Genesis-Plus-GX/core/sound/blip_buf.c

687 lines
19 KiB
C

/* blip_buf $vers. http://www.slack.net/~ant/ */
/* Modified for Genesis Plus GX by EkeEke */
/* - disabled assertions checks (define #BLIP_ASSERT to re-enable) */
/* - fixed multiple time-frames support & removed m->avail */
/* - added blip_mix_samples function (see blip_buf.h) */
/* - added stereo buffer support (define #BLIP_MONO to disable) */
/* - added inverted stereo output (define #BLIP_INVERT to enable)*/
#include "blip_buf.h"
#ifdef BLIP_ASSERT
#include <assert.h>
#endif
#include <limits.h>
#include <string.h>
#include <stdlib.h>
/* Library Copyright (C) 2003-2009 Shay Green. This library is free software;
you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#if defined (BLARGG_TEST) && BLARGG_TEST
#include "blargg_test.h"
#endif
/* Equivalent to ULONG_MAX >= 0xFFFFFFFF00000000.
Avoids constants that don't fit in 32 bits. */
#if ULONG_MAX/0xFFFFFFFF > 0xFFFFFFFF
typedef unsigned long fixed_t;
enum { pre_shift = 32 };
#elif defined(ULLONG_MAX)
typedef unsigned long long fixed_t;
enum { pre_shift = 32 };
#else
typedef unsigned fixed_t;
enum { pre_shift = 0 };
#endif
enum { time_bits = pre_shift + 20 };
static fixed_t const time_unit = (fixed_t) 1 << time_bits;
enum { bass_shift = 9 }; /* affects high-pass filter breakpoint frequency */
enum { end_frame_extra = 2 }; /* allows deltas slightly after frame length */
enum { half_width = 8 };
enum { buf_extra = half_width*2 + end_frame_extra };
enum { phase_bits = 5 };
enum { phase_count = 1 << phase_bits };
enum { delta_bits = 15 };
enum { delta_unit = 1 << delta_bits };
enum { frac_bits = time_bits - pre_shift };
enum { phase_shift = frac_bits - phase_bits };
/* We could eliminate avail and encode whole samples in offset, but that would
limit the total buffered samples to blip_max_frame. That could only be
increased by decreasing time_bits, which would reduce resample ratio accuracy.
*/
typedef int buf_t;
struct blip_t
{
fixed_t factor;
fixed_t offset;
int size;
#ifdef BLIP_MONO
int integrator;
#else
int integrator[2];
buf_t* buffer[2];
#endif
};
#ifdef BLIP_MONO
/* probably not totally portable */
#define SAMPLES( blip ) ((buf_t*) ((blip) + 1))
#endif
/* Arithmetic (sign-preserving) right shift */
#define ARITH_SHIFT( n, shift ) \
((n) >> (shift))
enum { max_sample = +32767 };
enum { min_sample = -32768 };
#define CLAMP( n ) \
{\
if ( n > max_sample ) n = max_sample;\
else if ( n < min_sample) n = min_sample;\
}
#ifdef BLIP_ASSERT
static void check_assumptions( void )
{
int n;
#if INT_MAX < 0x7FFFFFFF || UINT_MAX < 0xFFFFFFFF
#error "int must be at least 32 bits"
#endif
assert( (-3 >> 1) == -2 ); /* right shift must preserve sign */
n = max_sample * 2;
CLAMP( n );
assert( n == max_sample );
n = min_sample * 2;
CLAMP( n );
assert( n == min_sample );
assert( blip_max_ratio <= time_unit );
assert( blip_max_frame <= (fixed_t) -1 >> time_bits );
