Genesis-Plus-GX/core/m68k/m68kcpu.h
2017-07-13 22:11:30 -05:00

1391 lines
52 KiB
C

#ifndef M68KCPU__HEADER
#define M68KCPU__HEADER
/* ======================================================================== */
/* GENERIC 68K CORE */
/* ======================================================================== */
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#if M68K_EMULATE_ADDRESS_ERROR
#include <setjmp.h>
#endif /* M68K_EMULATE_ADDRESS_ERROR */
#include "m68k.h"
/* ======================================================================== */
/* ============================ GENERAL DEFINES =========================== */
/* ======================================================================== */
/* Exception Vectors handled by emulation */
#define EXCEPTION_RESET 0
#define EXCEPTION_BUS_ERROR 2 /* This one is not emulated! */
#define EXCEPTION_ADDRESS_ERROR 3 /* This one is partially emulated (doesn't stack a proper frame yet) */
#define EXCEPTION_ILLEGAL_INSTRUCTION 4
#define EXCEPTION_ZERO_DIVIDE 5
#define EXCEPTION_CHK 6
#define EXCEPTION_TRAPV 7
#define EXCEPTION_PRIVILEGE_VIOLATION 8
#define EXCEPTION_TRACE 9
#define EXCEPTION_1010 10
#define EXCEPTION_1111 11
#define EXCEPTION_FORMAT_ERROR 14
#define EXCEPTION_UNINITIALIZED_INTERRUPT 15
#define EXCEPTION_SPURIOUS_INTERRUPT 24
#define EXCEPTION_INTERRUPT_AUTOVECTOR 24
#define EXCEPTION_TRAP_BASE 32
/* Function codes set by CPU during data/address bus activity */
#define FUNCTION_CODE_USER_DATA 1
#define FUNCTION_CODE_USER_PROGRAM 2
#define FUNCTION_CODE_SUPERVISOR_DATA 5
#define FUNCTION_CODE_SUPERVISOR_PROGRAM 6
#define FUNCTION_CODE_CPU_SPACE 7
/* Different ways to stop the CPU */
#define STOP_LEVEL_STOP 1
#define STOP_LEVEL_HALT 2
/* Used for 68000 address error processing */
#if M68K_EMULATE_ADDRESS_ERROR
#define INSTRUCTION_YES 0
#define INSTRUCTION_NO 0x08
#define MODE_READ 0x10
#define MODE_WRITE 0
#define RUN_MODE_NORMAL 0
#define RUN_MODE_BERR_AERR_RESET 1
#endif
#ifndef NULL
#define NULL ((void*)0)
#endif
/* ======================================================================== */
/* ================================ MACROS ================================ */
/* ======================================================================== */
/* ---------------------------- General Macros ---------------------------- */
/* Bit Isolation Macros */
#define BIT_0(A) ((A) & 0x00000001)
#define BIT_1(A) ((A) & 0x00000002)
#define BIT_2(A) ((A) & 0x00000004)
#define BIT_3(A) ((A) & 0x00000008)
#define BIT_4(A) ((A) & 0x00000010)
#define BIT_5(A) ((A) & 0x00000020)
#define BIT_6(A) ((A) & 0x00000040)
#define BIT_7(A) ((A) & 0x00000080)
#define BIT_8(A) ((A) & 0x00000100)
#define BIT_9(A) ((A) & 0x00000200)
#define BIT_A(A) ((A) & 0x00000400)
#define BIT_B(A) ((A) & 0x00000800)
