fixed LFO implementation (YM2612)

fixed regression with EG update being done too early (YM2612)
This commit is contained in:
ekeeke31 2009-07-24 16:55:32 +00:00
parent ee2d34a48f
commit c8c71b9bff

View File

@ -14,11 +14,14 @@
** **
** 2006~2009 Eke-Eke (Genesis Plus GX): ** 2006~2009 Eke-Eke (Genesis Plus GX):
** Credits to Nemesis (@spritesmind.net), most of those fixes came from his tests on a Model 1 Sega Mega Drive ** Credits to Nemesis (@spritesmind.net), most of those fixes came from his tests on a Model 1 Sega Mega Drive
** More informations here: http://gendev.spritesmind.net/forum/viewtopic.php?t=386 ** More informations at http://gendev.spritesmind.net/forum/viewtopic.php?t=386
** **
** - removed unused multichip support ** - removed unused multichip support
** - added YM2612 Context external access functions ** - added YM2612 Context external access functions
** - implemented LFO phase update in CH3 special mode (Warlock birds, Alladin bug sound) ** - fixed LFO implementation (Spider-Man & Venom : Separation Anxiety intro,Warlock birds, Alladin bug sound):
** .added support for CH3 special mode
** .fixed LFO update: it is done after output calculation, like EG/PG updates
** .fixed LFO on/off behavior: LFO is reset when switched ON and holded at its current level when switched OFF (AM & PM can still be applied)
** - improved internal timers emulation ** - improved internal timers emulation
** - fixed Attack Rate update in some specific case (Batman & Robin intro) ** - fixed Attack Rate update in some specific case (Batman & Robin intro)
** - fixed EG behavior when Attack Rate is maximal ** - fixed EG behavior when Attack Rate is maximal
@ -31,7 +34,7 @@
** - adjusted some EG rates ** - adjusted some EG rates
** - modified address/data port behavior ** - modified address/data port behavior
** **
** TODO: complete SSG-EG documentation ** TODO: fix SSG-EG documentation, BUSY flag support
** **
** **
@ -134,6 +137,11 @@
#define FREQ_MASK ((1<<FREQ_SH)-1) #define FREQ_MASK ((1<<FREQ_SH)-1)
#define MAXOUT (+32767)
#define MINOUT (-32768)
/* envelope generator */
#define ENV_BITS 10 #define ENV_BITS 10
#define ENV_LEN (1<<ENV_BITS) #define ENV_LEN (1<<ENV_BITS)
#define ENV_STEP (128.0/ENV_LEN) #define ENV_STEP (128.0/ENV_LEN)
@ -147,17 +155,13 @@
#define EG_REL 1 #define EG_REL 1
#define EG_OFF 0 #define EG_OFF 0
/* operator unit */
#define SIN_BITS 10 #define SIN_BITS 10
#define SIN_LEN (1<<SIN_BITS) #define SIN_LEN (1<<SIN_BITS)
#define SIN_MASK (SIN_LEN-1) #define SIN_MASK (SIN_LEN-1)
#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */ #define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
#define MAXOUT (+32767)
#define MINOUT (-32768)
/* TL_TAB_LEN is calculated as: /* TL_TAB_LEN is calculated as:
* 13 - sinus amplitude bits (Y axis) * 13 - sinus amplitude bits (Y axis)
* 2 - sinus sign bit (Y axis) * 2 - sinus sign bit (Y axis)
@ -177,6 +181,7 @@ static unsigned int sin_tab[SIN_LEN];
/* 0.75, 1.5, 3, 6, 12, 24, 48 (dB)*/ /* 0.75, 1.5, 3, 6, 12, 24, 48 (dB)*/
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