}
#endif
blip_t* blip_new( int size )
{
blip_t* m;
#ifdef BLIP_ASSERT
assert( size >= 0 );
#endif
#ifdef BLIP_MONO
m = (blip_t*) malloc( sizeof *m + (size + buf_extra) * sizeof (buf_t) );
#else
m = (blip_t*) malloc( sizeof *m );
#endif
if ( m )
{
#ifndef BLIP_MONO
m->buffer[0] = (buf_t*) malloc( (size + buf_extra) * sizeof (buf_t));
m->buffer[1] = (buf_t*) malloc( (size + buf_extra) * sizeof (buf_t));
if ((m->buffer[0] == NULL) || (m->buffer[1] == NULL))
{
blip_delete(m);
return 0;
}
#endif
m->factor = time_unit / blip_max_ratio;
m->size = size;
blip_clear( m );
#ifdef BLIP_ASSERT
check_assumptions();
#endif
}
return m;
}
void blip_delete( blip_t* m )
{
if ( m != NULL )
{
#ifndef BLIP_MONO
if (m->buffer[0] != NULL)
free(m->buffer[0]);
if (m->buffer[1] != NULL)
free(m->buffer[1]);
#endif
/* Clear fields in case user tries to use after freeing */
memset( m, 0, sizeof *m );
free( m );
}
}
void blip_set_rates( blip_t* m, double clock_rate, double sample_rate )
{
double factor = time_unit * sample_rate / clock_rate;
m->factor = (fixed_t) factor;
#ifdef BLIP_ASSERT
/* Fails if clock_rate exceeds maximum, relative to sample_rate */
assert( 0 <= factor - m->factor && factor - m->factor < 1 );
#endif
/* Avoid requiring math.h. Equivalent to
m->factor = (int) ceil( factor ) */
if ( m->factor < factor )
m->factor++;
/* At this point, factor is most likely rounded up, but could still
have been rounded down in the floating-point calculation. */
}
void blip_clear( blip_t* m )
{
/* We could set offset to 0, factor/2, or factor-1. 0 is suitable if
factor is rounded up. factor-1 is suitable if factor is rounded down.
Since we don't know rounding direction, factor/2 accommodates either,
with the slight loss of showing an error in half the time. Since for
a 64-bit factor this is years, the halving isn't a problem. */
m->offset = m->factor / 2;
#ifdef BLIP_MONO
m->integrator = 0;
memset( SAMPLES( m ), 0, (m->size + buf_extra) * sizeof (buf_t) );
#else
m->integrator[0] = 0;
m->integrator[1] = 0;
memset( m->buffer[0], 0, (m->size + buf_extra) * sizeof (buf_t) );
memset( m->buffer[1], 0, (m->size + buf_extra) * sizeof (buf_t) );
#endif
}
int blip_clocks_needed( const blip_t* m, int samples )
{
fixed_t needed;
#ifdef BLIP_ASSERT
/* Fails if buffer can't hold that many more samples */
assert( (samples >= 0) && (((m->offset >> time_bits) + samples) <= m->size) );
#endif
needed = (fixed_t) samples * time_unit;
if ( needed < m->offset )
return 0;
return (needed - m->offset + m->factor - 1) / m->factor;
}
void blip_end_frame( blip_t* m, unsigned t )
{
m->offset += t * m->factor;
#ifdef BLIP_ASSERT
/* Fails if buffer size was exceeded */
assert( (m->offset >> time_bits) <= m->size );
#endif
}
int blip_samples_avail( const blip_t* m )
{
return (m->offset >> time_bits);
}
static void remove_samples( blip_t* m, int count )
{
#ifdef BLIP_MONO
buf_t* buf = SAMPLES( m );
