(FM_CH *CH , int num )
2007-08-10 20:34:06 +00:00
{
int c,s;
for( c = 0 ; c < num ; c++ )
{
CH[c].fc = 0;
for(s = 0 ; s < 4 ; s++ )
{
CH[c].SLOT[s].ssg = 0;
CH[c].SLOT[s].ssgn = 0;
CH[c].SLOT[s].state= EG_OFF;
CH[c].SLOT[s].volume = MAX_ATT_INDEX;
CH[c].SLOT[s].vol_out= MAX_ATT_INDEX;
}
}
}
/* initialize generic tables */
static int init_tables(void)
{
signed int i,x;
signed int n;
double o,m;
for (x=0; x<TL_RES_LEN; x++)
{
m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
m = floor(m);
/* we never reach (1<<16) here due to the (x+1) */
/* result fits within 16 bits at maximum */
n = (int)m; /* 16 bits here */
n >>= 4; /* 12 bits here */
if (n&1) /* round to nearest */
n = (n>>1)+1;
else
n = n>>1;
/* 11 bits here (rounded) */
n <<= 2; /* 13 bits here (as in real chip) */
tl_tab[ x*2 + 0 ] = n;
tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
for (i=1; i<13; i++)
{
tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ];
}
}
for (i=0; i<SIN_LEN; i++)
{
/* non-standard sinus */
m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
/* we never reach zero here due to ((i*2)+1) */
if (m>0.0)
o = 8*log(1.0/m)/log(2); /* convert to 'decibels' */
else
o = 8*log(-1.0/m)/log(2); /* convert to 'decibels' */
o = o / (ENV_STEP/4);
n = (int)(2.0*o);
if (n&1) /* round to nearest */
n = (n>>1)+1;
else
n = n>>1;
sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
}
/* build LFO PM modulation table */
for(i = 0; i < 8; i++) /* 8 PM depths */
{
UINT8 fnum;
for (fnum=0; fnum<128; fnum++) /* 7 bits meaningful of F-NUMBER */
{
UINT8 value;
UINT8 step;
UINT32 offset_depth = i;
UINT32 offset_fnum_bit;
UINT32 bit_tmp;
for (step=0; step<8; step++)
{
value = 0;
for (bit_tmp=0; bit_tmp<7; bit_tmp++) /* 7 bits */
{
if (fnum & (1<<bit_tmp)) /* only if bit "bit_tmp" is set */
{
offset_fnum_bit = bit_tmp * 8;
value += lfo_pm_output[offset_fnum_bit + offset_depth][step];
}
}
lfo_pm_table[(fnum*32*8) + (i*32) + step + 0] = value;
lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+ 8] = value;
lfo_pm_table[(fnum*32*8) + (i*32) + step +16] = -value;
lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+24] = -value;
}
}
}
return 1;
}
/* CSM Key Controll */
INLINE void CSMKeyControll(FM_CH *CH)
{
/* this is wrong, atm */
/* all key on */
FM_KEYON(CH,SLOT1);
FM_KEYON(CH,SLOT2);
FM_KEYON(CH,SLOT3);
FM_KEYON(CH,SLOT4);
2008-08-07 12:26:07 +00:00
/* all key off (credits to Nemesis) --> do not work properly atm */
FM_KEYOFF(CH,SLOT1);
FM_KEYOFF(CH,SLOT2);
FM_KEYOFF(CH,SLOT3);
FM_KEYOFF(CH,SLOT4);
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
static void INTERNAL_TIMER_A()
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
if (ym2612.OPN.ST.mode & 0x01)
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
if ((ym2612.OPN.ST.TAC -= ym2612.OPN.ST.TimerBase) <= 0)
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
/* set status (if enabled) */
if (ym2612.OPN.ST.mode & 0x04) ym2612.OPN.ST.status |= 0x01;
/* reload the counter */
ym2612.OPN.ST.TAC += ym2612.OPN.ST.TAL;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* CSM mode total level latch and auto key on */