/* attenuation value (10 bits) = (SL << 2) << 3 */
#define SC(db) (UINT32) ( db * (4.0/ENV_STEP) ) #define SC(db) (UINT32) ( db * (4.0/ENV_STEP) )
static const UINT32 sl_table[16]={ static const UINT32 sl_table[16]={
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
@ -540,7 +545,6 @@ typedef struct
{ {
UINT32 clock; /* master clock (Hz) */ UINT32 clock; /* master clock (Hz) */
UINT32 rate; /* sampling rate (Hz) */ UINT32 rate; /* sampling rate (Hz) */
double freqbase; /* frequency base */
UINT16 address; /* address register */ UINT16 address; /* address register */
UINT8 status; /* status flag */ UINT8 status; /* status flag */
UINT32 mode; /* mode CSM / 3SLOT */ UINT32 mode; /* mode CSM / 3SLOT */
@ -768,7 +772,8 @@ INLINE void set_timers(int v )
if ((ym2612.OPN.ST.mode ^ v) & 0xC0) if ((ym2612.OPN.ST.mode ^ v) & 0xC0)
{ {
ym2612.CH[2].SLOT[SLOT1].Incr=-1; /* recalculate phase (from Gens) */ /* phase increment need to be recalculated */
ym2612.CH[2].SLOT[SLOT1].Incr=-1;
/* CSM mode disabled and CSM key ON active*/ /* CSM mode disabled and CSM key ON active*/
if (((v & 0xC0) != 0x80) && ym2612.OPN.SL3.key_csm) if (((v & 0xC0) != 0x80) && ym2612.OPN.SL3.key_csm)
@ -989,48 +994,33 @@ INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm)
/* advance LFO to next sample */ /* advance LFO to next sample */
INLINE void advance_lfo() INLINE void advance_lfo()
{ {
UINT8 pos; int pos;
/*UINT8 prev_pos;*/
if (ym2612.OPN.lfo_inc) /* LFO enabled ? */ if (ym2612.OPN.lfo_inc) /* LFO enabled ? */
{ {
/*prev_pos = ym2612.OPN.lfo_cnt>>LFO_SH & 127;*/ /* increment LFO counter */
/* when LFO is enabled, one level will last for 108, 77, 71, 67, 62, 44, 8 or 5 samples */
ym2612.OPN.lfo_cnt += ym2612.OPN.lfo_inc; ym2612.OPN.lfo_cnt += ym2612.OPN.lfo_inc;
/* LFO current position */
pos = ( ym2612.OPN.lfo_cnt >> LFO_SH) & 127; pos = ( ym2612.OPN.lfo_cnt >> LFO_SH) & 127;
/* triangle */
/* update AM when LFO output changes */ /* AM: 0 to 126 step +2, 126 to 0 step -2 */
if (pos<64)
/*if (prev_pos != pos)*/ LFO_AM = pos * 2;
/* actually I can't optimize is this way without rewritting chan_calc() else
to use chip->lfo_am instead of global lfo_am */ LFO_AM = 126 - ((pos&63) * 2);
{
/* triangle */
/* AM: 0 to 126 step +2, 126 to 0 step -2 */
if (pos<64)
LFO_AM = (pos&63) * 2;
else
LFO_AM = 126 - ((pos&63) * 2);
}
/* PM works with 4 times slower clock */ /* PM works with 4 times slower clock */
/*prev_pos >>= 2;*/ LFO_PM = pos >> 2;
pos >>= 2;
/* update PM when LFO output changes */
/*if (prev_pos != pos)*/ /* can't use global lfo_pm for this optimization, must be chip->lfo_pm instead*/
{
LFO_PM = pos;
}
} }
else /* when LFO is disabled, current level is held (fix Spider-Man & Venom : Separation Anxiety) */
/*else
{ {
LFO_AM = 0; LFO_AM = 0;
LFO_PM = 0; LFO_PM = 0;
} }*/
} }
@ -1237,13 +1227,15 @@ INLINE void update_ssg_eg_channel(FM_SLOT *SLOT)
INLINE void update_phase_lfo_slot(FM_SLOT *SLOT , INT32 pms, UINT32 block_fnum) INLINE void update_phase_lfo_slot(FM_SLOT *SLOT , INT32 pms, UINT32 block_fnum)
{ {
