mirror of
https://github.com/ekeeke/Genesis-Plus-GX.git
synced 2025-01-15 04:39:07 +01:00
363 lines
12 KiB
C
363 lines
12 KiB
C
/*
|
|
SN76489 emulation
|
|
by Maxim in 2001 and 2002
|
|
converted from my original Delphi implementation
|
|
|
|
I'm a C newbie so I'm sure there are loads of stupid things
|
|
in here which I'll come back to some day and redo
|
|
|
|
Includes:
|
|
- Super-high quality tone channel "oversampling" by calculating fractional positions on transitions
|
|
- Noise output pattern reverse engineered from actual SMS output
|
|
- Volume levels taken from actual SMS output
|
|
|
|
07/08/04 Charles MacDonald
|
|
Modified for use with SMS Plus:
|
|
- Added support for multiple PSG chips.
|
|
- Added reset/config/update routines.
|
|
- Added context management routines.
|
|
- Removed SN76489_GetValues().
|
|
- Removed some unused variables.
|
|
|
|
25/04/07 Eke-Eke (Genesis Plus GX)
|
|
- Removed stereo GG support (unused)
|
|
- Made SN76489_Update outputs 16bits mono samples
|
|
- Replaced volume table with VGM plugin's one
|
|
|
|
05/01/09 Eke-Eke (Genesis Plus GX)
|
|
- Modified Cut-Off frequency (according to Steve Snake: http://www.smspower.org/forums/viewtopic.php?t=1746)
|
|
|
|
25/05/09 Eke-Eke (Genesis Plus GX)
|
|
- Removed multichip support (unused)
|
|
*/
|
|
|
|
#include "shared.h"
|
|
|
|
#include <float.h> // for FLT_MIN
|
|
#include <string.h> // for memcpy
|
|
|
|
#define NoiseInitialState 0x8000 /* Initial state of shift register */
|
|
//#define PSG_CUTOFF 0x6 /* Value below which PSG does not output */
|
|
#define PSG_CUTOFF 0x1
|
|
|
|
/*
|
|
More testing is needed to find and confirm feedback patterns for
|
|
SN76489 variants and compatible chips.
|
|
*/
|
|
enum feedback_patterns {
|
|
FB_BBCMICRO = 0x8005, /* Texas Instruments TMS SN76489N (original) from BBC Micro computer */
|
|
FB_SC3000 = 0x0006, /* Texas Instruments TMS SN76489AN (rev. A) from SC-3000H computer */
|
|
FB_SEGAVDP = 0x0009, /* SN76489 clone in Sega's VDP chips (315-5124, 315-5246, 315-5313, Game Gear) */
|
|
};
|
|
|
|
enum sr_widths {
|
|
SRW_SC3000BBCMICRO = 15,
|
|
SRW_SEGAVDP = 16
|
|
};
|
|
|
|
enum volume_modes {
|
|
VOL_TRUNC = 0, /* Volume levels 13-15 are identical */
|
|
VOL_FULL = 1, /* Volume levels 13-15 are unique */
|
|
};
|
|
|
|
enum mute_values {
|
|
MUTE_ALLOFF = 0, /* All channels muted */
|
|
MUTE_TONE1 = 1, /* Tone 1 mute control */
|
|
MUTE_TONE2 = 2, /* Tone 2 mute control */
|
|
MUTE_TONE3 = 4, /* Tone 3 mute control */
|
|
MUTE_NOISE = 8, /* Noise mute control */
|
|
MUTE_ALLON = 15, /* All channels enabled */
|
|
};
|
|
|
|
typedef struct
|
|
{
|
|
int Mute; // per-channel muting
|
|
int VolumeArray;
|
|
int BoostNoise; // double noise volume when non-zero
|
|
|
|
/* Variables */
|
|
float Clock;
|
|
float dClock;
|
|
int PSGStereo;
|
|
int NumClocksForSample;
|
|
int WhiteNoiseFeedback;
|
|
int SRWidth;
|
|
|
|