if ((ym2612.OPN.ST.mode & 0xC0) == 0x80) CSMKeyControll (&(ym2612.CH[2]));
2007-08-10 20:34:06 +00:00
}
}
}
2008-08-07 12:26:07 +00:00
static void INTERNAL_TIMER_B(int step)
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
if (ym2612.OPN.ST.mode & 0x02)
{
if ((ym2612.OPN.ST.TBC -= (ym2612.OPN.ST.TimerBase * (double)step)) <= 0)
{
/* set status (if enabled) */
if (ym2612.OPN.ST.mode & 0x08) ym2612.OPN.ST.status |= 0x02;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* reload the counter */
ym2612.OPN.ST.TBC += ym2612.OPN.ST.TBL;
}
}
}
2007-08-10 20:34:06 +00:00
/* prescaler set (and make time tables) */
2008-08-07 12:26:07 +00:00
static void OPNSetPres(int pres)
2007-08-10 20:34:06 +00:00
{
int i;
/* frequency base */
2008-08-07 12:26:07 +00:00
ym2612.OPN.ST.freqbase = ((double) ym2612.OPN.ST.clock / (double) ym2612.OPN.ST.rate) / ((double) pres);
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* timer increment in usecs (timers are incremented after each updated samples) */
ym2612.OPN.ST.TimerBase = 1000000.0 / (double)ym2612.OPN.ST.rate;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
if (config.hq_fm)
{
ym2612.OPN.ST.Inter_Step = (unsigned int) ((1.0 / ym2612.OPN.ST.freqbase) * (double) (0x4000));
ym2612.OPN.ST.Inter_Cnt = 0;
ym2612.OPN.ST.freqbase = 1.0;
}
else
{
ym2612.OPN.ST.Inter_Step = 0x4000;
ym2612.OPN.ST.Inter_Cnt = 0;
}
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
ym2612.OPN.eg_timer_add = (UINT32)((1<<EG_SH) * ym2612.OPN.ST.freqbase);
//ym2612.OPN.eg_timer_overflow = ( 3 ) * (1<<EG_SH);
ym2612.OPN.eg_timer_overflow = (351 * (1<<EG_SH)) / 144; /* correct frequency (Nemesis: tested on real HW) */
2007-08-10 20:34:06 +00:00
/* make time tables */
2008-08-07 12:26:07 +00:00
init_timetables(dt_tab);
2007-08-10 20:34:06 +00:00
/* there are 2048 FNUMs that can be generated using FNUM/BLK registers
but LFO works with one more bit of a precision so we really need 4096 elements */
/* calculate fnumber -> increment counter table */
for(i = 0; i < 4096; i++)
{
/* freq table for octave 7 */
/* OPN phase increment counter = 20bit */
2008-08-07 12:26:07 +00:00
ym2612.OPN.fn_table[i] = (UINT32)( (double)i * 32 * ym2612.OPN.ST.freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
/* maximal frequency, used for overflow, best setting with BLOCK=5 (notaz) */
fn_max = ((UINT32)((double)ym2612.OPN.fn_table[0x7ff*2] / ym2612.OPN.ST.freqbase) >> 2);
2007-08-10 20:34:06 +00:00
/* LFO freq. table */
for(i = 0; i < 8; i++)
{
/* Amplitude modulation: 64 output levels (triangle waveform); 1 level lasts for one of "lfo_samples_per_step" samples */
/* Phase modulation: one entry from lfo_pm_output lasts for one of 4 * "lfo_samples_per_step" samples */
2008-08-07 12:26:07 +00:00
ym2612.OPN.lfo_freq[i] = (UINT32)((1.0 / lfo_samples_per_step[i]) * (1<<LFO_SH) * ym2612.OPN.ST.freqbase);
2007-08-10 20:34:06 +00:00
}
}
/* write a OPN mode register 0x20-0x2f */
2008-08-07 12:26:07 +00:00
static void OPNWriteMode(int r, int v)
2007-08-10 20:34:06 +00:00
{
UINT8 c;
FM_CH *CH;
switch(r){
2008-08-07 12:26:07 +00:00
case 0x21: /* Test */
break;