UINT32 fnum_lfo = (block_fnum & 0x7f0) << 4; /* ((block_fnum & 0x7f0) >> 4) * 32 * 8; */ UINT32 fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;
INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + pms + LFO_PM ]; INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + pms + LFO_PM ];
if (lfo_fn_table_index_offset) /* LFO phase modulation active */ if (lfo_fn_table_index_offset) /* LFO phase modulation active */
{ {
UINT8 blk = (block_fnum >> 11) & 7; block_fnum = block_fnum*2 + lfo_fn_table_index_offset;
UINT32 fn = (block_fnum*2 + (UINT32)lfo_fn_table_index_offset) & 0xfff;
UINT8 blk = (block_fnum&0x7000) >> 12;
UINT32 fn = block_fnum & 0xfff;
/* keyscale code */ /* keyscale code */
int kc = (blk<<2) | opn_fktable[fn >> 8]; int kc = (blk<<2) | opn_fktable[fn >> 8];
@ -1266,18 +1258,20 @@ INLINE void update_phase_lfo_slot(FM_SLOT *SLOT , INT32 pms, UINT32 block_fnum)
INLINE void update_phase_lfo_channel(FM_CH *CH) INLINE void update_phase_lfo_channel(FM_CH *CH)
{ {
UINT32 block_fnum = CH->block_fnum; UINT32 block_fnum = CH->block_fnum;
UINT32 fnum_lfo = (block_fnum & 0x7f0) << 4; /* ((block_fnum & 0x7f0) >> 4) * 32 * 8; */
UINT32 fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;
INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + CH->pms + LFO_PM ]; INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + CH->pms + LFO_PM ];
if (lfo_fn_table_index_offset) /* LFO phase modulation active */ if (lfo_fn_table_index_offset) /* LFO phase modulation active */
{ {
block_fnum = block_fnum*2 + lfo_fn_table_index_offset;
UINT8 blk = (block_fnum >> 11) & 7; UINT8 blk = (block_fnum&0x7000) >> 12;
UINT32 fn = (block_fnum*2 + (UINT32)lfo_fn_table_index_offset) & 0xfff; UINT32 fn = block_fnum & 0xfff;
/* keyscale code */ /* keyscale code */
int kc = (blk<<2) | opn_fktable[fn >> 8]; int kc = (blk<<2) | opn_fktable[fn >> 8];
/* (frequency) phase increment counter */ /* (frequency) phase increment counter */
int fc = (ym2612.OPN.fn_table[fn]>>(7-blk)); int fc = (ym2612.OPN.fn_table[fn]>>(7-blk));
@ -1435,7 +1429,7 @@ INLINE void refresh_fc_eg_chan(FM_CH *CH )
} }
/* initialize time tables */ /* initialize time tables */
static void init_timetables(const UINT8 *dttable ) static void init_timetables(const UINT8 *dttable, double freqbase)
{ {
int i,d; int i,d;
double rate; double rate;
@ -1445,7 +1439,7 @@ static void init_timetables(const UINT8 *dttable )
{ {
for (i = 0;i <= 31;i++) for (i = 0;i <= 31;i++)
{ {
rate = ((double)dttable[d*32 + i]) * SIN_LEN * ym2612.OPN.ST.freqbase * (1<<FREQ_SH) / ((double)(1<<20)); rate = ((double)dttable[d*32 + i]) * SIN_LEN * freqbase * (1<<FREQ_SH) / ((double)(1<<20));
ym2612.OPN.ST.dt_tab[d][i] = (INT32) rate; ym2612.OPN.ST.dt_tab[d][i] = (INT32) rate;
ym2612.OPN.ST.dt_tab[d+4][i] = -ym2612.OPN.ST.dt_tab[d][i]; ym2612.OPN.ST.dt_tab[d+4][i] = -ym2612.OPN.ST.dt_tab[d][i];
} }
@ -1615,19 +1609,19 @@ static void OPNSetPres(int pres)
int i; int i;
/* frequency base */ /* frequency base */
ym2612.OPN.ST.freqbase = ((double) ym2612.OPN.ST.clock / (double) ym2612.OPN.ST.rate) / ((double) pres); double freqbase = ((double) ym2612.OPN.ST.clock / (double) ym2612.OPN.ST.rate) / ((double) pres);
