[Core/Input] added support for XE-A1P analog controller on both ports

This commit is contained in:
EkeEke 2013-06-27 01:49:10 +02:00
parent f4f860e763
commit c5cc7d93af
8 changed files with 82 additions and 50 deletions

View File

@ -51,15 +51,15 @@ void activator_reset(int index)
activator[index].Counter = 0;
}
INLINE unsigned char activator_read(int port)
INLINE unsigned char activator_read(int index)
{
/* IR sensors 1-16 data (active low) */
uint16 data = ~input.pad[port << 2];
uint16 data = ~input.pad[index << 2];
/* D1 = D0 (data is ready) */
uint8 temp = (activator[port].State & 0x01) << 1;
uint8 temp = (activator[index].State & 0x01) << 1;
switch (activator[port].Counter)
switch (activator[index].Counter)
{
case 0: /* x x x x 0 1 0 0 */
temp |= 0x04;

View File

@ -198,6 +198,13 @@ void input_init(void)
break;
}
case SYSTEM_XE_A1P:
{
input.dev[4] = DEVICE_XE_A1P;
player++;
break;
}
case SYSTEM_MENACER:
{
input.dev[4] = DEVICE_LIGHTGUN;
@ -305,19 +312,19 @@ void input_reset(void)
case DEVICE_XE_A1P:
{
xe_a1p_reset();
xe_a1p_reset(i);
break;
}
case DEVICE_PADDLE:
{
paddle_reset(i >> 2);
paddle_reset(i);
break;
}
case DEVICE_SPORTSPAD:
{
sportspad_reset(i >> 2);
sportspad_reset(i);
break;
}

View File

@ -45,8 +45,8 @@ static struct
void paddle_reset(int index)
{
input.analog[index << 2][0] = 128;
paddle[index].State = 0x40;
input.analog[index][0] = 128;
paddle[index>>2].State = 0x40;
}
INLINE unsigned char paddle_read(int port)

View File

@ -46,10 +46,10 @@ static struct
void sportspad_reset(int index)
{
input.analog[index << 2][0] = 128;
input.analog[index << 2][1] = 128;
sportspad[index].State = 0x40;
sportspad[index].Counter = 0;
input.analog[index][0] = 128;
input.analog[index][1] = 128;
sportspad[index>>2].State = 0x40;
sportspad[index>>2].Counter = 0;
}
INLINE unsigned char sportspad_read(int port)

