[Core/Sound] added accurate YM2612 status & BUSY flag emulation for MAME core (verified on discrete and ASIC-integrated chips)

This commit is contained in:
EkeEke 2018-01-07 16:44:14 +01:00
parent d0aa36acc3
commit fee2bc8c28
8 changed files with 220 additions and 141 deletions

View File

@ -121,7 +121,10 @@ Genesis Plus GX 1.7.5 (xx/xx/xxxx) (Eke-Eke)
[Core/Sound] [Core/Sound]
--------------- ---------------
* added discrete YM2612 DAC distortion emulation (optional) * replaced configurable YM2612 DAC quantization by configurable YM2612 chip model emulation (discrete, ASIC-integrated or enhanced)
* added DAC distortion emulation for discrete YM2612 chip model
* added accurate status & BUSY flag emulation for discrete and ASIC-integrated YM2612 chip models (verified on real hardware)
* improved 9-bit DAC quantization accuracy for discrete and ASIC-integrated YM2612 chip models (verified on YM2612 die)
* rewrote optimized & more accurate PSG core from scratch * rewrote optimized & more accurate PSG core from scratch
* removed PSG boost noise feature & added optional high-quality PSG resampling * removed PSG boost noise feature & added optional high-quality PSG resampling
* fixed YM2612 self-feedback regression introduced in 1.7.1 * fixed YM2612 self-feedback regression introduced in 1.7.1

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.2 MiB

After

Width:  |  Height:  |  Size: 3.3 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.4 MiB