#define BIT_C(A) ((A) & 0x00001000)
#define BIT_D(A) ((A) & 0x00002000)
#define BIT_E(A) ((A) & 0x00004000)
#define BIT_F(A) ((A) & 0x00008000)
#define BIT_10(A) ((A) & 0x00010000)
#define BIT_11(A) ((A) & 0x00020000)
#define BIT_12(A) ((A) & 0x00040000)
#define BIT_13(A) ((A) & 0x00080000)
#define BIT_14(A) ((A) & 0x00100000)
#define BIT_15(A) ((A) & 0x00200000)
#define BIT_16(A) ((A) & 0x00400000)
#define BIT_17(A) ((A) & 0x00800000)
#define BIT_18(A) ((A) & 0x01000000)
#define BIT_19(A) ((A) & 0x02000000)
#define BIT_1A(A) ((A) & 0x04000000)
#define BIT_1B(A) ((A) & 0x08000000)
#define BIT_1C(A) ((A) & 0x10000000)
#define BIT_1D(A) ((A) & 0x20000000)
#define BIT_1E(A) ((A) & 0x40000000)
#define BIT_1F(A) ((A) & 0x80000000)
/* Get the most significant bit for specific sizes */
#define GET_MSB_8(A) ((A) & 0x80)
#define GET_MSB_9(A) ((A) & 0x100)
#define GET_MSB_16(A) ((A) & 0x8000)
#define GET_MSB_17(A) ((A) & 0x10000)
#define GET_MSB_32(A) ((A) & 0x80000000)
#if M68K_USE_64_BIT
#define GET_MSB_33(A) ((A) & 0x100000000)
#endif /* M68K_USE_64_BIT */
/* Isolate nibbles */
#define LOW_NIBBLE(A) ((A) & 0x0f)
#define HIGH_NIBBLE(A) ((A) & 0xf0)
/* These are used to isolate 8, 16, and 32 bit sizes */
#define MASK_OUT_ABOVE_2(A) ((A) & 3)
#define MASK_OUT_ABOVE_8(A) ((A) & 0xff)
#define MASK_OUT_ABOVE_16(A) ((A) & 0xffff)
#define MASK_OUT_BELOW_2(A) ((A) & ~3)
#define MASK_OUT_BELOW_8(A) ((A) & ~0xff)
#define MASK_OUT_BELOW_16(A) ((A) & ~0xffff)
/* No need to mask if we are 32 bit */
#if M68K_INT_GT_32_BIT || M68K_USE_64_BIT
#define MASK_OUT_ABOVE_32(A) ((A) & 0xffffffff)
#define MASK_OUT_BELOW_32(A) ((A) & ~0xffffffff)
#else
#define MASK_OUT_ABOVE_32(A) (A)
#define MASK_OUT_BELOW_32(A) 0
#endif /* M68K_INT_GT_32_BIT || M68K_USE_64_BIT */
/* Simulate address lines of 68k family */
#define ADDRESS_68K(A) ((A)&CPU_ADDRESS_MASK)
/* Shift & Rotate Macros. */
#define LSL(A, C) ((A) << (C))
#define LSR(A, C) ((A) >> (C))
/* Some > 32-bit optimizations */
#if M68K_INT_GT_32_BIT
/* Shift left and right */
#define LSR_32(A, C) ((A) >> (C))
#define LSL_32(A, C) ((A) << (C))
#else
/* We have to do this because the morons at ANSI decided that shifts
* by >= data size are undefined.
*/
#define LSR_32(A, C) ((C) < 32 ? (A) >> (C) : 0)
#define LSL_32(A, C) ((C) < 32 ? (A) << (C) : 0)
#endif /* M68K_INT_GT_32_BIT */
#if M68K_USE_64_BIT
#define LSL_32_64(A, C) ((A) << (C))
#define LSR_32_64(A, C) ((A) >> (C))
#define ROL_33_64(A, C) (LSL_32_64(A, C) | LSR_32_64(A, 33-(C)))
#define ROR_33_64(A, C) (LSR_32_64(A, C) | LSL_32_64(A, 33-(C)))
#endif /* M68K_USE_64_BIT */
#define ROL_8(A, C) MASK_OUT_ABOVE_8(LSL(A, C) | LSR(A, 8-(C)))
#define ROL_9(A, C) (LSL(A, C) | LSR(A, 9-(C)))
#define ROL_16(A, C) MASK_OUT_ABOVE_16(LSL(A, C) | LSR(A, 16-(C)))
#define ROL_17(A, C) (LSL(A, C) | LSR(A, 17-(C)))