/* PSG registers: */
|
|
int Registers[8]; /* Tone, vol x4 */
|
|
int LatchedRegister;
|
|
int NoiseShiftRegister;
|
|
int NoiseFreq; /* Noise channel signal generator frequency */
|
|
|
|
/* Output calculation variables */
|
|
int ToneFreqVals[4]; /* Frequency register values (counters) */
|
|
int ToneFreqPos[4]; /* Frequency channel flip-flops */
|
|
int Channels[4]; /* Value of each channel, before stereo is applied */
|
|
float IntermediatePos[4]; /* intermediate values used at boundaries between + and - (does not need double accuracy)*/
|
|
|
|
int panning[4]; /* fake stereo - 0..127..254 */
|
|
|
|
} SN76489_Context;
|
|
|
|
|
|
static const int PSGVolumeValues[2][16] = {
|
|
/* These values are taken from a real SMS2's output */
|
|
{892,892,892,760,623,497,404,323,257,198,159,123,96,75,60,0}, /* I can't remember why 892... :P some scaling I did at some point */
|
|
/* these values are true volumes for 2dB drops at each step (multiply previous by 10^-0.1), normalised at 760 */
|
|
{1516,1205,957,760,603,479,381,303,240,191,152,120,96,76,60,0}
|
|
};
|
|
|
|
static SN76489_Context SN76489;
|
|
|
|
void SN76489_Init(float PSGClockValue, int SamplingRate)
|
|
{
|
|
SN76489_Context *p = &SN76489;
|
|
p->dClock=PSGClockValue/16.0/SamplingRate;
|
|
SN76489_Config(MUTE_ALLON, VOL_FULL, FB_SEGAVDP, SRW_SEGAVDP, config.psgBoostNoise);
|
|
}
|
|
|
|
void SN76489_Reset(void)
|
|
{
|
|
SN76489_Context *p = &SN76489;
|
|
int i;
|
|
|
|
p->PSGStereo = 0xFF;
|
|
|
|
for(i = 0; i <= 3; i++)
|
|
{
|
|
/* Initialise PSG state */
|
|
p->Registers[2*i] = 1; /* tone freq=1 */
|
|
p->Registers[2*i+1] = 0xf; /* vol=off */
|
|
p->NoiseFreq = 0x10;
|
|
|
|
/* Set counters to 0 */
|
|
p->ToneFreqVals[i] = 0;
|
|
|
|
/* Set flip-flops to 1 */
|
|
p->ToneFreqPos[i] = 1;
|
|
|
|
/* Set intermediate positions to do-not-use value */
|
|
p->IntermediatePos[i] = FLT_MIN;
|
|
|
|
/* Set panning to centre */
|
|
p->panning[0]=127;
|
|
}
|
|
|
|
p->LatchedRegister=0;
|
|
|
|
/* Initialise noise generator */
|
|
p->NoiseShiftRegister=NoiseInitialState;
|
|
|
|
/* Zero clock */
|
|
p->Clock=0;
|
|
|
|
}
|
|
|
|
void SN76489_Shutdown(void)
|
|
{
|
|
}
|
|
|
|
void SN76489_BoostNoise(int boost)
|
|
{
|
|
SN76489.BoostNoise = boost;
|
|
}
|
|
|
|
void SN76489_Config(int mute, int volume, int feedback, int sr_width, int boost_noise)
|
|
{
|
|
SN76489_Context *p = &SN76489;
|
|
|
|
p->Mute = mute;
|
|
p->VolumeArray = volume;
|
|
p->WhiteNoiseFeedback = feedback;
|
|
p->SRWidth = sr_width;
|
|
p->BoostNoise = boost_noise;
|
|
}
|
|
|
|
void SN76489_SetContext(uint8 *data)
|
|
{
|
|
memcpy(&SN76489, data, sizeof(SN76489_Context));
|
|
}
|
|
|
|
void SN76489_GetContext(uint8 *data)
|
|
{
|
|
memcpy(data, &SN76489, sizeof(SN76489_Context));
|
|
}
|
|
|
|
uint8 *SN76489_GetContextPtr(void)
|
|
{
|
|
return (uint8 *)&SN76489;
|
|
}
|
|
|
|
int SN76489_GetContextSize(void)
|
|
{
|
|