/* YM2612 running at original frequency (~53267 Hz) */ /* YM2612 running at original frequency (~53267 Hz) */
if (config.hq_fm) ym2612.OPN.ST.freqbase = 1.0; if (config.hq_fm) freqbase = 1.0;
ym2612.OPN.eg_timer_add = (UINT32)((1<<EG_SH) * ym2612.OPN.ST.freqbase); ym2612.OPN.eg_timer_add = (UINT32)((1<<EG_SH) * freqbase);
ym2612.OPN.eg_timer_overflow = ( 3 ) * (1<<EG_SH); ym2612.OPN.eg_timer_overflow = ( 3 ) * (1<<EG_SH);
/* timer increment in usecs (timers are incremented after each updated samples) */ /* timer increment in usecs (timers are incremented after each updated samples) */
ym2612.OPN.ST.TimerBase = (int) (ym2612.OPN.ST.freqbase * 4096.0); ym2612.OPN.ST.TimerBase = (int) ((1 << TIMER_SH) * freqbase);
/* make time tables */ /* make time tables */
init_timetables(dt_tab); init_timetables(dt_tab,freqbase);
/* there are 2048 FNUMs that can be generated using FNUM/BLK registers /* there are 2048 FNUMs that can be generated using FNUM/BLK registers
but LFO works with one more bit of a precision so we really need 4096 elements */ but LFO works with one more bit of a precision so we really need 4096 elements */
@ -1640,18 +1634,18 @@ static void OPNSetPres(int pres)
/* where sample clock is M/144 */ /* where sample clock is M/144 */
/* this means the increment value for one clock sample is FNUM * 2^(B-1) = FNUM * 64 for octave 7 */ /* this means the increment value for one clock sample is FNUM * 2^(B-1) = FNUM * 64 for octave 7 */
/* we also need to handle the ratio between the chip frequency and the emulated frequency (can be 1.0) */ /* we also need to handle the ratio between the chip frequency and the emulated frequency (can be 1.0) */
ym2612.OPN.fn_table[i] = (UINT32)( (double)i * 32 * ym2612.OPN.ST.freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */ ym2612.OPN.fn_table[i] = (UINT32)( (double)i * 32 * freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
} }
/* maximal frequency is required for Phase overflow calculation, register size is 17 bits (Nemesis) */ /* maximal frequency is required for Phase overflow calculation, register size is 17 bits (Nemesis) */
ym2612.OPN.fn_max = (UINT32)( (double)0x20000 * ym2612.OPN.ST.freqbase * (1<<(FREQ_SH-10)) ); ym2612.OPN.fn_max = (UINT32)( (double)0x20000 * freqbase * (1<<(FREQ_SH-10)) );
/* LFO freq. table */ /* LFO freq. table */
for(i = 0; i < 8; i++) for(i = 0; i < 8; i++)
{ {
/* Amplitude modulation: 64 output levels (triangle waveform); 1 level lasts for one of "lfo_samples_per_step" samples */ /* Amplitude modulation: 64 output levels (triangle waveform); 1 level lasts for one of "lfo_samples_per_step" samples */
/* Phase modulation: one entry from lfo_pm_output lasts for one of 4 * "lfo_samples_per_step" samples */ /* Phase modulation: one entry from lfo_pm_output lasts for one of 4 * "lfo_samples_per_step" samples */
ym2612.OPN.lfo_freq[i] = (UINT32)((1.0 / lfo_samples_per_step[i]) * (1<<LFO_SH) * ym2612.OPN.ST.freqbase); ym2612.OPN.lfo_freq[i] = (UINT32)((1.0 / lfo_samples_per_step[i]) * (1<<LFO_SH) * freqbase);
} }
} }
@ -1669,6 +1663,14 @@ INLINE void OPNWriteMode(int r, int v)