case 0x22: /* LFO FREQ (YM2608/YM2610/YM2610B/ym2612) */
2007-08-10 20:34:06 +00:00
if (v&0x08) /* LFO enabled ? */
{
2008-08-07 12:26:07 +00:00
ym2612.OPN.lfo_inc = ym2612.OPN.lfo_freq[v&7];
2007-08-10 20:34:06 +00:00
}
else
{
2008-08-07 12:26:07 +00:00
ym2612.OPN.lfo_inc = 0;
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
break;
case 0x24: /* timer A High 8*/
ym2612.OPN.ST.TA = (ym2612.OPN.ST.TA & 0x03)|(((int)v)<<2);
ym2612.OPN.ST.TAL = fm_timera_tab[ym2612.OPN.ST.TA];
break;
case 0x25: /* timer A Low 2*/
ym2612.OPN.ST.TA = (ym2612.OPN.ST.TA & 0x3fc)|(v&3);
ym2612.OPN.ST.TAL = fm_timera_tab[ym2612.OPN.ST.TA];
break;
case 0x26: /* timer B */
ym2612.OPN.ST.TB = v;
ym2612.OPN.ST.TBL = fm_timerb_tab[ym2612.OPN.ST.TB];
break;
case 0x27: /* mode, timer control */
set_timers(v);
break;
case 0x28: /* key on / off */
c = v & 0x03;
if( c == 3 ) break;
if (v&0x04) c+=3; /* CH 4-6 */
CH = &ym2612.CH[c];
if (v&0x10) FM_KEYON(CH,SLOT1); else FM_KEYOFF(CH,SLOT1);
if (v&0x20) FM_KEYON(CH,SLOT2); else FM_KEYOFF(CH,SLOT2);
if (v&0x40) FM_KEYON(CH,SLOT3); else FM_KEYOFF(CH,SLOT3);
if (v&0x80) FM_KEYON(CH,SLOT4); else FM_KEYOFF(CH,SLOT4);
break;
2007-08-10 20:34:06 +00:00
}
}
/* write a OPN register (0x30-0xff) */
2008-08-07 12:26:07 +00:00
static void OPNWriteReg(int r, int v)
2007-08-10 20:34:06 +00:00
{
FM_CH *CH;
FM_SLOT *SLOT;
UINT8 c = OPN_CHAN(r);
if (c == 3) return; /* 0xX3,0xX7,0xXB,0xXF */
if (r >= 0x100) c+=3;
2008-08-07 12:26:07 +00:00
CH = &ym2612.CH[c];
2007-08-10 20:34:06 +00:00
SLOT = &(CH->SLOT[OPN_SLOT(r)]);
switch( r & 0xf0 ) {
2008-08-07 12:26:07 +00:00
case 0x30: /* DET , MUL */
set_det_mul(CH,SLOT,v);
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case 0x40: /* TL */
set_tl(CH,SLOT,v);
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case 0x50: /* KS, AR */
set_ar_ksr(CH,SLOT,v);
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case 0x60: /* bit7 = AM ENABLE, DR */
set_dr(SLOT,v);
2007-08-10 20:34:06 +00:00
SLOT->AMmask = (v&0x80) ? ~0 : 0;
2008-08-07 12:26:07 +00:00
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case 0x70: /* SR */
set_sr(SLOT,v);
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case 0x80: /* SL, RR */
set_sl_rr(SLOT,v);
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case 0x90: /* SSG-EG */
if (!config.ssg_enabled) v = 0;
SLOT->ssg = v&0x0f;
SLOT->ssgn = (v&0x04)>>1; /* bit 1 in ssgn = attack */
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* SSG-EG envelope shapes :
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
E AtAlH
1 0 0 0 \\\\
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
1 0 0 1 \___
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
1 0 1 0 \/\/
___
1 0 1 1 \
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
1 1 0 0 ////
___
1 1 0 1 /
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
1 1 1 0 /\/\
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
1 1 1 1 /___
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
E = SSG-EG enable
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
The shapes are generated using Attack, Decay and Sustain phases.