return sizeof(SN76489_Context);
|
|
}
|
|
|
|
void SN76489_Write(int data)
|
|
{
|
|
SN76489_Context *p = &SN76489;
|
|
|
|
if (data&0x80) {
|
|
/* Latch/data byte %1 cc t dddd */
|
|
p->LatchedRegister=((data>>4)&0x07);
|
|
p->Registers[p->LatchedRegister]=
|
|
(p->Registers[p->LatchedRegister] & 0x3f0) /* zero low 4 bits */
|
|
| (data&0xf); /* and replace with data */
|
|
} else {
|
|
/* Data byte %0 - dddddd */
|
|
if (!(p->LatchedRegister%2)&&(p->LatchedRegister<5))
|
|
/* Tone register */
|
|
p->Registers[p->LatchedRegister]=
|
|
(p->Registers[p->LatchedRegister] & 0x00f) /* zero high 6 bits */
|
|
| ((data&0x3f)<<4); /* and replace with data */
|
|
else
|
|
/* Other register */
|
|
p->Registers[p->LatchedRegister]=data&0x0f; /* Replace with data */
|
|
}
|
|
switch (p->LatchedRegister) {
|
|
case 0:
|
|
case 2:
|
|
case 4: /* Tone channels */
|
|
if (p->Registers[p->LatchedRegister]==0) p->Registers[p->LatchedRegister]=1; /* Zero frequency changed to 1 to avoid div/0 */
|
|
break;
|
|
case 6: /* Noise */
|
|
p->NoiseShiftRegister=NoiseInitialState; /* reset shift register */
|
|
p->NoiseFreq=0x10<<(p->Registers[6]&0x3); /* set noise signal generator frequency */
|
|
break;
|
|
}
|
|
}
|
|
|
|
void SN76489_GGStereoWrite(int data)
|
|
{
|
|
SN76489_Context *p = &SN76489;
|
|
p->PSGStereo=data;
|
|
}
|
|
|
|
void SN76489_Update(INT16 *buffer, int length)
|
|
{
|
|
SN76489_Context *p = &SN76489;
|
|
int i, j;
|
|
|
|
for(j = 0; j < length; j++)
|
|
{
|
|
for (i=0;i<=2;++i)
|
|
if (p->IntermediatePos[i]!=FLT_MIN)
|
|
p->Channels[i]=(short)((p->Mute >> i & 0x1)*PSGVolumeValues[p->VolumeArray][p->Registers[2*i+1]]*p->IntermediatePos[i]);
|
|
else
|
|
p->Channels[i]=(p->Mute >> i & 0x1)*PSGVolumeValues[p->VolumeArray][p->Registers[2*i+1]]*p->ToneFreqPos[i];
|
|
|
|
p->Channels[3]=(short)((p->Mute >> 3 & 0x1)*PSGVolumeValues[p->VolumeArray][p->Registers[7]]*(p->NoiseShiftRegister & 0x1));
|
|
|
|
if (p->BoostNoise) p->Channels[3]<<=1; /* double noise volume */
|
|
|
|
buffer[j] =0;
|
|
for (i=0;i<=3;++i) buffer[j] += p->Channels[i];
|
|
|
|
p->Clock+=p->dClock;
|
|
p->NumClocksForSample=(int)p->Clock; /* truncates */
|
|
p->Clock-=p->NumClocksForSample; /* remove integer part */
|
|
/* Looks nicer in Delphi... */
|
|
/* Clock:=Clock+p->dClock; */
|
|
/* NumClocksForSample:=Trunc(Clock); */
|
|
/* Clock:=Frac(Clock); */
|
|
|
|
/* Decrement tone channel counters */
|
|
for (i=0;i<=2;++i)
|
|
p->ToneFreqVals[i]-=p->NumClocksForSample;
|
|
|
|
/* Noise channel: match to tone2 or decrement its counter */
|
|
if (p->NoiseFreq==0x80) p->ToneFreqVals[3]=p->ToneFreqVals[2];
|
|
else p->ToneFreqVals[3]-=p->NumClocksForSample;
|
|
|
|
/* Tone channels: */
|
|
for (i=0;i<=2;++i) {
|
|
if (p->ToneFreqVals[i]<=0) { /* If it gets below 0... */
|
|
if (p->Registers[i*2]>PSG_CUTOFF) {
|
|
/* Calculate how much of the sample is + and how much is - */
|
|
