Genesis-Plus-GX/core/m68k/s68kcpu.c

537 lines
17 KiB
C

/* ======================================================================== */
/* SUB 68K CORE */
/* ======================================================================== */
extern int scd_68k_irq_ack(int level);
#define m68ki_cpu s68k
#define MUL (4)
/* ======================================================================== */
/* ================================ INCLUDES ============================== */
/* ======================================================================== */
#ifndef BUILD_TABLES
#include "s68ki_cycles.h"
#endif
#include "s68kconf.h"
#include "m68kcpu.h"
#include "m68kops.h"
/* ======================================================================== */
/* ================================= DATA ================================= */
/* ======================================================================== */
#ifdef BUILD_TABLES
static unsigned char s68ki_cycles[0x10000];
#endif
static int irq_latency;
/* IRQ priority */
static const uint8 irq_level[0x40] =
{
0, 1, 2, 2, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6
};
m68ki_cpu_core s68k;
/* ======================================================================== */
/* =============================== CALLBACKS ============================== */
/* ======================================================================== */
/* Default callbacks used if the callback hasn't been set yet, or if the
* callback is set to NULL
*/
#if M68K_EMULATE_INT_ACK == OPT_ON
/* Interrupt acknowledge */
static int default_int_ack_callback(int int_level)
{
CPU_INT_LEVEL = 0;
return M68K_INT_ACK_AUTOVECTOR;
}
#endif
#if M68K_EMULATE_RESET == OPT_ON
/* Called when a reset instruction is executed */
static void default_reset_instr_callback(void)
{
}
#endif
#if M68K_TAS_HAS_CALLBACK == OPT_ON
/* Called when a tas instruction is executed */
static int default_tas_instr_callback(void)
{
return 1; // allow writeback
}
#endif
#if M68K_EMULATE_FC == OPT_ON
/* Called every time there's bus activity (read/write to/from memory */
static void default_set_fc_callback(unsigned int new_fc)
{
}
#endif
/* ======================================================================== */
/* ================================= API ================================== */
/* ======================================================================== */
/* Access the internals of the CPU */
unsigned int s68k_get_reg(m68k_register_t regnum)
{
switch(regnum)
{
case M68K_REG_D0: return m68ki_cpu.dar[0];
case M68K_REG_D1: return m68ki_cpu.dar[1];
case M68K_REG_D2: return m68ki_cpu.dar[2];
case M68K_REG_D3: return m68ki_cpu.dar[3];
case M68K_REG_D4: return m68ki_cpu.dar[4];
case M68K_REG_D5: return m68ki_cpu.dar[5];
case M68K_REG_D6: return m68ki_cpu.dar[6];
case M68K_REG_D7: return m68ki_cpu.dar[7];
case M68K_REG_A0: return m68ki_cpu.dar[8];
case M68K_REG_A1: return m68ki_cpu.dar[9];
case M68K_REG_A2: return m68ki_cpu.dar[10];
case M68K_REG_A3: return m68ki_cpu.dar[11];
case M68K_REG_A4: return m68ki_cpu.dar[12];
case M68K_REG_A5: return m68ki_cpu.dar[13];
case M68K_REG_A6: return m68ki_cpu.dar[14];
case M68K_REG_A7: return m68ki_cpu.dar[15];
case M68K_REG_PC: return MASK_OUT_ABOVE_32(m68ki_cpu.pc);
case M68K_REG_SR: return m68ki_cpu.t1_flag |
(m68ki_cpu.s_flag << 11) |
m68ki_cpu.int_mask |
((m68ki_cpu.x_flag & XFLAG_SET) >> 4) |
((m68ki_cpu.n_flag & NFLAG_SET) >> 4) |
((!m68ki_cpu.not_z_flag) << 2) |
((m68ki_cpu.v_flag & VFLAG_SET) >> 6) |
((m68ki_cpu.c_flag & CFLAG_SET) >> 8);
case M68K_REG_SP: return m68ki_cpu.dar[15];
case M68K_REG_USP: return m68ki_cpu.s_flag ? m68ki_cpu.sp[0] : m68ki_cpu.dar[15];
case M68K_REG_ISP: return m68ki_cpu.s_flag ? m68ki_cpu.dar[15] : m68ki_cpu.sp[4];
#if M68K_EMULATE_PREFETCH