case 0x22: /* LFO FREQ (YM2608/YM2610/YM2610B/ym2612) */ case 0x22: /* LFO FREQ (YM2608/YM2610/YM2610B/ym2612) */
if (v&0x08) /* LFO enabled ? */ if (v&0x08) /* LFO enabled ? */
{ {
if (!ym2612.OPN.lfo_inc)
{
/* restart LFO */
ym2612.OPN.lfo_cnt = 0;
LFO_AM = 0;
LFO_PM = 0;
}
ym2612.OPN.lfo_inc = ym2612.OPN.lfo_freq[v&7]; ym2612.OPN.lfo_inc = ym2612.OPN.lfo_freq[v&7];
} }
else else
@ -1678,15 +1680,15 @@ INLINE void OPNWriteMode(int r, int v)
break; break;
case 0x24: /* timer A High 8*/ case 0x24: /* timer A High 8*/
ym2612.OPN.ST.TA = (ym2612.OPN.ST.TA & 0x03)|(((int)v)<<2); ym2612.OPN.ST.TA = (ym2612.OPN.ST.TA & 0x03)|(((int)v)<<2);
ym2612.OPN.ST.TAL = (1024 - ym2612.OPN.ST.TA) << 12; ym2612.OPN.ST.TAL = (1024 - ym2612.OPN.ST.TA) << TIMER_SH;
break; break;
case 0x25: /* timer A Low 2*/ case 0x25: /* timer A Low 2*/
ym2612.OPN.ST.TA = (ym2612.OPN.ST.TA & 0x3fc)|(v&3); ym2612.OPN.ST.TA = (ym2612.OPN.ST.TA & 0x3fc)|(v&3);
ym2612.OPN.ST.TAL = (1024 - ym2612.OPN.ST.TA) << 12; ym2612.OPN.ST.TAL = (1024 - ym2612.OPN.ST.TA) << TIMER_SH;
break; break;
case 0x26: /* timer B */ case 0x26: /* timer B */
ym2612.OPN.ST.TB = v; ym2612.OPN.ST.TB = v;
ym2612.OPN.ST.TBL = (256 - ym2612.OPN.ST.TB) << 16; ym2612.OPN.ST.TBL = (256 - ym2612.OPN.ST.TB) << (TIMER_SH + 4);
break; break;
case 0x27: /* mode, timer control */ case 0x27: /* mode, timer control */
set_timers(v); set_timers(v);
@ -1902,14 +1904,14 @@ INLINE void OPNWriteReg(int r, int v)
} }
} }
/* Generate 32bits samples for ym2612 */ /* Generate 16 bits samples for ym2612 */
void YM2612Update(int length) void YM2612Update(int length)
{ {
int i; int i;
int lt,rt; int lt,rt;
int16 *bufL,*bufR; int16 *bufL,*bufR;
/* set buffers */ /* Output samples buffers */
int16 *bufFIR = Fir_Resampler_buffer(); int16 *bufFIR = Fir_Resampler_buffer();
if (!bufFIR) if (!bufFIR)
{ {
@ -1917,7 +1919,7 @@ void YM2612Update(int length)
bufR = snd.fm.buffer[1] + snd.fm.pos; bufR = snd.fm.buffer[1] + snd.fm.pos;
} }
/* refresh PG and EG parameters */ /* refresh PG increments and EG rates if required */
refresh_fc_eg_chan(&ym2612.CH[0]); refresh_fc_eg_chan(&ym2612.CH[0]);
refresh_fc_eg_chan(&ym2612.CH[1]); refresh_fc_eg_chan(&ym2612.CH[1]);
@ -1941,8 +1943,6 @@ void YM2612Update(int length)
/* buffering */ /* buffering */
for(i=0; i < length ; i++) for(i=0; i < length ; i++)
{ {
advance_lfo();
/* clear outputs */ /* clear outputs */
out_fm[0] = 0; out_fm[0] = 0;
out_fm[1] = 0; out_fm[1] = 0;
@ -1951,7 +1951,20 @@ void YM2612Update(int length)
out_fm[4] = 0; out_fm[4] = 0;
out_fm[5] = 0; out_fm[5] = 0;
/* update SSG-EG */ /* calculate FM */
chan_calc(&ym2612.CH[0]);
chan_calc(&ym2612.CH[1]);
chan_calc(&ym2612.CH[2]);
chan_calc(&ym2612.CH[3]);
chan_calc(&ym2612.CH[4]);
if (ym2612.dacen)
{
/* DAC Mode */
*(ym2612.CH[5].connect4) += ym2612.dacout;
}
else chan_calc(&ym2612.CH[5]);
/* update SSG-EG output */
update_ssg_eg_channel(&ym2612.CH[0].SLOT[SLOT1]); update_ssg_eg_channel(&ym2612.CH[0].SLOT[SLOT1]);
update_ssg_eg_channel(&ym2612.CH[1].SLOT[SLOT1]); update_ssg_eg_channel(&ym2612.CH[1].SLOT[SLOT1]);