After

Width:  |  Height:  |  Size: 3.5 MiB

View File

@ -3,7 +3,7 @@
* Sound Hardware * Sound Hardware
* *
* Copyright (C) 1998-2003 Charles Mac Donald (original code) * Copyright (C) 1998-2003 Charles Mac Donald (original code)
* Copyright (C) 2007-2017 Eke-Eke (Genesis Plus GX) * Copyright (C) 2007-2018 Eke-Eke (Genesis Plus GX)
* *
* Redistribution and use of this code or any derivative works are permitted * Redistribution and use of this code or any derivative works are permitted
* provided that the following conditions are met: * provided that the following conditions are met:
@ -40,6 +40,9 @@
#include "shared.h" #include "shared.h"
#include "blip_buf.h" #include "blip_buf.h"
/* YM2612 internal clock = input clock / 6 = (master clock / 7) / 6 */
#define YM2612_CLOCK_RATIO (7*6)
/* FM output buffer (large enough to hold a whole frame at original chips rate) */ /* FM output buffer (large enough to hold a whole frame at original chips rate) */
#ifdef HAVE_YM3438_CORE #ifdef HAVE_YM3438_CORE
static int fm_buffer[1080 * 2 * 24]; static int fm_buffer[1080 * 2 * 24];
@ -51,28 +54,121 @@ static int fm_last[2];
static int *fm_ptr; static int *fm_ptr;
/* Cycle-accurate FM samples */ /* Cycle-accurate FM samples */
static uint32 fm_cycles_ratio; static int fm_cycles_ratio;
static uint32 fm_cycles_start; static int fm_cycles_start;
static uint32 fm_cycles_count; static int fm_cycles_count;
static int fm_cycles_busy;
/* YM chip function pointers */ /* YM chip function pointers */
static void (*YM_Reset)(void);
static void (*YM_Update)(int *buffer, int length); static void (*YM_Update)(int *buffer, int length);
static void (*YM_Write)(unsigned int a, unsigned int v); void (*fm_reset)(unsigned int cycles);
static unsigned int (*YM_Read)(unsigned int a); void (*fm_write)(unsigned int cycles, unsigned int address, unsigned int data);
unsigned int (*fm_read)(unsigned int cycles, unsigned int address);
#ifdef HAVE_YM3438_CORE #ifdef HAVE_YM3438_CORE
static ym3438_t ym3438; static ym3438_t ym3438;
static short ym3438_accm[24][2]; static short ym3438_accm[24][2];
static int ym3438_sample[2]; static int ym3438_sample[2];
static unsigned int ym3438_cycles; static int ym3438_cycles;
#endif
void YM3438_Reset(void) /* Run FM chip until required M-cycles */
INLINE void fm_update(int cycles)
{ {
OPN2_Reset(&ym3438); if (cycles > fm_cycles_count)
{
/* number of samples to run */
int samples = (cycles - fm_cycles_count + fm_cycles_ratio - 1) / fm_cycles_ratio;
/* run FM chip to sample buffer */
YM_Update(fm_ptr, samples);
/* update FM buffer pointer */
fm_ptr += (samples * 2);
/* update FM cycle counter */
fm_cycles_count += (samples * fm_cycles_ratio);
}
} }
void YM3438_Update(int *buffer, int length) static void YM2612_Reset(unsigned int cycles)
{
/* synchronize FM chip with CPU */
fm_update(cycles);
/* reset FM chip */
YM2612ResetChip();
fm_cycles_busy = 0;
}
static void YM2612_Write(unsigned int cycles, unsigned int a, unsigned int v)
{
/* detect DATA port write */
if (a & 1)
{
/* synchronize FM chip with CPU */
fm_update(cycles);
/* set FM BUSY end cycle (discrete or ASIC-integrated YM2612 chip only) */
if (config.ym2612 < YM2612_ENHANCED)
{
fm_cycles_busy = (((cycles + YM2612_CLOCK_RATIO - 1) / YM2612_CLOCK_RATIO) + 32) * YM2612_CLOCK_RATIO;
}
}
/* write FM register */
YM2612Write(a, v);
}
static unsigned int YM2612_Read(unsigned int cycles, unsigned int a)
{
/* FM status can only be read from (A0,A1)=(0,0) on discrete YM2612 */
if ((a == 0) || (config.ym2612 > YM2612_DISCRETE))
{
/* synchronize FM chip with CPU */
fm_update(cycles - fm_cycles_ratio + 1);
/* read FM status */
if (cycles >= fm_cycles_busy)
{
/* BUSY flag cleared */
return YM2612Read();
}
else
{
/* BUSY flag set */
return YM2612Read() | 0x80;
}
}
/* invalid FM status address */
return 0x00;
}
static void YM2413_Reset(unsigned int cycles)
{
/* synchronize FM chip with CPU */
fm_update(cycles);
/* reset FM chip */
YM2413ResetChip();
}
static void YM2413_Write(unsigned int cycles, unsigned int a, unsigned int v)
{
/* detect DATA port write */
if (a & 1)
{
/* synchronize FM chip with CPU */
fm_update(cycles);
}
/* write FM register */
YM2413Write(a, v);
}
#ifdef HAVE_YM3438_CORE
static void YM3438_Update(int *buffer, int length)
{ {
int i, j; int i, j;
for (i = 0; i < length; i++) for (i = 0; i < length; i++)
@ -94,36 +190,34 @@ void YM3438_Update(int *buffer, int length)
} }
} }
void YM3438_Write(unsigned int a, unsigned int v) static void YM3438_Reset(unsigned int cycles)
{ {
/* synchronize FM chip with CPU */
fm_update(cycles);
/* reset FM chip */
OPN2_Reset(&ym3438);
}
static void YM3438_Write(unsigned int cycles, unsigned int a, unsigned int v)
{
/* synchronize FM chip with CPU */
fm_update(cycles);
/* write FM register */
OPN2_Write(&ym3438, a, v); OPN2_Write(&ym3438, a, v);
} }
unsigned int YM3438_Read(unsigned int a) static unsigned int YM3438_Read(unsigned int cycles, unsigned int a)
{ {
/* synchronize FM chip with CPU */
fm_update(cycles - fm_cycles_ratio + 1);
/* read FM status */
return OPN2_Read(&ym3438, a); return OPN2_Read(&ym3438, a);
} }
#endif #endif
/* Run FM chip until required M-cycles */
INLINE void fm_update(unsigned int cycles)
{
if (cycles > fm_cycles_count)
{
/* number of samples to run */
unsigned int samples = (cycles - fm_cycles_count + fm_cycles_ratio - 1) / fm_cycles_ratio;
/* run FM chip to sample buffer */
YM_Update(fm_ptr, samples);
/* update FM buffer pointer */
fm_ptr += (samples << 1);
/* update FM cycle counter */
fm_cycles_count += samples * fm_cycles_ratio;
}
}
