ekeeke31 ed11eb0133 [Core/VDP]
* improved sprites processing accuracy.
* fixed VBLANK transition line checks.
* code cleanup and (minor) optimizations.

[Core/Sound]
* increased FM internal sample size to 32-bit to avoid overflow when adding channels.
* added preliminary emulation of YM2612 DAC precision (can be configured to match real console output).
* added configurable roll-off for FIR filtering in High-Quality FM mode.

[Wii]
*added support to enable/disable Video Encoder Trap Filter: can help reproducing "color blending" as on a real Genesis (composite video only).
*added support to configure Video Encoder gamma correction.
2010-02-28 19:55:43 +00:00

821 lines
23 KiB
C

/***************************************************************************************
* Genesis Plus
* Peripheral Input Support
*
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Charles Mac Donald (original code)
* Eke-Eke (2007,2008,2009), additional code & fixes for the GCN/Wii port
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
****************************************************************************************/
#include "shared.h"
t_input input;
/************************************************************************************/
/* */
/* H-counter values returned in H40 & H32 modes */
/* */
/* Inside VDP, dot counter register is 9-bit, with only upper 8 bits being returned */
/* */
/* The number of dots per raster line is 342 in H32 mode and 420 in H40 mode */
/* */
/************************************************************************************/
static const uint8 hc_320[210] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F,
0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF,
0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6,
0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED,
0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD,
0xFE, 0xFF
};
static const uint8 hc_256[171] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F,
0x90, 0x91, 0x92, 0x93,
0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF,
0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF
};
/*****************************************************************************
* LIGHTGUN specific functions
*
*****************************************************************************/
static inline void lightgun_reset(int num)
{
input.analog[num][0] = bitmap.viewport.w >> 1;
input.analog[num][1] = bitmap.viewport.h >> 1;
}
static inline void lightgun_update(int num)
{
if ((input.analog[num][1] == v_counter + input.y_offset))
{
/* HL enabled ? */
if (io_reg[5] & 0x80)
{
/* External Interrupt ? */
if (reg[11] & 0x08)
irq_status = (irq_status & ~0x40) | 0x12;
/* Horizontal Counter Latch:
1) some games does not set HVC latch but instead use bigger X offset
2) for games using H40 mode, the gun routine scales up the Hcounter value,
H-Counter range is approx. 292 pixel clocks
*/
hc_latch = 0x100;
if (reg[12] & 1)
hc_latch |= hc_320[((input.analog[num][0] * 290) / (2 * 320) + input.x_offset) % 210];
else
hc_latch |= hc_256[(input.analog[num][0] / 2 + input.x_offset)%171];
}
}
}
/* Sega Menacer specific */
uint32 menacer_read(void)
{
/* pins should return 0 by default (fix Body Count when mouse is enabled) */
int retval = 0x00;
if (input.pad[4] & INPUT_B) retval |= 0x01;
if (input.pad[4] & INPUT_A) retval |= 0x02;
if (input.pad[4] & INPUT_C) retval |= 0x04;
if (input.pad[4] & INPUT_START) retval |= 0x08;
return retval;
}
/* Konami Justifier specific */
uint32 justifier_read(void)
{
/* TL & TR pins should always return 1 (write only) */