case M68K_REG_PREF_ADDR: return m68ki_cpu.pref_addr;
case M68K_REG_PREF_DATA: return m68ki_cpu.pref_data;
#endif
case M68K_REG_IR: return m68ki_cpu.ir;
default: return 0;
}
}
void s68k_set_reg(m68k_register_t regnum, unsigned int value)
{
switch(regnum)
{
case M68K_REG_D0: REG_D[0] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_D1: REG_D[1] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_D2: REG_D[2] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_D3: REG_D[3] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_D4: REG_D[4] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_D5: REG_D[5] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_D6: REG_D[6] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_D7: REG_D[7] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_A0: REG_A[0] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_A1: REG_A[1] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_A2: REG_A[2] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_A3: REG_A[3] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_A4: REG_A[4] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_A5: REG_A[5] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_A6: REG_A[6] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_A7: REG_A[7] = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_PC: m68ki_jump(MASK_OUT_ABOVE_32(value)); return;
case M68K_REG_SR: m68ki_set_sr(value); return;
case M68K_REG_SP: REG_SP = MASK_OUT_ABOVE_32(value); return;
case M68K_REG_USP: if(FLAG_S)
REG_USP = MASK_OUT_ABOVE_32(value);
else
REG_SP = MASK_OUT_ABOVE_32(value);
return;
case M68K_REG_ISP: if(FLAG_S)
REG_SP = MASK_OUT_ABOVE_32(value);
else
REG_ISP = MASK_OUT_ABOVE_32(value);
return;
case M68K_REG_IR: REG_IR = MASK_OUT_ABOVE_16(value); return;
#if M68K_EMULATE_PREFETCH
case M68K_REG_PREF_ADDR: CPU_PREF_ADDR = MASK_OUT_ABOVE_32(value); return;
#endif
default: return;
}
}
/* Set the callbacks */
#if M68K_EMULATE_INT_ACK == OPT_ON
void s68k_set_int_ack_callback(int (*callback)(int int_level))
{
CALLBACK_INT_ACK = callback ? callback : default_int_ack_callback;
}
#endif
#if M68K_EMULATE_RESET == OPT_ON
void s68k_set_reset_instr_callback(void (*callback)(void))
{
CALLBACK_RESET_INSTR = callback ? callback : default_reset_instr_callback;
}
#endif
#if M68K_TAS_HAS_CALLBACK == OPT_ON
void s68k_set_tas_instr_callback(int (*callback)(void))
{
CALLBACK_TAS_INSTR = callback ? callback : default_tas_instr_callback;
}
#endif
#if M68K_EMULATE_FC == OPT_ON
void s68k_set_fc_callback(void (*callback)(unsigned int new_fc))
{
CALLBACK_SET_FC = callback ? callback : default_set_fc_callback;
}
#endif
extern void error(char *format, ...);
extern uint16 v_counter;
/* update IRQ level according to triggered interrupts */
void s68k_update_irq(unsigned int mask)
{
/* Get IRQ level (6 interrupt lines) */
mask = irq_level[mask];
/* Set IRQ level */
CPU_INT_LEVEL = mask << 8;
#ifdef LOG_SCD
error("[%d][%d] s68k IRQ Level = %d(0x%02x) (%x)\n", v_counter, s68k.cycles, CPU_INT_LEVEL>>8,FLAG_INT_MASK,s68k.pc);
#endif
}
void s68k_run(unsigned int cycles)
{
/* Make sure CPU is not already ahead */
if (s68k.cycles >= cycles)
{
return;
}
/* Check interrupt mask to process IRQ if needed */
m68ki_check_interrupts();
/* Make sure we're not stopped */
if (CPU_STOPPED)
{
s68k.cycles = cycles;
return;
}
/* Save end cycles count for when CPU is stopped */
s68k.cycle_end = cycles;
/* Return point for when we have an address error (TODO: use goto) */
m68ki_set_address_error_trap() /* auto-disable (see m68kcpu.h) */
#ifdef LOG_SCD
error("[%d][%d] s68k run to %d cycles (%x), irq mask = %x (%x)\n", v_counter, s68k.cycles, cycles, s68k.pc,FLAG_INT_MASK, CPU_INT_LEVEL);
#endif
while (s68k.cycles < cycles)
{
/* Set tracing accodring to T1. */
m68ki_trace_t1() /* auto-disable (see m68kcpu.h) */