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
Each single character in the diagrams above represents this whole
sequence:
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
- when KEY-ON = 1, normal Attack phase is generated (*without* any
difference when compared to normal mode),
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
- later, when envelope level reaches minimum level (max volume),
the EG switches to Decay phase (which works with bigger steps
when compared to normal mode - see below),
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
- later when envelope level passes the SL level,
the EG swithes to Sustain phase (which works with bigger steps
when compared to normal mode - see below),
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
- finally when envelope level reaches maximum level (min volume),
the EG switches to Attack phase again (depends on actual waveform).
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
Important is that when switch to Attack phase occurs, the phase counter
of that operator will be zeroed-out (as in normal KEY-ON) but not always.
(I havent found the rule for that - perhaps only when the output level is low)
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
The difference (when compared to normal Envelope Generator mode) is
that the resolution in Decay and Sustain phases is 4 times lower;
this results in only 256 steps instead of normal 1024.
In other words:
when SSG-EG is disabled, the step inside of the EG is one,
when SSG-EG is enabled, the step is four (in Decay and Sustain phases).
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
Times between the level changes are the same in both modes.
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
Important:
Decay 1 Level (so called SL) is compared to actual SSG-EG output, so
it is the same in both SSG and no-SSG modes, with this exception:
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
when the SSG-EG is enabled and is generating raising levels
(when the EG output is inverted) the SL will be found at wrong level !!!
For example, when SL=02:
0 -6 = -6dB in non-inverted EG output
96-6 = -90dB in inverted EG output
Which means that EG compares its level to SL as usual, and that the
output is simply inverted afterall.
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
The Yamaha's manuals say that AR should be set to 0x1f (max speed).
That is not necessary, but then EG will be generating Attack phase.
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
*/
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case 0xa0:
switch( OPN_SLOT(r) ){
case 0: /* 0xa0-0xa2 : FNUM1 */
{
UINT32 fn = (((UINT32)((ym2612.OPN.ST.fn_h)&7))<<8) + v;
UINT8 blk = ym2612.OPN.ST.fn_h>>3;
/* keyscale code */
CH->kcode = (blk<<2) | opn_fktable[fn >> 7];
/* phase increment counter */
CH->fc = ym2612.OPN.fn_table[fn*2]>>(7-blk);
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* store fnum in clear form for LFO PM calculations */
CH->block_fnum = (blk<<11) | fn;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
CH->SLOT[SLOT1].Incr=-1;
}
break;
case 1: /* 0xa4-0xa6 : FNUM2,BLK */
ym2612.OPN.ST.fn_h = v&0x3f;
break;
case 2: /* 0xa8-0xaa : 3CH FNUM1 */
if(r < 0x100)
{
UINT32 fn = (((UINT32)(ym2612.OPN.SL3.fn_h&7))<<8) + v;
