.fixed PSG Noise Boost on init

.minor optimizations to SN76489 core
This commit is contained in:
ekeeke31 2011-04-30 12:58:14 +00:00
parent 8af85558d0
commit b0999e0be3

View File

@ -94,33 +94,33 @@ void SN76489_Init(double PSGClockValue, int SamplingRate)
void SN76489_Reset()
{
SN76489_Context *chip = &SN76489;
int i;
for(i = 0; i <= 3; i++)
{
/* Initialise PSG state */
chip->Registers[2*i] = 1; /* tone freq=1 */
chip->Registers[2*i+1] = 0xf; /* vol=off */
SN76489.Registers[2*i] = 1; /* tone freq=1 */
SN76489.Registers[2*i+1] = 0xf; /* vol=off */
/* Set counters to 0 */
chip->ToneFreqVals[i] = 0;
SN76489.ToneFreqVals[i] = 0;
/* Set flip-flops to 1 */
chip->ToneFreqPos[i] = 1;
SN76489.ToneFreqPos[i] = 1;
/* Clear channels output */
chip->Channels[i] = 0;
SN76489.Channels[i] = 0;
/* Clear current amplitudes in delta buffer */
chip->chan_amp[i] = 0;
SN76489.chan_amp[i] = 0;
}
chip->LatchedRegister=0;
SN76489.LatchedRegister=0;
/* Initialise noise generator */
chip->NoiseShiftRegister=NoiseInitialState;
chip->NoiseFreq = 0x10;
SN76489.NoiseShiftRegister=NoiseInitialState;
SN76489.NoiseFreq = 0x10;
SN76489.BoostNoise = config.psgBoostNoise;
/* Clear Blip delta buffer */
if (blip) blip_clear(blip);
@ -140,6 +140,7 @@ void SN76489_BoostNoise(int boost)
void SN76489_SetContext(uint8 *data)
{
memcpy(&SN76489, data, sizeof(SN76489_Context));
}
@ -160,15 +161,13 @@ int SN76489_GetContextSize(void)
void SN76489_Write(int data)
{
SN76489_Context *chip = &SN76489;
if (data & 0x80)
{
/* Latch byte %1 cc t dddd */
chip->LatchedRegister = (data >> 4) & 0x07;
SN76489.LatchedRegister = (data >> 4) & 0x07;
}
int LatchedRegister = chip->LatchedRegister;
int LatchedRegister = SN76489.LatchedRegister;
switch (LatchedRegister)
{
@ -178,121 +177,121 @@ void SN76489_Write(int data)
if (data & 0x80)
{
/* Data byte %1 cc t dddd */
chip->Registers[LatchedRegister] = (chip->Registers[LatchedRegister] & 0x3f0) | (data & 0xf);
SN76489.Registers[LatchedRegister] = (SN76489.Registers[LatchedRegister] & 0x3f0) | (data & 0xf);
}
else
{
/* Data byte %0 - dddddd */
chip->Registers[LatchedRegister] = (chip->Registers[LatchedRegister] & 0x00f) | ((data & 0x3f) << 4);
SN76489.Registers[LatchedRegister] = (SN76489.Registers[LatchedRegister] & 0x00f) | ((data & 0x3f) << 4);
}
/* Zero frequency changed to 1 to avoid div/0 */
if (chip->Registers[LatchedRegister] == 0) chip->Registers[LatchedRegister] = 1;
if (SN76489.Registers[LatchedRegister] == 0) SN76489.Registers[LatchedRegister] = 1;
break;
case 1:
case 3:
case 5: /* Channel attenuation */
chip->Registers[LatchedRegister] = data & 0x0f;
chip->Channels[LatchedRegister>>1] = PSGVolumeValues[data&0x0f];
SN76489.Registers[LatchedRegister] = data & 0x0f;
SN76489.Channels[LatchedRegister>>1] = PSGVolumeValues[data&0x0f];
break;
case 6: /* Noise */
chip->Registers[6] = data & 0x0f;
chip->NoiseShiftRegister = NoiseInitialState; /* reset shift register */
chip->NoiseFreq = 0x10 << (data&0x3); /* set noise signal generator frequency */
SN76489.Registers[6] = data & 0x0f;
SN76489.NoiseShiftRegister = NoiseInitialState; /* reset shift register */
SN76489.NoiseFreq = 0x10 << (data&0x3); /* set noise signal generator frequency */
break;
case 7: /* Noise attenuation */
chip->Registers[7] = data&0x0f;
chip->Channels[3] = PSGVolumeValues[data&0x0f] << chip->BoostNoise;
SN76489.Registers[7] = data & 0x0f;
SN76489.Channels[3] = PSGVolumeValues[data&0x0f] << SN76489.BoostNoise;
break;
}
}
/* Updates tone amplitude in delta buffer. Call whenever amplitude might have changed. */
static void UpdateToneAmplitude(SN76489_Context* chip, int i, int time)
static void UpdateToneAmplitude(int i, int time)
{
int delta = (chip->Channels[i] * chip->ToneFreqPos[i]) - chip->chan_amp[i];
int delta = (SN76489.Channels[i] * SN76489.ToneFreqPos[i]) - SN76489.chan_amp[i];
if (delta != 0)
{
chip->chan_amp[i] += delta;
SN76489.chan_amp[i] += delta;
blip_add(blip, time, delta);
}
}
/* Updates noise amplitude in delta buffer. Call whenever amplitude might have changed. */