update_ssg_eg_channel(&ym2612.CH[2].SLOT[SLOT1]); update_ssg_eg_channel(&ym2612.CH[2].SLOT[SLOT1]);
@ -1959,6 +1972,9 @@ void YM2612Update(int length)
update_ssg_eg_channel(&ym2612.CH[4].SLOT[SLOT1]); update_ssg_eg_channel(&ym2612.CH[4].SLOT[SLOT1]);
update_ssg_eg_channel(&ym2612.CH[5].SLOT[SLOT1]); update_ssg_eg_channel(&ym2612.CH[5].SLOT[SLOT1]);
/* advance LFO */
advance_lfo();
/* advance envelope generator */ /* advance envelope generator */
ym2612.OPN.eg_timer += ym2612.OPN.eg_timer_add; ym2612.OPN.eg_timer += ym2612.OPN.eg_timer_add;
while (ym2612.OPN.eg_timer >= ym2612.OPN.eg_timer_overflow) while (ym2612.OPN.eg_timer >= ym2612.OPN.eg_timer_overflow)
@ -1974,31 +1990,19 @@ void YM2612Update(int length)
advance_eg_channel(&ym2612.CH[5].SLOT[SLOT1]); advance_eg_channel(&ym2612.CH[5].SLOT[SLOT1]);
} }
/* calculate FM */ /* 6-channels mixing */
chan_calc(&ym2612.CH[0]); lt = ((out_fm[0]) & ym2612.OPN.pan[0]);
chan_calc(&ym2612.CH[1]); rt = ((out_fm[0]) & ym2612.OPN.pan[1]);
chan_calc(&ym2612.CH[2]); lt += ((out_fm[1]) & ym2612.OPN.pan[2]);
chan_calc(&ym2612.CH[3]); rt += ((out_fm[1]) & ym2612.OPN.pan[3]);
chan_calc(&ym2612.CH[4]); lt += ((out_fm[2]) & ym2612.OPN.pan[4]);
if (ym2612.dacen) rt += ((out_fm[2]) & ym2612.OPN.pan[5]);
{ lt += ((out_fm[3]) & ym2612.OPN.pan[6]);
/* DAC Mode */ rt += ((out_fm[3]) & ym2612.OPN.pan[7]);
*(ym2612.CH[5].connect4) += ym2612.dacout; lt += ((out_fm[4]) & ym2612.OPN.pan[8]);
} rt += ((out_fm[4]) & ym2612.OPN.pan[9]);
else chan_calc(&ym2612.CH[5]); lt += ((out_fm[5]) & ym2612.OPN.pan[10]);
rt += ((out_fm[5]) & ym2612.OPN.pan[11]);
lt = (out_fm[0] & ym2612.OPN.pan[0]);
rt = (out_fm[0] & ym2612.OPN.pan[1]);
lt += (out_fm[1] & ym2612.OPN.pan[2]);
rt += (out_fm[1] & ym2612.OPN.pan[3]);
lt += (out_fm[2] & ym2612.OPN.pan[4]);
rt += (out_fm[2] & ym2612.OPN.pan[5]);
lt += (out_fm[3] & ym2612.OPN.pan[6]);
rt += (out_fm[3] & ym2612.OPN.pan[7]);
lt += (out_fm[4] & ym2612.OPN.pan[8]);
rt += (out_fm[4] & ym2612.OPN.pan[9]);
lt += (out_fm[5] & ym2612.OPN.pan[10]);
rt += (out_fm[5] & ym2612.OPN.pan[11]);
/* limiter */ /* limiter */
Limit(lt,MAXOUT,MINOUT); Limit(lt,MAXOUT,MINOUT);
@ -2060,19 +2064,24 @@ int YM2612ResetChip(void)
int i; int i;
OPNSetPres(6*24); OPNSetPres(6*24);
OPNWriteMode(0x27,0x30); /* mode 0 , timer reset */
ym2612.OPN.eg_timer = 0; ym2612.OPN.eg_timer = 0;
ym2612.OPN.eg_cnt = 0; ym2612.OPN.eg_cnt = 0;
ym2612.OPN.ST.status = 0;
ym2612.OPN.ST.mode = 0; LFO_AM = 0;
LFO_PM = 0;
ym2612.OPN.lfo_cnt = 0;
ym2612.OPN.ST.TAC = 0; ym2612.OPN.ST.TAC = 0;
ym2612.OPN.ST.TBC = 0; ym2612.OPN.ST.TBC = 0;
OPNWriteMode(0x27,0x30);
OPNWriteMode(0x26,0x00); OPNWriteMode(0x26,0x00);
OPNWriteMode(0x25,0x00); OPNWriteMode(0x25,0x00);
OPNWriteMode(0x24,0x00); OPNWriteMode(0x24,0x00);
reset_channels(&ym2612.CH[0] , 6 ); reset_channels(&ym2612.CH[0] , 6 );
for(i = 0xb6 ; i >= 0xb4 ; i-- ) for(i = 0xb6 ; i >= 0xb4 ; i-- )
{ {
OPNWriteReg(i ,0xc0); OPNWriteReg(i ,0xc0);
@ -2087,7 +2096,7 @@ int YM2612ResetChip(void)
/* DAC mode clear */ /* DAC mode clear */
ym2612.dacen = 0; ym2612.dacen = 0;
ym2612.dacout = 0; ym2612.dacout = 0;
return 0; return 0;
} }