#else
buf_t* buf = m->buffer[0];
#endif
int remain = (m->offset >> time_bits) + buf_extra - count;
m->offset -= count * time_unit;
memmove( &buf [0], &buf [count], remain * sizeof (buf_t) );
memset( &buf [remain], 0, count * sizeof (buf_t) );
#ifndef BLIP_MONO
buf = m->buffer[1];
memmove( &buf [0], &buf [count], remain * sizeof (buf_t) );
memset( &buf [remain], 0, count * sizeof (buf_t) );
#endif
}
int blip_read_samples( blip_t* m, short out [], int count)
{
#ifdef BLIP_ASSERT
assert( count >= 0 );
if ( count > (m->offset >> time_bits) )
count = m->offset >> time_bits;
if ( count )
#endif
{
#ifdef BLIP_MONO
buf_t const* in = SAMPLES( m );
int sum = m->integrator;
#else
buf_t const* in = m->buffer[0];
buf_t const* in2 = m->buffer[1];
int sum = m->integrator[0];
int sum2 = m->integrator[1];
#endif
buf_t const* end = in + count;
do
{
/* Eliminate fraction */
int s = ARITH_SHIFT( sum, delta_bits );
sum += *in++;
CLAMP( s );
*out++ = s;
/* High-pass filter */
sum -= s << (delta_bits - bass_shift);
#ifndef BLIP_MONO
/* Eliminate fraction */
s = ARITH_SHIFT( sum2, delta_bits );
sum2 += *in2++;
CLAMP( s );
*out++ = s;
/* High-pass filter */
sum2 -= s << (delta_bits - bass_shift);
#endif
}
while ( in != end );
#ifdef BLIP_MONO
m->integrator = sum;
#else
m->integrator[0] = sum;
m->integrator[1] = sum2;
#endif
remove_samples( m, count );
}
return count;
}
int blip_mix_samples( blip_t* m1, blip_t* m2, blip_t* m3, short out [], int count)
{
#ifdef BLIP_ASSERT
assert( count >= 0 );
if ( count > (m1->offset >> time_bits) )
count = m1->offset >> time_bits;
if ( count > (m2->offset >> time_bits) )
count = m2->offset >> time_bits;
if ( count > (m3->offset >> time_bits) )
count = m3->offset >> time_bits;
if ( count )
#endif
{
buf_t const* end;
buf_t const* in[3];
#ifdef BLIP_MONO
int sum = m1->integrator;
in[0] = SAMPLES( m1 );
in[1] = SAMPLES( m2 );
in[2] = SAMPLES( m3 );
#else
int sum = m1->integrator[0];
int sum2 = m1->integrator[1];
buf_t const* in2[3];
in[0] = m1->buffer[0];
in[1] = m2->buffer[0];
in[2] = m3->buffer[0];
in2[0] = m1->buffer[1];
in2[1] = m2->buffer[1];
in2[2] = m3->buffer[1];
#endif
end = in[0] + count;
do
{
/* Eliminate fraction */
int s = ARITH_SHIFT( sum, delta_bits );
sum += *in[0]++;
sum += *in[1]++;
sum += *in[2]++;
CLAMP( s );
*out++ = s;
/* High-pass filter */
sum -= s << (delta_bits - bass_shift);
#ifndef BLIP_MONO
/* Eliminate fraction */
s = ARITH_SHIFT( sum2, delta_bits );
sum2 += *in2[0]++;
sum2 += *in2[1]++;
sum2 += *in2[2]++;
CLAMP( s );
*out++ = s;
/* High-pass filter */
sum2 -= s << (delta_bits - bass_shift);
#endif
}
while ( in[0] != end );
#ifdef BLIP_MONO
m1->integrator = sum;
#else
m1->integrator[0] = sum;
m1->integrator[1] = sum2;
#endif
remove_samples( m1, count );
remove_samples( m2, count );
remove_samples( m3, count );
}
return count;
}
/* Things that didn't help performance on x86:
__attribute__((aligned(128)))
#define short int
restrict
*/
/* Sinc_Generator( 0.9, 0.55, 4.5 ) */
static short const bl_step [phase_count + 1] [half_width] =
{
{ 43, -115, 350, -488, 1136, -914, 5861,21022},
{ 44, -118, 348, -473, 1076, -799, 5274,21001},
{ 45, -121, 344, -454, 1011, -677, 4706,20936},
{ 46, -122, 336, -431, 942, -549, 4156,20829},
{ 47, -123, 327, -404, 868, -418, 3629,20679},
{ 47, -122, 316, -375, 792, -285, 3124,20488},
{ 47, -120, 303, -344, 714, -151, 2644,20256},
{ 46, -117, 289, -310, 634, -17, 2188,19985},
{ 46, -114, 273, -275, 553, 117, 1758,19675},
{ 44, -108, 255, -237, 471, 247, 1356,19327},
{ 43, -103, 237, -199, 390, 373, 981,18944},
{ 42, -98, 218, -160, 310, 495, 633,18527},
{ 40, -91, 198, -121, 231, 611, 314,18078},
{ 38, -84, 178, -81, 153, 722, 22,17599},
{ 36, -76, 157, -43, 80, 824, -241,17092},
{ 34, -68, 135, -3, 8, 919, -476,16558},
{ 32, -61, 115, 34, -60, 1006, -683,16001},
{ 29, -52, 94, 70, -123, 1083, -862,15422},
{ 27, -44, 73, 106, -184, 1152,-1015,14824},
{ 25, -36, 53, 139, -239, 1211,-1142,14210},
{ 22, -27, 34, 170, -290, 1261,-1244,13582},
{ 20, -20, 16, 199, -335, 1301,-1322,12942},
{ 18, -12, -3, 226, -375, 1331,-1376,12293},
{ 15, -4, -19, 250, -410, 1351,-1408,11638},
{ 13, 3, -35, 272, -439, 1361,-1419,10979},
{ 11, 9, -49, 292, -464, 1362,-1410,10319},
{ 9, 16, -63, 309, -483, 1354,-1383, 9660},
{ 7, 22, -75, 322, -496, 1337,-1339, 9005},
{ 6, 26, -85, 333, -504, 1312,-1280, 8355},
{ 4, 31, -94, 341, -507, 1278,-1205, 7713},
{ 3, 35, -102, 347, -506, 1238,-1119, 7082},
{ 1, 40, -110, 350, -499, 1190,-1021, 6464},
{ 0, 43, -115, 350, -488, 1136, -914, 5861}
};
/* Shifting by pre_shift allows calculation using unsigned int rather than
possibly-wider fixed_t. On 32-bit platforms, this is likely more efficient.
And by having pre_shift 32, a 32-bit platform can easily do the shift by
simply ignoring the low half. */
#ifndef BLIP_MONO
void blip_add_delta( blip_t* m, unsigned time, int delta_l, int delta_r )
{
if (delta_l | delta_r)
{
unsigned fixed = (unsigned) ((time * m->factor + m->offset) >> pre_shift);
int phase = fixed >> phase_shift & (phase_count - 1);
short const* in = bl_step [phase];
short const* rev = bl_step [phase_count - phase];
int interp = fixed >> (phase_shift - delta_bits) & (delta_unit - 1);
int pos = fixed >> frac_bits;
#ifdef BLIP_INVERT
buf_t* out_l = m->buffer[1] + pos;
buf_t* out_r = m->buffer[0] + pos;
#else
buf_t* out_l = m->buffer[0] + pos;
buf_t* out_r = m->buffer[1] + pos;
#endif
int delta;
#ifdef BLIP_ASSERT
/* Fails if buffer size was exceeded */
assert( pos <= m->size + end_frame_extra );
#endif
if (delta_l == delta_r)
{
buf_t out;
delta = (delta_l * interp) >> delta_bits;
delta_l -= delta;
out = in[0]*delta_l + in[half_width+0]*delta;
out_l[0] += out;
out_r[0] += out;
out = in[1]*delta_l + in[half_width+1]*delta;
out_l[1] += out;
out_r[1] += out;
out = in[2]*delta_l + in[half_width+2]*delta;