/* Set the address space for reads */
m68ki_use_data_space() /* auto-disable (see m68kcpu.h) */
/* Save current instruction PC */
s68k.prev_pc = REG_PC;
/* Decode next instruction */
REG_IR = m68ki_read_imm_16();
/* Execute instruction */
m68ki_instruction_jump_table[REG_IR]();
USE_CYCLES(CYC_INSTRUCTION[REG_IR]);
/* Trace m68k_exception, if necessary */
m68ki_exception_if_trace(); /* auto-disable (see m68kcpu.h) */
}
}
int s68k_cycles(void)
{
return CYC_INSTRUCTION[REG_IR];
}
void s68k_init(void)
{
#ifdef BUILD_TABLES
static uint emulation_initialized = 0;
/* The first call to this function initializes the opcode handler jump table */
if(!emulation_initialized)
{
m68ki_build_opcode_table();
emulation_initialized = 1;
}
#endif
#ifdef M68K_OVERCLOCK_SHIFT
s68k.cycle_ratio = 1 << M68K_OVERCLOCK_SHIFT;
#endif
#if M68K_EMULATE_INT_ACK == OPT_ON
s68k_set_int_ack_callback(NULL);
#endif
#if M68K_EMULATE_RESET == OPT_ON
s68k_set_reset_instr_callback(NULL);
#endif
#if M68K_TAS_HAS_CALLBACK == OPT_ON
s68k_set_tas_instr_callback(NULL);
#endif
#if M68K_EMULATE_FC == OPT_ON
s68k_set_fc_callback(NULL);
#endif
}
/* Pulse the RESET line on the CPU */
void s68k_pulse_reset(void)
{
/* Clear all stop levels */
CPU_STOPPED = 0;
#if M68K_EMULATE_ADDRESS_ERROR
CPU_RUN_MODE = RUN_MODE_BERR_AERR_RESET;
#endif
/* Turn off tracing */
FLAG_T1 = 0;
m68ki_clear_trace()
/* Interrupt mask to level 7 */
FLAG_INT_MASK = 0x0700;
CPU_INT_LEVEL = 0;
irq_latency = 0;
/* Go to supervisor mode */
m68ki_set_s_flag(SFLAG_SET);
/* Invalidate the prefetch queue */
#if M68K_EMULATE_PREFETCH
/* Set to arbitrary number since our first fetch is from 0 */
CPU_PREF_ADDR = 0x1000;
#endif /* M68K_EMULATE_PREFETCH */
/* Read the initial stack pointer and program counter */
m68ki_jump(0);
REG_SP = m68ki_read_imm_32();
REG_PC = m68ki_read_imm_32();
m68ki_jump(REG_PC);
#if M68K_EMULATE_ADDRESS_ERROR
CPU_RUN_MODE = RUN_MODE_NORMAL;
#endif
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_RESET]);
}
void s68k_pulse_halt(void)
{
/* Pulse the HALT line on the CPU */
CPU_STOPPED |= STOP_LEVEL_HALT;
}
void s68k_clear_halt(void)
{
/* Clear the HALT line on the CPU */
CPU_STOPPED &= ~STOP_LEVEL_HALT;
}
void s68k_pulse_wait(unsigned int address, unsigned int write_access)
{
/* Check CPU is not already waiting for /DTACK */
if (!(CPU_STOPPED & STOP_LEVEL_WAIT))
{
/* Hold the DTACK line on the CPU */
CPU_STOPPED |= STOP_LEVEL_WAIT;
/* End CPU execution */
s68k.cycles = s68k.cycle_end - s68k_cycles();
/* Save CPU address registers */
s68k.prev_ar[0] = s68k.dar[8+0];
s68k.prev_ar[1] = s68k.dar[8+1];
s68k.prev_ar[2] = s68k.dar[8+2];
s68k.prev_ar[3] = s68k.dar[8+3];
s68k.prev_ar[4] = s68k.dar[8+4];
s68k.prev_ar[5] = s68k.dar[8+5];
s68k.prev_ar[6] = s68k.dar[8+6];
s68k.prev_ar[7] = s68k.dar[8+7];
/* Detect address register(s) pre-decrement/post-increment done by MOVE/MOVEA instruction */
if ((s68k.ir >= 0x1000) && (s68k.ir < 0x4000))
{
/* MOVE/MOVEA instructions operand sizes */
static const int mov_instr_sizes[4] = {0, 1, 4, 2};
if ((s68k.ir & 0x38) == 0x18)
{
/* revert source address register post-increment */
s68k.prev_ar[s68k.ir&0x07] -= mov_instr_sizes[(s68k.ir>>12)&0x03];
}
else if ((s68k.ir & 0x38) == 0x20)
{
/* revert source address register pre-decrement */
s68k.prev_ar[s68k.ir&0x07] += mov_instr_sizes[(s68k.ir>>12)&0x03];
}
/* only check destination address register post-increment/pre-decrement in case of halting on write access */
if (write_access)
{
if ((s68k.ir & 0x01c0) == 0x00c0)
{
/* revert destination address register post-increment */
s68k.prev_ar[(s68k.ir>>9)&0x07] -= mov_instr_sizes[(s68k.ir>>12)&0x03];
}
else if ((s68k.ir & 0x01c0) == 0x0100)
{
/* revert destination address register pre-decrement */
s68k.prev_ar[(s68k.ir>>9)&0x07] += mov_instr_sizes[(s68k.ir>>12)&0x03];