#define ROL_32(A, C) MASK_OUT_ABOVE_32(LSL_32(A, C) | LSR_32(A, 32-(C)))
#define ROL_33(A, C) (LSL_32(A, C) | LSR_32(A, 33-(C)))
#define ROR_8(A, C) MASK_OUT_ABOVE_8(LSR(A, C) | LSL(A, 8-(C)))
#define ROR_9(A, C) (LSR(A, C) | LSL(A, 9-(C)))
#define ROR_16(A, C) MASK_OUT_ABOVE_16(LSR(A, C) | LSL(A, 16-(C)))
#define ROR_17(A, C) (LSR(A, C) | LSL(A, 17-(C)))
#define ROR_32(A, C) MASK_OUT_ABOVE_32(LSR_32(A, C) | LSL_32(A, 32-(C)))
#define ROR_33(A, C) (LSR_32(A, C) | LSL_32(A, 33-(C)))
/* ------------------------------ CPU Access ------------------------------ */
/* Access the CPU registers */
#define REG_DA m68ki_cpu.dar /* easy access to data and address regs */
#define REG_D m68ki_cpu.dar
#define REG_A (m68ki_cpu.dar+8)
#define REG_PC m68ki_cpu.pc
#define REG_SP_BASE m68ki_cpu.sp
#define REG_USP m68ki_cpu.sp[0]
#define REG_ISP m68ki_cpu.sp[4]
#define REG_SP m68ki_cpu.dar[15]
#define REG_IR m68ki_cpu.ir
#define FLAG_T1 m68ki_cpu.t1_flag
#define FLAG_S m68ki_cpu.s_flag
#define FLAG_X m68ki_cpu.x_flag
#define FLAG_N m68ki_cpu.n_flag
#define FLAG_Z m68ki_cpu.not_z_flag
#define FLAG_V m68ki_cpu.v_flag
#define FLAG_C m68ki_cpu.c_flag
#define FLAG_INT_MASK m68ki_cpu.int_mask
#define CPU_INT_LEVEL m68ki_cpu.int_level /* ASG: changed from CPU_INTS_PENDING */
#define CPU_STOPPED m68ki_cpu.stopped
#if M68K_EMULATE_PREFETCH
#define CPU_PREF_ADDR m68ki_cpu.pref_addr
#define CPU_PREF_DATA m68ki_cpu.pref_data
#endif
#define CPU_ADDRESS_MASK 0x00ffffff
#if M68K_EMULATE_ADDRESS_ERROR
#define CPU_INSTR_MODE m68ki_cpu.instr_mode
#define CPU_RUN_MODE m68ki_cpu.run_mode
#endif
#define CYC_INSTRUCTION m68ki_cycles
#define CYC_EXCEPTION m68ki_exception_cycle_table
#define CYC_BCC_NOTAKE_B ( -2 * MUL)
#define CYC_BCC_NOTAKE_W ( 2 * MUL)
#define CYC_DBCC_F_NOEXP ( -2 * MUL)
#define CYC_DBCC_F_EXP ( 2 * MUL)
#define CYC_SCC_R_TRUE ( 2 * MUL)
#define CYC_MOVEM_W ( 4 * MUL)
#define CYC_MOVEM_L ( 8 * MUL)
#define CYC_SHIFT ( 2 * MUL)
#define CYC_RESET (132 * MUL)
#if M68K_EMULATE_INT_ACK == OPT_ON
#define CALLBACK_INT_ACK m68ki_cpu.int_ack_callback
#endif
#if M68K_EMULATE_RESET == OPT_ON
#define CALLBACK_RESET_INSTR m68ki_cpu.reset_instr_callback
#endif
#if M68K_TAS_HAS_CALLBACK == OPT_ON
#define CALLBACK_TAS_INSTR m68ki_cpu.tas_instr_callback
#endif
#if M68K_EMULATE_FC == OPT_ON
#define CALLBACK_SET_FC m68ki_cpu.set_fc_callback
#endif
/* ----------------------------- Configuration ---------------------------- */
/* These defines are dependant on the configuration defines in m68kconf.h */
/* Enable or disable callback functions */
#if M68K_EMULATE_INT_ACK
#if M68K_EMULATE_INT_ACK == OPT_SPECIFY_HANDLER
#define m68ki_int_ack(A) M68K_INT_ACK_CALLBACK(A);
#else
#define m68ki_int_ack(A) CALLBACK_INT_ACK(A);
#endif
#else
/* Default action is to used autovector mode, which is most common */