static void UpdateNoiseAmplitude(SN76489_Context* chip, int time)
static void UpdateNoiseAmplitude(int time)
{
int delta = (chip->Channels[3] * ( chip->NoiseShiftRegister & 0x1 )) - chip->chan_amp[3];
int delta = (SN76489.Channels[3] * ( SN76489.NoiseShiftRegister & 0x1 )) - SN76489.chan_amp[3];
if (delta != 0)
{
chip->chan_amp[3] += delta;
SN76489.chan_amp[3] += delta;
blip_add(blip, time, delta);
}
}
/* Runs tone channel for clock_length clocks */
static void RunTone(SN76489_Context* chip, int i, int clock_length)
static void RunTone(int i, int clock_length)
{
int time;
/* Update in case a register changed etc. */
UpdateToneAmplitude(chip, i, 0);
UpdateToneAmplitude(i, 0);
/* Time of next transition */
time = chip->ToneFreqVals[i];
time = SN76489.ToneFreqVals[i];
/* Process any transitions that occur within clocks we're running */
while (time < clock_length)
{
if (chip->Registers[i*2]>PSG_CUTOFF) {
if (SN76489.Registers[i*2]>PSG_CUTOFF) {
/* Flip the flip-flop */
chip->ToneFreqPos[i] = -chip->ToneFreqPos[i];
SN76489.ToneFreqPos[i] = -SN76489.ToneFreqPos[i];
} else {
/* stuck value */
chip->ToneFreqPos[i] = 1;
SN76489.ToneFreqPos[i] = 1;
}
UpdateToneAmplitude(chip, i, time);
UpdateToneAmplitude(i, time);
/* Advance to time of next transition */
time += chip->Registers[i*2];
time += SN76489.Registers[i*2];
}
/* Calculate new value for register, now that next transition is past number of clocks we're running */
chip->ToneFreqVals[i] = time - clock_length;
SN76489.ToneFreqVals[i] = time - clock_length;
}
/* Runs noise channel for clock_length clocks */
static void RunNoise(SN76489_Context* chip, int clock_length)
static void RunNoise(int clock_length)
{
int time;
/* Noise channel: match to tone2 if in slave mode */
int NoiseFreq = chip->NoiseFreq;
int NoiseFreq = SN76489.NoiseFreq;
if (NoiseFreq == 0x80)
{
NoiseFreq = chip->Registers[2*2];
chip->ToneFreqVals[3] = chip->ToneFreqVals[2];
NoiseFreq = SN76489.Registers[2*2];
SN76489.ToneFreqVals[3] = SN76489.ToneFreqVals[2];
}
/* Update in case a register changed etc. */
UpdateNoiseAmplitude(chip, 0);
UpdateNoiseAmplitude(0);
/* Time of next transition */
time = chip->ToneFreqVals[3];
time = SN76489.ToneFreqVals[3];
/* Process any transitions that occur within clocks we're running */
while ( time < clock_length )
{
/* Flip the flip-flop */
chip->ToneFreqPos[3] = -chip->ToneFreqPos[3];
if (chip->ToneFreqPos[3] == 1)
SN76489.ToneFreqPos[3] = -SN76489.ToneFreqPos[3];
if (SN76489.ToneFreqPos[3] == 1)
{
/* On the positive edge of the square wave (only once per cycle) */
int Feedback = chip->NoiseShiftRegister;
if ( chip->Registers[6] & 0x4 )
int Feedback = SN76489.NoiseShiftRegister;
if ( SN76489.Registers[6] & 0x4 )
{
/* White noise */
/* Calculate parity of fed-back bits for feedback */
@ -304,8 +303,8 @@ static void RunNoise(SN76489_Context* chip, int clock_length)
else /* Periodic noise */
Feedback = Feedback & 1;
chip->NoiseShiftRegister = (chip->NoiseShiftRegister >> 1) | (Feedback << (SRW_SEGAVDP - 1));
UpdateNoiseAmplitude(chip, time);
SN76489.NoiseShiftRegister = (SN76489.NoiseShiftRegister >> 1) | (Feedback << (SRW_SEGAVDP - 1));
UpdateNoiseAmplitude(time);
}
/* Advance to time of next transition */
@ -313,24 +312,22 @@ static void RunNoise(SN76489_Context* chip, int clock_length)
}
/* Calculate new value for register, now that next transition is past number of clocks we're running */
chip->ToneFreqVals[3] = time - clock_length;
SN76489.ToneFreqVals[3] = time - clock_length;
}
void SN76489_Update(INT16 *buffer, int length)
{
int i;
SN76489_Context *chip = &SN76489;
/* Determine how many clocks we need to run until 'length' samples are available */
int clock_length = blip_clocks_needed(blip, length);
/* Run noise first, since it might use current value of third tone frequency counter */
RunNoise(chip, clock_length);
RunNoise(clock_length);
/* Run tone channels */
for( i = 0; i <= 2; ++i )
RunTone(chip, i, clock_length);
RunTone(i, clock_length);
/* Read samples into output buffer */
blip_end_frame(blip, clock_length);