void sound_init( void ) void sound_init( void )
{ {
/* Initialize FM chip */ /* Initialize FM chip */
@ -137,37 +231,37 @@ void sound_init( void )
memset(&ym3438, 0, sizeof(ym3438)); memset(&ym3438, 0, sizeof(ym3438));
memset(&ym3438_sample, 0, sizeof(ym3438_sample)); memset(&ym3438_sample, 0, sizeof(ym3438_sample));
memset(&ym3438_accm, 0, sizeof(ym3438_accm)); memset(&ym3438_accm, 0, sizeof(ym3438_accm));
YM_Reset = YM3438_Reset;
YM_Update = YM3438_Update; YM_Update = YM3438_Update;
YM_Write = YM3438_Write; fm_reset = YM3438_Reset;
YM_Read = YM3438_Read; fm_write = YM3438_Write;
fm_read = YM3438_Read;
/* chip is running at VCLK / 6 = MCLK / 7 / 6 */ /* chip is running at internal clock */
fm_cycles_ratio = 6 * 7; fm_cycles_ratio = YM2612_CLOCK_RATIO;
} }
else else
#endif #endif
{ {
/* MAME */ /* MAME OPN2*/
YM2612Init(); YM2612Init();
YM2612Config(config.ym2612); YM2612Config(config.ym2612);
YM_Reset = YM2612ResetChip;
YM_Update = YM2612Update; YM_Update = YM2612Update;
YM_Write = YM2612Write; fm_reset = YM2612_Reset;
YM_Read = YM2612Read; fm_write = YM2612_Write;
fm_read = YM2612_Read;
/* chip is running at VCLK / 144 = MCLK / 7 / 144 */ /* chip is running at sample clock */
fm_cycles_ratio = 144 * 7; fm_cycles_ratio = YM2612_CLOCK_RATIO * 24;
} }
} }
else else
{ {
/* YM2413 */ /* YM2413 */
YM2413Init(); YM2413Init();
YM_Reset = YM2413ResetChip; YM_Update = (config.ym2413 & 1) ? YM2413Update : NULL;
YM_Update = YM2413Update; fm_reset = YM2413_Reset;
YM_Write = YM2413Write; fm_write = YM2413_Write;
YM_Read = NULL; fm_read = NULL;
/* chip is running at ZCLK / 72 = MCLK / 15 / 72 */ /* chip is running at ZCLK / 72 = MCLK / 15 / 72 */
fm_cycles_ratio = 72 * 15; fm_cycles_ratio = 72 * 15;
@ -180,7 +274,7 @@ void sound_init( void )
void sound_reset(void) void sound_reset(void)
{ {
/* reset sound chips */ /* reset sound chips */
YM_Reset(); fm_reset(0);
psg_reset(); psg_reset();
psg_config(0, config.psg_preamp, 0xff); psg_config(0, config.psg_preamp, 0xff);
@ -196,73 +290,85 @@ void sound_reset(void)
int sound_update(unsigned int cycles) int sound_update(unsigned int cycles)
{ {
int prev_l, prev_r, preamp, time, l, r, *ptr;
/* Run PSG chip until end of frame */ /* Run PSG chip until end of frame */
psg_end_frame(cycles); psg_end_frame(cycles);
/* Run FM chip until end of frame */ /* FM chip is enabled ? */
fm_update(cycles); if (YM_Update)
/* FM output pre-amplification */
preamp = config.fm_preamp;
/* FM frame initial timestamp */
time = fm_cycles_start;
/* Restore last FM outputs from previous frame */
prev_l = fm_last[0];
prev_r = fm_last[1];
/* FM buffer start pointer */
ptr = fm_buffer;
/* flush FM samples */
if (config.hq_fm)
{ {
/* high-quality Band-Limited synthesis */ int prev_l, prev_r, preamp, time, l, r, *ptr;
do
/* Run FM chip until end of frame */
fm_update(cycles);
/* FM output pre-amplification */
preamp = config.fm_preamp;
/* FM frame initial timestamp */
time = fm_cycles_start;
/* Restore last FM outputs from previous frame */
prev_l = fm_last[0];
prev_r = fm_last[1];
/* FM buffer start pointer */
ptr = fm_buffer;
/* flush FM samples */
if (config.hq_fm)
{ {
/* left & right channels */ /* high-quality Band-Limited synthesis */
l = ((*ptr++ * preamp) / 100); do
r = ((*ptr++ * preamp) / 100); {
blip_add_delta(snd.blips[0], time, l-prev_l, r-prev_r); /* left & right channels */
prev_l = l; l = ((*ptr++ * preamp) / 100);
prev_r = r; r = ((*ptr++ * preamp) / 100);
blip_add_delta(snd.blips[0], time, l-prev_l, r-prev_r);
prev_l = l;
prev_r = r;
/* increment time counter */ /* increment time counter */
time += fm_cycles_ratio; time += fm_cycles_ratio;
}
while (time < cycles);
} }
while (time < cycles); else
}
else
{
/* faster Linear Interpolation */
do
{ {
/* left & right channels */ /* faster Linear Interpolation */
l = ((*ptr++ * preamp) / 100); do
r = ((*ptr++ * preamp) / 100); {
blip_add_delta_fast(snd.blips[0], time, l-prev_l, r-prev_r); /* left & right channels */
prev_l = l; l = ((*ptr++ * preamp) / 100);
prev_r = r; r = ((*ptr++ * preamp) / 100);
blip_add_delta_fast(snd.blips[0], time, l-prev_l, r-prev_r);
prev_l = l;
prev_r = r;
/* increment time counter */ /* increment time counter */
time += fm_cycles_ratio; time += fm_cycles_ratio;
}
while (time < cycles);
}
/* reset FM buffer pointer */
fm_ptr = fm_buffer;
/* save last FM output for next frame */
fm_last[0] = prev_l;
fm_last[1] = prev_r;
/* adjust FM cycle counters for next frame */
fm_cycles_count = fm_cycles_start = time - cycles;
if (fm_cycles_busy > cycles)
{
fm_cycles_busy -= cycles;
}
else
{
fm_cycles_busy = 0;
} }
while (time < cycles);
} }
/* reset FM buffer pointer */
fm_ptr = fm_buffer;
/* save last FM output for next frame */
fm_last[0] = prev_l;
fm_last[1] = prev_r;
/* adjust FM cycle counters for next frame */
fm_cycles_count = fm_cycles_start = time - cycles;
/* end of blip buffer time frame */ /* end of blip buffer time frame */
blip_end_frame(snd.blips[0], cycles); blip_end_frame(snd.blips[0], cycles);
@ -341,30 +447,3 @@ int sound_context_load(uint8 *state)
return bufferptr; return bufferptr;
} }
void fm_reset(unsigned int cycles)
{
/* synchronize FM chip with CPU */
fm_update(cycles);
/* reset FM chip */
YM_Reset();
}
void fm_write(unsigned int cycles, unsigned int address, unsigned int data)
{
/* synchronize FM chip with CPU */
fm_update(cycles);
/* write FM register */
YM_Write(address, data);
}
unsigned int fm_read(unsigned int cycles, unsigned int address)
{
/* synchronize FM chip with CPU */
fm_update(cycles);
/* read FM status (YM2612 only) */
return YM_Read(address);
}