}
}
}
else
{
/* Other instructions operand sizes */
static const int def_instr_sizes[4] = {1, 2, 4, 2};
/* Detect address register(s) pre-decrement done by ABCD/SBCD instruction */
if ((s68k.ir & 0xb1f8) == 0x8108)
{
/* revert source address register pre-decrement (byte operands only) */
s68k.prev_ar[s68k.ir&0x07] += 1;
/* only revert destination address register pre-decrement in case of halting on destination address access (byte operands only) */
if (address == s68k.prev_ar[(s68k.ir>>9)&0x07])
{
s68k.prev_ar[(s68k.ir>>9)&0x07] += 1;
}
}
/* Detect address register(s) pre-decrement done by ADDX/SUBX instruction */
else if (((s68k.ir & 0xb1f8) == 0x9108) || ((s68k.ir & 0xb1f8) == 0x9148) || ((s68k.ir & 0xb1f8) == 0x9188))
{
/* revert source address register pre-decrement */
s68k.prev_ar[s68k.ir&0x07] += def_instr_sizes[(s68k.ir>>6)&0x03];
/* only revert destination address register pre-decrement in case of halting on destination address access */
if (address == s68k.prev_ar[(s68k.ir>>9)&0x07])
{
s68k.prev_ar[(s68k.ir>>9)&0x07] += def_instr_sizes[(s68k.ir>>6)&0x03];
}
}
/* Detect address register(s) post-increment done by CMPM instruction */
else if ((s68k.ir & 0xf138) == 0xb108)
{
/* revert source address register post-increment */
s68k.prev_ar[s68k.ir&0x07] -= def_instr_sizes[(s68k.ir>>6)&0x03];
/* only revert destination address register post-increment in case of halting on destination address access */
if (address == s68k.prev_ar[(s68k.ir>>9)&0x07])
{
s68k.prev_ar[(s68k.ir>>9)&0x07] -= def_instr_sizes[(s68k.ir>>6)&0x03];
}
}
/* Detect address register post-increment or pre-increment done by other instruction */
else if (((s68k.ir & 0x38) == 0x18) || ((s68k.ir & 0x38) == 0x20))
{
int size;
/* autodetect MOVEM instruction (no address register modification needed as post-increment/pre-decrement is done after memory access) */
if ((s68k.ir & 0xfb80) == 0x4880)
{
size = 0;
}
/* autodetect instruction with fixed byte operand (and not covered by generic size field value) */
else if (((s68k.ir & 0xf100) == 0x0100) || /* BTST, BCHG, BCLR, BSET (dynamic) */
((s68k.ir & 0xff00) == 0x0800) || /* BTST, BCHG, BCLR, BSET (static) */
((s68k.ir & 0xffc0) == 0x4ac0) || /* TAS */
((s68k.ir & 0xf0c0) == 0x50c0)) /* Scc */
{
size = 1;
}
/* autodetect instruction with fixed word operand (and not covered by generic size field value) */
else if ((s68k.ir & 0xf1c0) == 0x4180) /* CHK */
{
size = 2;
}
/* autodetect instruction with either word or long operand (not covered by generic size field value) */
else if (((s68k.ir & 0xb0c0) == 0x90c0) || /* SUBA, ADDA*/
((s68k.ir & 0xf0c0) == 0xb0c0)) /* CMPA */
{
size = (s68k.ir & 0x100) ? 4 : 2;
}
/* default operand size */
else
{
size = def_instr_sizes[(s68k.ir>>6)&0x03];
}
if (s68k.ir & 0x08)
{
/* revert source address register post-increment */
s68k.prev_ar[s68k.ir&0x07] -= size;
}
else
{
/* revert source address register pre-decrement */
s68k.prev_ar[s68k.ir&0x07] += size;
}
}
}
}
}
void s68k_clear_wait(void)
{
/* check CPU is waiting for DTACK */
if (CPU_STOPPED & STOP_LEVEL_WAIT)
{
/* Assert the DTACK line on the CPU */
CPU_STOPPED &= ~STOP_LEVEL_WAIT;
/* Rollback to previously held instruction */
s68k.pc = s68k.prev_pc;
/* Restore CPU address registers */
s68k.dar[8+0] = s68k.prev_ar[0];
s68k.dar[8+1] = s68k.prev_ar[1];
s68k.dar[8+2] = s68k.prev_ar[2];
s68k.dar[8+3] = s68k.prev_ar[3];
s68k.dar[8+4] = s68k.prev_ar[4];
s68k.dar[8+5] = s68k.prev_ar[5];
s68k.dar[8+6] = s68k.prev_ar[6];
s68k.dar[8+7] = s68k.prev_ar[7];
}
}
/* ======================================================================== */
/* ============================== END OF FILE ============================= */
/* ======================================================================== */