UINT8 blk = ym2612.OPN.SL3.fn_h>>3;
/* keyscale code */
ym2612.OPN.SL3.kcode[c]= (blk<<2) | opn_fktable[fn >> 7];
/* phase increment counter */
ym2612.OPN.SL3.fc[c] = ym2612.OPN.fn_table[fn*2]>>(7-blk);
ym2612.OPN.SL3.block_fnum[c] = (blk<<11) | fn; //fn;
ym2612.CH[2].SLOT[SLOT1].Incr=-1;
}
break;
case 3: /* 0xac-0xae : 3CH FNUM2,BLK */
if(r < 0x100)
ym2612.OPN.SL3.fn_h = v&0x3f;
break;
2007-08-10 20:34:06 +00:00
}
break;
2008-08-07 12:26:07 +00:00
case 0xb0:
switch( OPN_SLOT(r) ){
case 0: /* 0xb0-0xb2 : FB,ALGO */
{
int feedback = (v>>3)&7;
CH->ALGO = v&7;
CH->FB = feedback ? feedback+6 : 0;
setup_connection( CH, c );
}
break;
case 1: /* 0xb4-0xb6 : L , R , AMS , PMS (ym2612/YM2610B/YM2610/YM2608) */
/* b0-2 PMS */
CH->pms = (v & 7) * 32; /* CH->pms = PM depth * 32 (index in lfo_pm_table) */
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* b4-5 AMS */
CH->ams = lfo_ams_depth_shift[(v>>4) & 0x03];
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* PAN : b7 = L, b6 = R */
ym2612.OPN.pan[ c*2 ] = (v & 0x80) ? ~0 : 0;
ym2612.OPN.pan[ c*2+1 ] = (v & 0x40) ? ~0 : 0;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
break;
2007-08-10 20:34:06 +00:00
}
break;
}
}
2008-08-07 12:26:07 +00:00
/* Generate 32bits samples for ym2612 */
static long dac;
int int_cnt; // Interpolation calculation
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
void YM2612UpdateOne(int **buffer, int length)
{
int i;
int *bufL,*bufR;
int lt,rt;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* set buffer */
bufL = buffer[0];
bufR = buffer[1];
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
/* refresh PG and EG */
refresh_fc_eg_chan(&ym2612.CH[0]);
refresh_fc_eg_chan(&ym2612.CH[1]);
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
if (ym2612.OPN.ST.mode & 0xC0)
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
/* 3SLOT MODE (operator order is 0,1,3,2) */
if(ym2612.CH[2].SLOT[SLOT1].Incr==-1)
{
refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT1] , ym2612.OPN.SL3.fc[1] , ym2612.OPN.SL3.kcode[1] );
refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT2] , ym2612.OPN.SL3.fc[2] , ym2612.OPN.SL3.kcode[2] );
refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT3] , ym2612.OPN.SL3.fc[0] , ym2612.OPN.SL3.kcode[0] );
refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT4] , ym2612.CH[2].fc , ym2612.CH[2].kcode );
}
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
else refresh_fc_eg_chan(&ym2612.CH[2]);
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
refresh_fc_eg_chan(&ym2612.CH[3]);
refresh_fc_eg_chan(&ym2612.CH[4]);
refresh_fc_eg_chan(&ym2612.CH[5]);
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
int_cnt = ym2612.OPN.ST.Inter_Cnt;
2007-08-10 20:34:06 +00:00
/* buffering */
for(i=0; i < length ; i++)
{
2008-08-07 12:26:07 +00:00
advance_lfo();
2007-08-10 20:34:06 +00:00
/* clear outputs */
out_fm[0] = 0;
out_fm[1] = 0;
out_fm[2] = 0;
out_fm[3] = 0;
out_fm[4] = 0;
out_fm[5] = 0;
/* advance envelope generator */
2008-08-07 12:26:07 +00:00
ym2612.OPN.eg_timer += ym2612.OPN.eg_timer_add;
while (ym2612.OPN.eg_timer >= ym2612.OPN.eg_timer_overflow)
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
ym2612.OPN.eg_timer -= ym2612.OPN.eg_timer_overflow;
ym2612.OPN.eg_cnt++;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