/* LEFT & RIGHT pins should always return 0 (needed during gun detection) */
int retval = 0x73;
switch (io_reg[2])
{
case 0x40: /* gun detection */
return 0x30;
case 0x00: /* gun #1 enabled */
if (input.pad[4] & INPUT_A) retval &= ~0x01;
if (input.pad[4] & INPUT_START) retval &= ~0x02;
return retval;
case 0x20: /* gun #2 enabled */
if (input.pad[5] & INPUT_A) retval &= ~0x01;
if (input.pad[5] & INPUT_START) retval &= ~0x02;
return retval;
default: /* guns disabled */
return retval;
}
}
/*****************************************************************************
* SEGA MOUSE specific functions
*
*****************************************************************************/
static struct mega_mouse
{
uint8 State;
uint8 Counter;
uint8 Wait;
uint8 Port;
} mouse;
static inline void mouse_reset(void)
{
mouse.State = 0x60;
mouse.Counter = 0;
mouse.Wait = 0;
mouse.Port = (input.system[0] == SYSTEM_MOUSE) ? 0 : 4;
}
void mouse_write(uint32 data)
{
if (mouse.Counter == 0)
{
/* TH 1->0 transition */
if ((mouse.State&0x40) && !(data&0x40))
{
/* start acquisition */
mouse.Counter = 1;
}
}
else
{
/* TR transition */
if ((mouse.State&0x20) != (data&0x20))
{
mouse.Counter ++; /* increment phase */
mouse.Wait = 1; /* mouse latency */
if (mouse.Counter > 9) mouse.Counter = 9;
}
}
/* end of acquisition (TH=1) */
if (data&0x40) mouse.Counter = 0;
/* update internal state */
mouse.State = data;
}
uint32 mouse_read()
{
int temp = 0x00;
switch (mouse.Counter)
{
case 0: /* initial */
temp = 0x00;
break;
case 1: /* xxxx1011 */
temp = 0x0B;
break;
case 2: /* xxxx1111 */
temp = 0x0F;
break;
case 3: /* xxxx1111 */
temp = 0x0F;
break;
case 4: /* Axis sign and overflow */
if (input.analog[2][0] < 0) temp |= 0x01;
if (input.analog[2][1] < 0) temp |= 0x02;
if (abs(input.analog[2][0]) > 255) temp |= 0x04;
if (abs(input.analog[2][1]) > 255) temp |= 0x08;
break;
case 5: /* Buttons state */
if (input.pad[mouse.Port] & INPUT_A) temp |= 0x01;
if (input.pad[mouse.Port] & INPUT_C) temp |= 0x02;
if (input.pad[mouse.Port] & INPUT_B) temp |= 0x04;
if (input.pad[mouse.Port] & INPUT_START) temp |= 0x08;
break;
case 6: /* X Axis MSB */
temp = (input.analog[2][0] >> 4) & 0x0f;
break;
case 7: /* X Axis LSB */
temp = (input.analog[2][0] & 0x0f);
break;
case 8: /* Y Axis MSB */
temp = (input.analog[2][1] >> 4) & 0x0f;
break;
case 9: /* Y Axis LSB */
temp = (input.analog[2][1] & 0x0f);
break;
}
/* TR-TL handshaking */
if (mouse.Wait)
{
/* wait before ACK, fix some buggy mouse routine (Shangai 2, Wack World,...) */
mouse.Wait = 0;
/* TL = !TR */
temp |= (~mouse.State & 0x20) >> 1;
}
else
{
/* TL = TR */
temp |= (mouse.State & 0x20) >> 1;
}
return temp;
}
/*****************************************************************************
* GAMEPAD specific functions (2PLAYERS/4WAYPLAY)
*
*****************************************************************************/
static struct pad
{
uint8 State;
uint8 Counter;
uint8 Delay;
} gamepad[MAX_DEVICES];
static inline void gamepad_raz(uint32 i)
{
gamepad[i].Counter = 0;
gamepad[i].Delay = 0;
}
static inline void gamepad_reset(uint32 i)
{
gamepad[i].State = 0x40;
if (input.dev[i] == DEVICE_6BUTTON) gamepad_raz(i);
}
static inline void gamepad_update(uint32 i)
{
if (gamepad[i].Delay++ > 25) gamepad_raz(i);
}
static inline uint32 gamepad_read(uint32 i)
{
int control;
int retval = 0x7F;
control = (gamepad[i].State & 0x40) >> 6; /* current TH state */
if (input.dev[i] == DEVICE_6BUTTON)
{
control += (gamepad[i].Counter & 3) << 1; /* TH transitions counter */
}
switch (control)
{
case 1: /*** First High ***/