View File

@ -43,39 +43,41 @@ static struct
uint8 State;
uint8 Counter;
uint8 Latency;
} xe_a1p;
} xe_a1p[2];
void xe_a1p_reset(void)
void xe_a1p_reset(int index)
{
input.analog[0][0] = 128;
input.analog[0][1] = 128;
input.analog[1][0] = 128;
xe_a1p.State = 0x40;
xe_a1p.Counter = 0;
xe_a1p.Latency = 0;
input.analog[index][0] = 128;
input.analog[index][1] = 128;
input.analog[index+1][0] = 128;
index >>= 2;
xe_a1p[index].State = 0x40;
xe_a1p[index].Counter = 0;
xe_a1p[index].Latency = 0;
}
unsigned char xe_a1p_read()
INLINE unsigned char xe_a1p_read(int index)
{
unsigned int temp = 0x40;
unsigned int port = index << 2;
/* Left Stick X & Y analog values (bidirectional) */
int x = input.analog[0][0];
int y = input.analog[0][1];
int x = input.analog[port][0];
int y = input.analog[port][1];
/* Right Stick X or Y value (unidirectional) */
int z = input.analog[1][0];
int z = input.analog[port+1][0];
/* Buttons status (active low) */
uint16 pad = ~input.pad[0];
uint16 pad = ~input.pad[port];
/* Current internal cycle (0-7) */
unsigned int cycle = xe_a1p.Counter & 7;
unsigned int cycle = xe_a1p[index].Counter & 7;
/* Current 4-bit data cycle */
/* There are eight internal data cycle for each 5 acquisition sequence */
/* First 4 return the same 4-bit data, next 4 return next 4-bit data */
switch (xe_a1p.Counter >> 2)
switch (xe_a1p[index].Counter >> 2)
{
case 0:
temp |= ((pad >> 8) & 0x0F); /* E1 E2 Start Select */
@ -119,42 +121,62 @@ unsigned char xe_a1p_read()
cycle = (cycle + 1) & 7;
/* Update internal cycle counter */
xe_a1p.Counter = (xe_a1p.Counter & ~7) | cycle;
xe_a1p[index].Counter = (xe_a1p[index].Counter & ~7) | cycle;
/* Update internal latency on each read */
xe_a1p.Latency++;
xe_a1p[index].Latency++;
return temp;
}
void xe_a1p_write(unsigned char data, unsigned char mask)
INLINE void xe_a1p_write(int index, unsigned char data, unsigned char mask)
{
/* update bits set as output only */
data = (xe_a1p.State & ~mask) | (data & mask);
data = (xe_a1p[index].State & ~mask) | (data & mask);
/* look for TH 1->0 transitions */
if (!(data & 0x40) && (xe_a1p.State & 0x40))
if (!(data & 0x40) && (xe_a1p[index].State & 0x40))
{
/* reset acquisition cycle */
xe_a1p.Latency = xe_a1p.Counter = 0;
xe_a1p[index].Latency = xe_a1p[index].Counter = 0;
}
else
{
/* some games immediately write new data to TH */
/* so we make sure first sequence has actually been handled */
if (xe_a1p.Latency > 2)
if (xe_a1p[index].Latency > 2)
{
/* next acquisition sequence */
xe_a1p.Counter = (xe_a1p.Counter & ~7) + 8;
xe_a1p[index].Counter = (xe_a1p[index].Counter & ~7) + 8;
/* 5 sequence max with 8 cycles each */
if (xe_a1p.Counter > 32)
if (xe_a1p[index].Counter > 32)
{
xe_a1p.Counter = 32;
xe_a1p[index].Counter = 32;
}
}
}
/* update internal state */
xe_a1p.State = data;
xe_a1p[index].State = data;
}
unsigned char xe_a1p_1_read(void)
{
return xe_a1p_read(0);
}
unsigned char xe_a1p_2_read(void)
{
return xe_a1p_read(1);
}
void xe_a1p_1_write(unsigned char data, unsigned char mask)
{
xe_a1p_write(0, data, mask);
}
void xe_a1p_2_write(unsigned char data, unsigned char mask)
{
xe_a1p_write(1, data, mask);
}

View File

@ -40,8 +40,10 @@
#define _XE_A1PH_
/* Function prototypes */
extern void xe_a1p_reset(void);
extern unsigned char xe_a1p_read(void);
extern void xe_a1p_write(unsigned char data, unsigned char mask);
extern void xe_a1p_reset(int index);
extern unsigned char xe_a1p_1_read(void);
extern unsigned char xe_a1p_2_read(void);
extern void xe_a1p_1_write(unsigned char data, unsigned char mask);
extern void xe_a1p_2_write(unsigned char data, unsigned char mask);
#endif

View File

@ -110,8 +110,8 @@ void io_init(void)
case SYSTEM_XE_A1P:
{
port[0].data_w = xe_a1p_write;
port[0].data_r = xe_a1p_read;
port[0].data_w = xe_a1p_1_write;
port[0].data_r = xe_a1p_1_read;
break;
}
@ -181,6 +181,13 @@ void io_init(void)
break;
}
case SYSTEM_XE_A1P:
{
port[1].data_w = xe_a1p_2_write;
port[1].data_r = xe_a1p_2_read;
break;
}
case SYSTEM_ACTIVATOR:
{
port[1].data_w = activator_2_write;

View File

@ -2183,12 +2183,6 @@ static void ctrlmenu(void)
input.system[1] += 2;
}
/* XE-1AP on port A only */
if (input.system[1] == SYSTEM_XE_A1P)
{
input.system[1]++;
}
/* 4-wayplay uses both ports */
if (input.system[1] == SYSTEM_WAYPLAY)
{