Genesis-Plus-GX/source/sound/sound.c

250 lines
8.0 KiB
C

/***************************************************************************************
* Genesis Plus
*
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Charles Mac Donald (original code)
* Eke-Eke (2007,2008,2009), additional code & fixes for the GCN/Wii port
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Sound Hardware
****************************************************************************************/
#include "shared.h"
#include "Fir_Resampler.h"
/* Cycle-accurate samples */
static unsigned int psg_cycles_ratio;
static unsigned int psg_cycles_count;
static unsigned int fm_cycles_ratio;
static unsigned int fm_cycles_count;
/* Run FM chip for required M-cycles */
static inline void fm_update(unsigned int cycles)
{
if (cycles > fm_cycles_count)
{
/* period to run */
cycles -= fm_cycles_count;
/* update cycle count */
fm_cycles_count += cycles;
/* number of samples during period */
unsigned int cnt = cycles / fm_cycles_ratio;
/* remaining cycles */
unsigned int remain = cycles % fm_cycles_ratio;
if (remain)
{
/* one sample ahead */
fm_cycles_count += fm_cycles_ratio - remain;
cnt++;
}
/* select input sample buffer */
int32 *buffer = Fir_Resampler_buffer();
if (buffer)
{
Fir_Resampler_write(cnt << 1);
}
else
{
buffer = snd.fm.pos;
snd.fm.pos += (cnt << 1);
}
/* run FM chip & get samples */
YM2612Update(buffer, cnt);
}
}
/* Run PSG chip for required M-cycles */
static inline void psg_update(unsigned int cycles)
{
if (cycles > psg_cycles_count)
{
/* period to run */
cycles -= psg_cycles_count;
/* update cycle count */
psg_cycles_count += cycles;
/* number of samples during period */
unsigned int cnt = cycles / psg_cycles_ratio;
/* remaining cycles */
unsigned int remain = cycles % psg_cycles_ratio;
if (remain)
{
/* one sample ahead */
psg_cycles_count += psg_cycles_ratio - remain;
cnt++;
}
/* run PSG chip & get samples */
SN76489_Update(snd.psg.pos, cnt);
snd.psg.pos += cnt;
}
}
/* Initialize sound chips emulation */
void sound_init(void)
{
/* Number of M-cycles executed per second. */
/* */
/* The original Genesis would run exactly 53693175 M-cycles (53203424 for PAL), with */
/* 3420 M-cycles per line and 262 (313 for PAL) lines per frame, which gives an exact */
/* framerate of 59.92 (49.70 for PAL) fps. */
/* */
/* On some systems, the output framerate is not exactly 60 or 50 fps because we need */
/* 100% smooth video and therefore frame emulation is synchronized with VSYNC, which */
/* period is never exactly 1/60 or 1/50 seconds. */
/* */
/* For optimal sound rendering, input samplerate (number of samples rendered per frame) */
/* is the exact output samplerate (number of samples played per second) divided by the */
/* exact output framerate (number of frames emulated per seconds). */
/* */
/* This ensure there is no audio skipping or lag between emulated frames, while keeping */
/* accurate timings for sound chips execution & synchronization. */
/* */
double mclk = MCYCLES_PER_LINE * lines_per_frame * snd.frame_rate;
/* For better accuracy, sound chips run in synchronization with 68k and Z80 cpus */
/* These values give the exact number of M-cycles between 2 rendered samples. */
/* we use 21.11 fixed point precision (max. mcycle value is 3420*313 i.e 21 bits max) */
psg_cycles_ratio = (int)((mclk / (double) snd.sample_rate) * 2048.0);
fm_cycles_ratio = psg_cycles_ratio;
fm_cycles_count = 0;
psg_cycles_count = 0;
/* Initialize core emulation (input clock based on input frequency for 100% accuracy) */
/* By default, both chips are running at the output frequency. */
SN76489_Init(mclk/15.0,snd.sample_rate);
YM2612Init(mclk/7.0,snd.sample_rate);
/* In HQ mode, YM2612 is running at its original rate (one sample each 144*7 M-cycles) */
/* FM stream is resampled to the output frequency at the end of a frame. */
if (config.hq_fm)
{
fm_cycles_ratio = 144 * 7 * (1 << 11);
Fir_Resampler_time_ratio(mclk / (double)snd.sample_rate / (144.0 * 7.0), config.rolloff);
}
#ifdef LOGSOUND
error("%d mcycles per PSG samples\n", psg_cycles_ratio);
error("%d mcycles per FM samples\n", fm_cycles_ratio);
#endif
}
/* Reset sound chips emulation */
void sound_reset(void)
{
YM2612ResetChip();
SN76489_Reset();
fm_cycles_count = 0;
psg_cycles_count = 0;
}
/* End of frame update, return the number of samples run so far. */
int sound_update(unsigned int cycles)
{
/* run PSG & FM chips until end of frame */
cycles <<= 11;
psg_update(cycles);
fm_update(cycles);
int size = snd.psg.pos - snd.psg.buffer;
#ifdef LOGSOUND
error("%d PSG samples available\n",size);
#endif
/* FM resampling */
if (config.hq_fm)
{
/* get available FM samples */
int avail = Fir_Resampler_avail();
/* resynchronize FM & PSG chips */
if (avail > size)
{
/* FM chip is ahead */
fm_cycles_count += (avail - size) * psg_cycles_ratio;
}
else
{
while (avail < size)
{
/* FM chip is late for one sample */
YM2612Update(Fir_Resampler_buffer(), 1);
Fir_Resampler_write(2);
avail = Fir_Resampler_avail();
}
}
}
#ifdef LOGSOUND
if (config.hq_fm)
error("%d FM samples (%d) available\n",Fir_Resampler_avail(), Fir_Resampler_written() >> 1);
else
error("%d FM samples available\n",(snd.fm.pos - snd.fm.buffer)>>1);
#endif
#ifdef LOGSOUND
error("%lu PSG cycles run\n",psg_cycles_count);
error("%lu FM cycles run \n",fm_cycles_count);
#endif
/* adjust PSG & FM cycle counts for next frame */
psg_cycles_count -= cycles;
fm_cycles_count -= cycles;
#ifdef LOGSOUND
error("%lu PSG cycles left\n",psg_cycles_count);
error("%lu FM cycles left\n",fm_cycles_count);
#endif
return size;
}
/* Reset FM chip */
void fm_reset(unsigned int cycles)
{
fm_update(cycles << 11);
YM2612ResetChip();
}
/* Write FM chip */
void fm_write(unsigned int cycles, unsigned int address, unsigned int data)
{
if (address & 1)
fm_update(cycles << 11);
YM2612Write(address, data);
}
/* Read FM status */
unsigned int fm_read(unsigned int cycles, unsigned int address)
{
fm_update(cycles << 11);
return YM2612Read();
}
/* Write PSG chip */
void psg_write(unsigned int cycles, unsigned int data)
{
psg_update(cycles << 11);
SN76489_Write(data);
}