case 3: /*** Second High ***/
case 5: /*** Third High ***/
/* TH = 1 : ?1CBRLDU */
if (input.pad[i] & INPUT_C) retval &= ~0x20;
if (input.pad[i] & INPUT_B) retval &= ~0x10;
if (input.pad[i] & INPUT_UP) retval &= ~0x01;
if (input.pad[i] & INPUT_DOWN) retval &= ~0x02;
if (input.pad[i] & INPUT_LEFT) retval &= ~0x04;
if (input.pad[i] & INPUT_RIGHT) retval &= ~0x08;
break;
case 0: /*** First low ***/
case 2: /*** Second low ***/
/* TH = 0 : ?0SA00DU */
if (input.pad[i] & INPUT_A) retval &= ~0x10;
if (input.pad[i] & INPUT_START) retval &= ~0x20;
if (input.pad[i] & INPUT_UP) retval &= ~0x01;
if (input.pad[i] & INPUT_DOWN) retval &= ~0x02;
retval &= 0xB3;
break;
/* 6buttons specific (taken from gen-hw.txt) */
/* A 6-button gamepad allows the extra buttons to be read based on how */
/* many times TH is switched from 1 to 0 (and not 0 to 1). Observe the */
/* following sequence */
/*
TH = 1 : ?1CBRLDU 3-button pad return value
TH = 0 : ?0SA00DU 3-button pad return value
TH = 1 : ?1CBRLDU 3-button pad return value
TH = 0 : ?0SA0000 D3-0 are forced to '0'
TH = 1 : ?1CBMXYZ Extra buttons returned in D3-0
TH = 0 : ?0SA1111 D3-0 are forced to '1'
*/
case 4: /*** Third Low ***/
/* TH = 0 : ?0SA0000 D3-0 are forced to '0'*/
if (input.pad[i] & INPUT_A) retval &= ~0x10;
if (input.pad[i] & INPUT_START) retval &= ~0x20;
retval &= 0xB0;
break;
case 6: /*** Fourth Low ***/
/* TH = 0 : ?0SA1111 D3-0 are forced to '1'*/
if (input.pad[i] & INPUT_A) retval &= ~0x10;
if (input.pad[i] & INPUT_START) retval &= ~0x20;
retval &= 0xBF;
break;
case 7: /*** Fourth High ***/
/* TH = 1 : ?1CBMXYZ Extra buttons returned in D3-0*/
if (input.pad[i] & INPUT_X) retval &= ~0x04;
if (input.pad[i] & INPUT_Y) retval &= ~0x02;
if (input.pad[i] & INPUT_Z) retval &= ~0x01;
if (input.pad[i] & INPUT_B) retval &= ~0x10;
if (input.pad[i] & INPUT_C) retval &= ~0x20;
if (input.pad[i] & INPUT_MODE) retval &= ~0x08;
break;
default:
break;
}
/* bit7 is latched */
return retval;
}
static inline void gamepad_write(uint32 i, uint32 data)
{
if (input.dev[i] == DEVICE_6BUTTON)
{
/* TH=0 to TH=1 transition */
if (!(gamepad[i].State & 0x40) && (data & 0x40))
{
gamepad[i].Counter++;
gamepad[i].Delay = 0;
}
}
gamepad[i].State = data;
}
/*****************************************************************************
* TEAMPLAYER adapter
*
*****************************************************************************/
static struct teamplayer
{
uint8 State;
uint8 Counter;
uint8 Table[12];
} teamplayer[2];
static inline void teamplayer_init(uint32 port)
{
int i;
int index = 0;
int pad_input = 0;
/* this table determines which gamepad input should be returned during acquisition sequence
index = teamplayer read table index: 0=1st read, 1=2nd read, ...
pad_input = gamepad input 0-14: 0=P1_DIR, 1=P1_SABC, 2=P1_MXYZ, 4=P2_DIR, 5=P2_SABC, ...
*/
for (i=0; i<4; i++)
{
if (input.dev[(4*port) + i] == DEVICE_3BUTTON)
{
teamplayer[port].Table[index++] = pad_input;
teamplayer[port].Table[index++] = pad_input + 1;
}
else if (input.dev[(4*port) + i] == DEVICE_6BUTTON)
{
teamplayer[port].Table[index++] = pad_input;
teamplayer[port].Table[index++] = pad_input + 1;
teamplayer[port].Table[index++] = pad_input + 2;
}
pad_input += 4;
}
}
static inline void teamplayer_reset(uint32 port)
{
teamplayer[port].State = 0x60; /* TH = 1, TR = 1 */
teamplayer[port].Counter = 0;
}
/* SEGA teamplayer returns successively:
- PAD1 inputs
- PAD2 inputs
- PAD3 inputs
- PAD4 inputs
Each PAD inputs is obtained through 2 or 3 sequential reads:
1/ DIR buttons
2/ START,A,C,B buttons
3/ MODE, X,Y,Z buttons (6Button only !)