View File

@ -3,7 +3,7 @@
* Sound Hardware * Sound Hardware
* *
* Copyright (C) 1998-2003 Charles Mac Donald (original code) * Copyright (C) 1998-2003 Charles Mac Donald (original code)
* Copyright (C) 2007-2017 Eke-Eke (Genesis Plus GX) * Copyright (C) 2007-2018 Eke-Eke (Genesis Plus GX)
* *
* Redistribution and use of this code or any derivative works are permitted * Redistribution and use of this code or any derivative works are permitted
* provided that the following conditions are met: * provided that the following conditions are met:
@ -46,8 +46,8 @@ extern void sound_reset(void);
extern int sound_context_save(uint8 *state); extern int sound_context_save(uint8 *state);
extern int sound_context_load(uint8 *state); extern int sound_context_load(uint8 *state);
extern int sound_update(unsigned int cycles); extern int sound_update(unsigned int cycles);
extern void fm_reset(unsigned int cycles); extern void (*fm_reset)(unsigned int cycles);
extern void fm_write(unsigned int cycles, unsigned int address, unsigned int data); extern void (*fm_write)(unsigned int cycles, unsigned int address, unsigned int data);
extern unsigned int fm_read(unsigned int cycles, unsigned int address); extern unsigned int (*fm_read)(unsigned int cycles, unsigned int address);
#endif /* _SOUND_H_ */ #endif /* _SOUND_H_ */

View File

@ -15,9 +15,6 @@
** Additional info from YM2612 die shot analysis by Sauraen ** Additional info from YM2612 die shot analysis by Sauraen
** See http://gendev.spritesmind.net/forum/viewtopic.php?t=386 ** See http://gendev.spritesmind.net/forum/viewtopic.php?t=386
** **
** TODO:
** - better documentation
** - BUSY flag emulation
*/ */
/* /*
@ -1997,9 +1994,9 @@ void YM2612Write(unsigned int a, unsigned int v)
} }
} }
unsigned int YM2612Read(unsigned int a) unsigned int YM2612Read(void)
{ {
return ym2612.OPN.ST.status & 0xff; return ym2612.OPN.ST.status;
} }
/* Generate samples for ym2612 */ /* Generate samples for ym2612 */

View File

@ -27,7 +27,7 @@ extern void YM2612Config(int type);
extern void YM2612ResetChip(void); extern void YM2612ResetChip(void);
extern void YM2612Update(int *buffer, int length); extern void YM2612Update(int *buffer, int length);
extern void YM2612Write(unsigned int a, unsigned int v); extern void YM2612Write(unsigned int a, unsigned int v);
extern unsigned int YM2612Read(unsigned int a); extern unsigned int YM2612Read(void);
extern int YM2612LoadContext(unsigned char *state); extern int YM2612LoadContext(unsigned char *state);
extern int YM2612SaveContext(unsigned char *state); extern int YM2612SaveContext(unsigned char *state);