out_l[2] += out;
out_r[2] += out;
out = in[3]*delta_l + in[half_width+3]*delta;
out_l[3] += out;
out_r[3] += out;
out = in[4]*delta_l + in[half_width+4]*delta;
out_l[4] += out;
out_r[4] += out;
out = in[5]*delta_l + in[half_width+5]*delta;
out_l[5] += out;
out_r[5] += out;
out = in[6]*delta_l + in[half_width+6]*delta;
out_l[6] += out;
out_r[6] += out;
out = in[7]*delta_l + in[half_width+7]*delta;
out_l[7] += out;
out_r[7] += out;
out = rev[7]*delta_l + rev[7-half_width]*delta;
out_l[8] += out;
out_r[8] += out;
out = rev[6]*delta_l + rev[6-half_width]*delta;
out_l[9] += out;
out_r[9] += out;
out = rev[5]*delta_l + rev[5-half_width]*delta;
out_l[10] += out;
out_r[10] += out;
out = rev[4]*delta_l + rev[4-half_width]*delta;
out_l[11] += out;
out_r[11] += out;
out = rev[3]*delta_l + rev[3-half_width]*delta;
out_l[12] += out;
out_r[12] += out;
out = rev[2]*delta_l + rev[2-half_width]*delta;
out_l[13] += out;
out_r[13] += out;
out = rev[1]*delta_l + rev[1-half_width]*delta;
out_l[14] += out;
out_r[14] += out;
out = rev[0]*delta_l + rev[0-half_width]*delta;
out_l[15] += out;
out_r[15] += out;
}
else
{
delta = (delta_l * interp) >> delta_bits;
delta_l -= delta;
out_l [0] += in[0]*delta_l + in[half_width+0]*delta;
out_l [1] += in[1]*delta_l + in[half_width+1]*delta;
out_l [2] += in[2]*delta_l + in[half_width+2]*delta;
out_l [3] += in[3]*delta_l + in[half_width+3]*delta;
out_l [4] += in[4]*delta_l + in[half_width+4]*delta;
out_l [5] += in[5]*delta_l + in[half_width+5]*delta;
out_l [6] += in[6]*delta_l + in[half_width+6]*delta;
out_l [7] += in[7]*delta_l + in[half_width+7]*delta;
out_l [8] += rev[7]*delta_l + rev[7-half_width]*delta;
out_l [9] += rev[6]*delta_l + rev[6-half_width]*delta;
out_l [10] += rev[5]*delta_l + rev[5-half_width]*delta;
out_l [11] += rev[4]*delta_l + rev[4-half_width]*delta;
out_l [12] += rev[3]*delta_l + rev[3-half_width]*delta;
out_l [13] += rev[2]*delta_l + rev[2-half_width]*delta;
out_l [14] += rev[1]*delta_l + rev[1-half_width]*delta;
out_l [15] += rev[0]*delta_l + rev[0-half_width]*delta;
delta = (delta_r * interp) >> delta_bits;
delta_r -= delta;
out_r [0] += in[0]*delta_r + in[half_width+0]*delta;
out_r [1] += in[1]*delta_r + in[half_width+1]*delta;
out_r [2] += in[2]*delta_r + in[half_width+2]*delta;
out_r [3] += in[3]*delta_r + in[half_width+3]*delta;
out_r [4] += in[4]*delta_r + in[half_width+4]*delta;
out_r [5] += in[5]*delta_r + in[half_width+5]*delta;
out_r [6] += in[6]*delta_r + in[half_width+6]*delta;
out_r [7] += in[7]*delta_r + in[half_width+7]*delta;
out_r [8] += rev[7]*delta_r + rev[7-half_width]*delta;
out_r [9] += rev[6]*delta_r + rev[6-half_width]*delta;
out_r [10] += rev[5]*delta_r + rev[5-half_width]*delta;
out_r [11] += rev[4]*delta_r + rev[4-half_width]*delta;
out_r [12] += rev[3]*delta_r + rev[3-half_width]*delta;
out_r [13] += rev[2]*delta_r + rev[2-half_width]*delta;