*/
static inline uint32 teamplayer_read_device(uint32 port, uint32 index)
{
int retval = 0x7F;
int pad_input = teamplayer[port].Table[index] & 0x03;
int pad_num = (4 * port) + ((teamplayer[port].Table[index] >> 2) & 0x03);
switch (pad_input)
{
case 0:
/* Directions Buttons */
if (input.pad[pad_num] & INPUT_UP) retval &= ~0x01;
if (input.pad[pad_num] & INPUT_DOWN) retval &= ~0x02;
if (input.pad[pad_num] & INPUT_LEFT) retval &= ~0x04;
if (input.pad[pad_num] & INPUT_RIGHT) retval &= ~0x08;
break;
case 1:
/* S,A,C,B Buttons */
if (input.pad[pad_num] & INPUT_B) retval &= ~0x01;
if (input.pad[pad_num] & INPUT_C) retval &= ~0x02;
if (input.pad[pad_num] & INPUT_A) retval &= ~0x04;
if (input.pad[pad_num] & INPUT_START) retval &= ~0x08;
break;
case 2:
/* M,X,Y,Z Buttons (6-Buttons only)*/
if (input.pad[pad_num] & INPUT_Z) retval &= ~0x01;
if (input.pad[pad_num] & INPUT_Y) retval &= ~0x02;
if (input.pad[pad_num] & INPUT_X) retval &= ~0x04;
if (input.pad[pad_num] & INPUT_MODE) retval &= ~0x08;
break;
}
return retval;
}
static inline uint32 teamplayer_read(uint32 port)
{
int retval = 0x7F;
int padnum;
switch (teamplayer[port].Counter) /* acquisition sequence steps */
{
case 0: /* initial state: TH = 1, TR = 1 */
retval = 0x73;
break;
case 1: /* start request: TH = 0, TR = 1 */
retval = 0x3F;
break;
case 2:
case 3: /* ack request: TH=0, TR handshake */
retval = 0x00;
break;
case 4:
case 5:
case 6:
case 7: /* gamepads type */
padnum = (4 * port) + teamplayer[port].Counter - 4;
retval = input.dev[padnum];
break;
default: /* gamepads inputs acquisition */
retval = teamplayer_read_device(port, teamplayer[port].Counter - 8);
break;
}
/* TL must match TR state */
retval &= ~0x10;
if (teamplayer[port].State & 0x20) retval |= 0x10;
return retval;
}
static inline void teamplayer_write(uint32 port, uint32 data)
{
int old_state = teamplayer[port].State;
teamplayer[port].State = (data & io_reg[port+4]) | (teamplayer[port].State & ~io_reg[port+4]);
if (old_state != teamplayer[port].State) teamplayer[port].Counter ++;
if ((data&0x60) == 0x60) teamplayer[port].Counter = 0;
}
/*****************************************************************************
* 4WAYPLAY adapter
*
*****************************************************************************/
static inline void wayplay_write(uint32 port, uint32 data)
{
if (port == 0) gamepad_write(input.current, data);
else input.current = (data >> 4) & 0x07;
}
static inline uint32 wayplay_read(uint32 port)
{
if (port == 1) return 0x7F;
if (input.current >= 4) return 0x70; /* multitap detection (TH2 = 1) */
return gamepad_read(input.current); /* 0x0C = Pad1, 0x1C = Pad2, ... */
}
/*****************************************************************************
* I/O wrappers
*
*****************************************************************************/
uint32 gamepad_1_read (void)
{
return gamepad_read(0);
}
uint32 gamepad_2_read (void)
{
return gamepad_read(4);
}
void gamepad_1_write (uint32 data)
{
gamepad_write(0, data);
}
void gamepad_2_write (uint32 data)
{
gamepad_write(4, data);
}
uint32 wayplay_1_read (void)
{
return wayplay_read(0);
}
uint32 wayplay_2_read (void)
{
return wayplay_read(1);
}
void wayplay_1_write (uint32 data)
{
wayplay_write(0, data);
}
void wayplay_2_write (uint32 data)
{
wayplay_write(1, data);
}
uint32 teamplayer_1_read (void)
{
return teamplayer_read(0);
}
uint32 teamplayer_2_read (void)
{
return teamplayer_read(1);
}
void teamplayer_1_write (uint32 data)