advance_eg_channel(&ym2612.CH[0].SLOT[SLOT1]);
advance_eg_channel(&ym2612.CH[1].SLOT[SLOT1]);
advance_eg_channel(&ym2612.CH[2].SLOT[SLOT1]);
advance_eg_channel(&ym2612.CH[3].SLOT[SLOT1]);
advance_eg_channel(&ym2612.CH[4].SLOT[SLOT1]);
advance_eg_channel(&ym2612.CH[5].SLOT[SLOT1]);
2007-08-10 20:34:06 +00:00
}
/* calculate FM */
2008-08-07 12:26:07 +00:00
chan_calc(&ym2612.CH[0]);
chan_calc(&ym2612.CH[1]);
chan_calc(&ym2612.CH[2]);
chan_calc(&ym2612.CH[3]);
chan_calc(&ym2612.CH[4]);
/* DAC Mode */
if (ym2612.dacen)
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
/* High Pass Filter */
dac = (ym2612.dacout << 15) - dac_highpass;
2007-08-10 20:34:06 +00:00
dac_highpass += dac >> 9;
dac >>= 15;
2008-08-07 12:26:07 +00:00
*(ym2612.CH[5].connect4) += (int)dac;/**/
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
else chan_calc(&ym2612.CH[5]);
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
if (config.hq_fm)
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
if ((int_cnt += ym2612.OPN.ST.Inter_Step) & 0x04000)
{
int_cnt &= 0x3FFF;
old_out_fm[0] = (((int_cnt ^ 0x3FFF) * out_fm[0]) + (int_cnt * old_out_fm[0])) >> 14;
old_out_fm[1] = (((int_cnt ^ 0x3FFF) * out_fm[1]) + (int_cnt * old_out_fm[1])) >> 14;
old_out_fm[2] = (((int_cnt ^ 0x3FFF) * out_fm[2]) + (int_cnt * old_out_fm[2])) >> 14;
old_out_fm[3] = (((int_cnt ^ 0x3FFF) * out_fm[3]) + (int_cnt * old_out_fm[3])) >> 14;
old_out_fm[4] = (((int_cnt ^ 0x3FFF) * out_fm[4]) + (int_cnt * old_out_fm[4])) >> 14;
old_out_fm[5] = (((int_cnt ^ 0x3FFF) * out_fm[5]) + (int_cnt * old_out_fm[5])) >> 14;
lt = ((old_out_fm[0]>>0) & ym2612.OPN.pan[0]);
rt = ((old_out_fm[0]>>0) & ym2612.OPN.pan[1]);
lt += ((old_out_fm[1]>>0) & ym2612.OPN.pan[2]);
rt += ((old_out_fm[1]>>0) & ym2612.OPN.pan[3]);
lt += ((old_out_fm[2]>>0) & ym2612.OPN.pan[4]);
rt += ((old_out_fm[2]>>0) & ym2612.OPN.pan[5]);
lt += ((old_out_fm[3]>>0) & ym2612.OPN.pan[6]);
rt += ((old_out_fm[3]>>0) & ym2612.OPN.pan[7]);
lt += ((old_out_fm[4]>>0) & ym2612.OPN.pan[8]);
rt += ((old_out_fm[4]>>0) & ym2612.OPN.pan[9]);
lt += ((old_out_fm[5]>>0) & ym2612.OPN.pan[10]);
rt += ((old_out_fm[5]>>0) & ym2612.OPN.pan[11]);
/* limiter */
Limit(lt,MAXOUT,MINOUT);
Limit(rt,MAXOUT,MINOUT);
/* buffering */
bufL[i] = lt;
bufR[i] = rt;
/* timer A control */
INTERNAL_TIMER_A();
}
else i--;
old_out_fm[0] = out_fm[0];
old_out_fm[1] = out_fm[1];
old_out_fm[2] = out_fm[2];
old_out_fm[3] = out_fm[3];
old_out_fm[4] = out_fm[4];
old_out_fm[5] = out_fm[5];
}
else
{
lt = ((out_fm[0]>>0) & ym2612.OPN.pan[0]);
rt = ((out_fm[0]>>0) & ym2612.OPN.pan[1]);
lt += ((out_fm[1]>>0) & ym2612.OPN.pan[2]);
rt += ((out_fm[1]>>0) & ym2612.OPN.pan[3]);
lt += ((out_fm[2]>>0) & ym2612.OPN.pan[4]);
rt += ((out_fm[2]>>0) & ym2612.OPN.pan[5]);
lt += ((out_fm[3]>>0) & ym2612.OPN.pan[6]);
rt += ((out_fm[3]>>0) & ym2612.OPN.pan[7]);
lt += ((out_fm[4]>>0) & ym2612.OPN.pan[8]);
rt += ((out_fm[4]>>0) & ym2612.OPN.pan[9]);
lt += ((out_fm[5]>>0) & ym2612.OPN.pan[10]);
rt += ((out_fm[5]>>0) & ym2612.OPN.pan[11]);
/* limiter */
Limit(lt,MAXOUT,MINOUT);
Limit(rt,MAXOUT,MINOUT);
/* buffering */
bufL[i] = lt;
bufR[i] = rt;
/* timer A control */
INTERNAL_TIMER_A();
}
}
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
INTERNAL_TIMER_B(length);
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