/* Go to floating point and include the clock fraction for extreme accuracy :D */
|
|
/* Store as long int, maybe it's faster? I'm not very good at this */
|
|
p->IntermediatePos[i]=(p->NumClocksForSample-p->Clock+2*p->ToneFreqVals[i])*p->ToneFreqPos[i]/(p->NumClocksForSample+p->Clock);
|
|
p->ToneFreqPos[i]=-p->ToneFreqPos[i]; /* Flip the flip-flop */
|
|
} else {
|
|
p->ToneFreqPos[i]=1; /* stuck value */
|
|
p->IntermediatePos[i]=FLT_MIN;
|
|
}
|
|
p->ToneFreqVals[i]+=p->Registers[i*2]*(p->NumClocksForSample/p->Registers[i*2]+1);
|
|
} else p->IntermediatePos[i]=FLT_MIN;
|
|
}
|
|
|
|
/* Noise channel */
|
|
if (p->ToneFreqVals[3]<=0) { /* If it gets below 0... */
|
|
p->ToneFreqPos[3]=-p->ToneFreqPos[3]; /* Flip the flip-flop */
|
|
if (p->NoiseFreq!=0x80) /* If not matching tone2, decrement counter */
|
|
p->ToneFreqVals[3]+=p->NoiseFreq*(p->NumClocksForSample/p->NoiseFreq+1);
|
|
if (p->ToneFreqPos[3]==1) { /* Only once per cycle... */
|
|
int Feedback;
|
|
if (p->Registers[6]&0x4) { /* White noise */
|
|
/* Calculate parity of fed-back bits for feedback */
|
|
switch (p->WhiteNoiseFeedback) {
|
|
/* Do some optimised calculations for common (known) feedback values */
|
|
case 0x0003: /* SC-3000, BBC %00000011 */
|
|
case 0x0009: /* SMS, GG, MD %00001001 */
|
|
/* If two bits fed back, I can do Feedback=(nsr & fb) && (nsr & fb ^ fb) */
|
|
/* since that's (one or more bits set) && (not all bits set) */
|
|
Feedback=((p->NoiseShiftRegister&p->WhiteNoiseFeedback) && ((p->NoiseShiftRegister&p->WhiteNoiseFeedback)^p->WhiteNoiseFeedback));
|
|
break;
|
|
default: /* Default handler for all other feedback values */
|
|
Feedback=p->NoiseShiftRegister&p->WhiteNoiseFeedback;
|
|
Feedback^=Feedback>>8;
|
|
Feedback^=Feedback>>4;
|
|
Feedback^=Feedback>>2;
|
|
Feedback^=Feedback>>1;
|
|
Feedback&=1;
|
|
break;
|
|
}
|
|
} else /* Periodic noise */
|
|
Feedback=p->NoiseShiftRegister&1;
|
|
|
|
p->NoiseShiftRegister=(p->NoiseShiftRegister>>1) | (Feedback << (p->SRWidth-1));
|
|
|
|
/* Original code: */
|
|
/* p->NoiseShiftRegister=(p->NoiseShiftRegister>>1) | ((p->Registers[6]&0x4?((p->NoiseShiftRegister&0x9) && (p->NoiseShiftRegister&0x9^0x9)):p->NoiseShiftRegister&1)<<15); */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*void SN76489_UpdateOne(int which, int *l, int *r)
|
|
{
|
|
INT16 tl,tr;
|
|
INT16 *buff[2]={&tl,&tr};
|
|
SN76489_Update(which,buff,1);
|
|
*l=tl;
|
|
*r=tr;
|
|
}*/
|
|
|
|
int SN76489_GetMute()
|
|
{
|
|
return SN76489.Mute;
|
|
}
|
|
|
|
void SN76489_SetMute(int val)
|
|
{
|
|
SN76489.Mute=val;
|
|
}
|
|
|
|
int SN76489_GetVolType()
|
|
{
|
|
return SN76489.VolumeArray;
|
|
}
|
|
|
|
void SN76489_SetVolType(int val)
|
|
{
|
|
SN76489.VolumeArray=val;
|
|
}
|
|
|
|
void SN76489_SetPanning(int ch0, int ch1, int ch2, int ch3)
|
|
{
|
|
SN76489.panning[0]=ch0;
|
|
SN76489.panning[1]=ch1;
|
|
SN76489.panning[2]=ch2;
|
|
SN76489.panning[3]=ch3;
|
|
}
|