{
teamplayer_write(0, data);
}
void teamplayer_2_write (uint32 data)
{
teamplayer_write(1, data);
}
uint32 jcart_read(uint32 address)
{
return (gamepad_read(5) | ((gamepad_read(6)&0x3f) << 8)); /* fixes Micro Machines 2 */
}
void jcart_write(uint32 address, uint32 data)
{
gamepad_write(5, (data&1) << 6);
gamepad_write(6, (data&1) << 6);
return;
}
/*****************************************************************************
* Generic INPUTS Control
*
*****************************************************************************/
void input_init(void)
{
int i,j;
input.max = 0;
for (i=0; i<MAX_DEVICES; i++)
{
input.dev[i] = NO_DEVICE;
input.pad[i] = 0;
}
switch (input.system[0])
{
case SYSTEM_GAMEPAD:
if (input.max == MAX_INPUTS) return;
input.dev[0] = config.input[input.max].padtype;
input.max ++;
break;
case SYSTEM_MOUSE:
if (input.max == MAX_INPUTS) return;
input.dev[0] = DEVICE_MOUSE;
input.max ++;
break;
case SYSTEM_WAYPLAY:
for (j=0; j< 4; j++)
{
if (input.max == MAX_INPUTS) return;
input.dev[j] = config.input[input.max].padtype;
input.max ++;
}
break;
case SYSTEM_TEAMPLAYER:
for (j=0; j<4; j++)
{
if (input.max == MAX_INPUTS) return;
input.dev[j] = config.input[input.max].padtype;
input.max ++;
}
teamplayer_init(0);
break;
}
switch (input.system[1])
{
case SYSTEM_GAMEPAD:
if (input.max == MAX_INPUTS) return;
input.dev[4] = config.input[input.max].padtype;
input.max ++;
break;
case SYSTEM_MOUSE:
if (input.max == MAX_INPUTS) return;
input.dev[4] = DEVICE_MOUSE;
input.max ++;
break;
case SYSTEM_MENACER:
if (input.max == MAX_INPUTS) return;
input.dev[4] = DEVICE_LIGHTGUN;
break;
case SYSTEM_JUSTIFIER:
for (j=4; j<6; j++)
{
if (input.max == MAX_INPUTS) return;
input.dev[j] = DEVICE_LIGHTGUN;
input.max ++;
}
break;
case SYSTEM_TEAMPLAYER:
for (j=4; j<8; j++)
{
if (input.max == MAX_INPUTS) return;
input.dev[j] = config.input[input.max].padtype;
input.max ++;
}
teamplayer_init(1);
break;
}
/* J-CART: add two gamepad inputs */
if (cart.hw.jcart)
{
input.dev[5] = config.input[2].padtype;
input.dev[6] = config.input[3].padtype;
}
}
void input_reset(void)
{
/* Reset Controller device */
int i;
for (i=0; i<MAX_INPUTS; i++)
{
switch (input.dev[i])
{
case DEVICE_3BUTTON:
case DEVICE_6BUTTON:
gamepad_reset(i);
break;
case DEVICE_LIGHTGUN:
lightgun_reset(i%4);
break;
case DEVICE_MOUSE:
mouse_reset();
default:
break;
}
}
/* Team Player */
if (input.system[0] == SYSTEM_TEAMPLAYER)
teamplayer_reset(0);
if (input.system[1] == SYSTEM_TEAMPLAYER)
teamplayer_reset(1);
/* 4-Way Play */
input.current = 0;
}
void input_update(void)
{
int i;
switch (input.system[0])
{
case SYSTEM_GAMEPAD:
if (input.dev[0] == DEVICE_6BUTTON) gamepad_update(0);
break;
case SYSTEM_WAYPLAY:
for (i=0; i<4; i++)
{
if (input.dev[i] == DEVICE_6BUTTON) gamepad_update(i);
}
break;
}
switch (input.system[1])
{
case SYSTEM_GAMEPAD:
if (input.dev[4] == DEVICE_6BUTTON) gamepad_update(4);
break;
case SYSTEM_MENACER:
lightgun_update(0);
break;
case SYSTEM_JUSTIFIER:
if ((io_reg[2] & 0x30) == 0x00) lightgun_update(0);
if ((io_reg[2] & 0x30) == 0x20) lightgun_update(1);
break;
}
}
void input_raz(void)
{
int i;
switch (input.system[0])
{
case SYSTEM_GAMEPAD:
if (input.dev[0] == DEVICE_6BUTTON) gamepad_raz(0);
break;
case SYSTEM_WAYPLAY:
for (i=0; i<4; i++)
{
if (input.dev[i] == DEVICE_6BUTTON) gamepad_raz(i);
}
break;
}
switch (input.system[1])
{
case SYSTEM_GAMEPAD:
if (input.dev[4] == DEVICE_6BUTTON) gamepad_raz(4);
break;
}
}