ym2612.OPN.ST.Inter_Cnt = int_cnt;
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
/* initialize ym2612 emulator(s) */
int YM2612Init(int clock, int rate)
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
memset(&ym2612,0,sizeof(YM2612));
init_tables();
ym2612.OPN.ST.clock = clock;
ym2612.OPN.ST.rate = rate;
YM2612ResetChip();
return 0;
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
/* reset */
int YM2612ResetChip(void)
2007-08-10 20:34:06 +00:00
{
int i;
2008-08-07 12:26:07 +00:00
OPNSetPres(6*24);
OPNWriteMode(0x27,0x30); /* mode 0 , timer reset */
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
ym2612.OPN.eg_timer = 0;
ym2612.OPN.eg_cnt = 0;
ym2612.OPN.ST.status = 0;
ym2612.OPN.ST.mode = 0;
ym2612.OPN.ST.TA = 0;
ym2612.OPN.ST.TAL = 0;
ym2612.OPN.ST.TAC = 0;
ym2612.OPN.ST.TB = 0;
ym2612.OPN.ST.TBL = 0;
ym2612.OPN.ST.TBC = 0;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
reset_channels(&ym2612.CH[0] , 6 );
2007-08-10 20:34:06 +00:00
for(i = 0xb6 ; i >= 0xb4 ; i-- )
{
2008-08-07 12:26:07 +00:00
OPNWriteReg(i ,0xc0);
OPNWriteReg(i|0x100,0xc0);
2007-08-10 20:34:06 +00:00
}
for(i = 0xb2 ; i >= 0x30 ; i-- )
{
2008-08-07 12:26:07 +00:00
OPNWriteReg(i ,0);
OPNWriteReg(i|0x100,0);
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
for(i = 0x26 ; i >= 0x20 ; i-- ) OPNWriteReg(i,0);
2007-08-10 20:34:06 +00:00
/* DAC mode clear */
2008-08-07 12:26:07 +00:00
ym2612.dacen = 0;
ym2612.dacout = 0;
2007-08-10 20:34:06 +00:00
dac_highpass = 0;
2008-08-07 12:26:07 +00:00
/* clear outputs */
old_out_fm[0] = 0;
old_out_fm[1] = 0;
old_out_fm[2] = 0;
old_out_fm[3] = 0;
old_out_fm[4] = 0;
old_out_fm[5] = 0;
return 0;
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
/* ym2612 write */
2007-08-10 20:34:06 +00:00
/* n = number */
/* a = address */
/* v = value */
2008-08-07 12:26:07 +00:00
int YM2612Write(unsigned char a, unsigned char v)
2007-08-10 20:34:06 +00:00
{
int addr;
2008-08-07 12:26:07 +00:00
//v &= 0xff; /* adjust to 8 bit bus */
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
switch( a&3 )
{
case 0: /* address port 0 */
ym2612.OPN.ST.address[0] = v;
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case 1: /* data port 0 */
addr = ym2612.OPN.ST.address[0];
fm_reg[0][addr] = v;
switch( addr & 0xf0 )
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
case 0x20: /* 0x20-0x2f Mode */
switch( addr )
{
case 0x2a: /* DAC data (ym2612) */
ym2612.dacout = ((int)v - 0x80) << 6; /* level unknown (5 is too low, 8 is too loud) */
break;
case 0x2b: /* DAC Sel (ym2612) */
/* b7 = dac enable */
ym2612.dacen = v & 0x80;
break;
default: /* OPN section */
/* write register */
OPNWriteMode(addr,v);
}
break;
default: /* 0x30-0xff OPN section */
/* write register */
OPNWriteReg(addr,v);
2007-08-10 20:34:06 +00:00
}
break;
2008-08-07 12:26:07 +00:00
case 2: /* address port 1 */
ym2612.OPN.ST.address[1] = v;
break;
2007-08-10 20:34:06 +00:00
2008-08-07 12:26:07 +00:00
case 3: /* data port 1 */
addr = ym2612.OPN.ST.address[1];
fm_reg[1][addr] = v;
OPNWriteReg(addr | 0x100,v);
break;
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
return 0;
2007-08-10 20:34:06 +00:00
}
2008-08-07 12:26:07 +00:00
int YM2612Read(void)
2007-08-10 20:34:06 +00:00
{
2008-08-07 12:26:07 +00:00
return ym2612.OPN.ST.status;
2007-08-10 20:34:06 +00:00
}