out_r [14] += rev[1]*delta_r + rev[1-half_width]*delta;
out_r [15] += rev[0]*delta_r + rev[0-half_width]*delta;
}
}
}
void blip_add_delta_fast( blip_t* m, unsigned time, int delta_l, int delta_r )
{
if (delta_l | delta_r)
{
unsigned fixed = (unsigned) ((time * m->factor + m->offset) >> pre_shift);
int interp = fixed >> (frac_bits - delta_bits) & (delta_unit - 1);
int pos = fixed >> frac_bits;
#ifdef STEREO_INVERT
buf_t* out_l = m->buffer[1] + pos;
buf_t* out_r = m->buffer[0] + pos;
#else
buf_t* out_l = m->buffer[0] + pos;
buf_t* out_r = m->buffer[1] + pos;
#endif
int delta = delta_l * interp;
#ifdef BLIP_ASSERT
/* Fails if buffer size was exceeded */
assert( pos <= m->size + end_frame_extra );
#endif
if (delta_l == delta_r)
{
delta_l = delta_l * delta_unit - delta;
out_l[7] += delta_l;
out_l[8] += delta;
out_r[7] += delta_l;
out_r[8] += delta;
}
else
{
out_l[7] += delta_l * delta_unit - delta;
out_l[8] += delta;
delta = delta_r * interp;
out_r[7] += delta_r * delta_unit - delta;
out_r[8] += delta;
}
}
}
#else
void blip_add_delta( blip_t* m, unsigned time, int delta )
{
unsigned fixed = (unsigned) ((time * m->factor + m->offset) >> pre_shift);
buf_t* out = SAMPLES( m ) + (fixed >> frac_bits);
int phase = fixed >> phase_shift & (phase_count - 1);
short const* in = bl_step [phase];
short const* rev = bl_step [phase_count - phase];
int interp = fixed >> (phase_shift - delta_bits) & (delta_unit - 1);
int delta2 = (delta * interp) >> delta_bits;
delta -= delta2;
#ifdef BLIP_ASSERT
/* Fails if buffer size was exceeded */
assert( out <= &SAMPLES( m ) [m->size + end_frame_extra] );
#endif
out [0] += in[0]*delta + in[half_width+0]*delta2;
out [1] += in[1]*delta + in[half_width+1]*delta2;
out [2] += in[2]*delta + in[half_width+2]*delta2;
out [3] += in[3]*delta + in[half_width+3]*delta2;
out [4] += in[4]*delta + in[half_width+4]*delta2;
out [5] += in[5]*delta + in[half_width+5]*delta2;
out [6] += in[6]*delta + in[half_width+6]*delta2;
out [7] += in[7]*delta + in[half_width+7]*delta2;
in = rev;
out [ 8] += in[7]*delta + in[7-half_width]*delta2;
out [ 9] += in[6]*delta + in[6-half_width]*delta2;
out [10] += in[5]*delta + in[5-half_width]*delta2;
out [11] += in[4]*delta + in[4-half_width]*delta2;
out [12] += in[3]*delta + in[3-half_width]*delta2;
out [13] += in[2]*delta + in[2-half_width]*delta2;
out [14] += in[1]*delta + in[1-half_width]*delta2;
out [15] += in[0]*delta + in[0-half_width]*delta2;
}
void blip_add_delta_fast( blip_t* m, unsigned time, int delta )
{
unsigned fixed = (unsigned) ((time * m->factor + m->offset) >> pre_shift);
buf_t* out = SAMPLES( m ) + (fixed >> frac_bits);
int interp = fixed >> (frac_bits - delta_bits) & (delta_unit - 1);
int delta2 = delta * interp;
#ifdef BLIP_ASSERT
/* Fails if buffer size was exceeded */
assert( out <= &SAMPLES( m ) [m->size + end_frame_extra] );
#endif
out [7] += delta * delta_unit - delta2;
out [8] += delta2;
}
#endif