#define m68ki_int_ack(A) M68K_INT_ACK_AUTOVECTOR
#endif /* M68K_EMULATE_INT_ACK */
#if M68K_EMULATE_RESET
#if M68K_EMULATE_RESET == OPT_SPECIFY_HANDLER
#define m68ki_output_reset() M68K_RESET_CALLBACK();
#else
#define m68ki_output_reset() CALLBACK_RESET_INSTR();
#endif
#else
#define m68ki_output_reset()
#endif /* M68K_EMULATE_RESET */
#if M68K_TAS_HAS_CALLBACK
#if M68K_TAS_HAS_CALLBACK == OPT_SPECIFY_HANDLER
#define m68ki_tas_callback() M68K_TAS_CALLBACK()
#else
#define m68ki_tas_callback() CALLBACK_TAS_INSTR()
#endif
#else
#define m68ki_tas_callback() 0
#endif /* M68K_TAS_HAS_CALLBACK */
/* Enable or disable function code emulation */
#if M68K_EMULATE_FC
#if M68K_EMULATE_FC == OPT_SPECIFY_HANDLER
#define m68ki_set_fc(A) M68K_SET_FC_CALLBACK(A);
#else
#define m68ki_set_fc(A) CALLBACK_SET_FC(A);
#endif
#define m68ki_use_data_space() m68ki_cpu.address_space = FUNCTION_CODE_USER_DATA;
#define m68ki_use_program_space() m68ki_cpu.address_space = FUNCTION_CODE_USER_PROGRAM;
#define m68ki_get_address_space() m68ki_cpu.address_space
#else
#define m68ki_set_fc(A)
#define m68ki_use_data_space()
#define m68ki_use_program_space()
#define m68ki_get_address_space() FUNCTION_CODE_USER_DATA
#endif /* M68K_EMULATE_FC */
/* Enable or disable trace emulation */
#if M68K_EMULATE_TRACE
/* Initiates trace checking before each instruction (t1) */
#define m68ki_trace_t1() m68ki_cpu.tracing = FLAG_T1;
/* Clear all tracing */
#define m68ki_clear_trace() m68ki_cpu.tracing = 0;
/* Cause a trace exception if we are tracing */
#define m68ki_exception_if_trace() if(m68ki_cpu.tracing) m68ki_exception_trace();
#else
#define m68ki_trace_t1()
#define m68ki_clear_trace()
#define m68ki_exception_if_trace()
#endif /* M68K_EMULATE_TRACE */
/* Enable or disable Address error emulation */
#if M68K_EMULATE_ADDRESS_ERROR
#define m68ki_set_address_error_trap() \
if(setjmp(m68ki_cpu.aerr_trap) != 0) \
{ \
m68ki_exception_address_error(); \
}
#define m68ki_check_address_error(ADDR, WRITE_MODE, FC) \
if((ADDR)&1) \
{ \
if (m68ki_cpu.aerr_enabled) \
{ \
m68ki_cpu.aerr_address = ADDR; \
m68ki_cpu.aerr_write_mode = WRITE_MODE; \
m68ki_cpu.aerr_fc = FC; \
longjmp(m68ki_cpu.aerr_trap, 1); \
} \
}
#else
#define m68ki_set_address_error_trap()
#define m68ki_check_address_error(ADDR, WRITE_MODE, FC)
#endif /* M68K_ADDRESS_ERROR */
/* -------------------------- EA / Operand Access ------------------------- */
/*
* The general instruction format follows this pattern:
* .... XXX. .... .YYY
* where XXX is register X and YYY is register Y
*/
/* Data Register Isolation */
#define DX (REG_D[(REG_IR >> 9) & 7])
#define DY (REG_D[REG_IR & 7])
/* Address Register Isolation */
#define AX (REG_A[(REG_IR >> 9) & 7])
#define AY (REG_A[REG_IR & 7])
/* Effective Address Calculations */
#define EA_AY_AI_8() AY /* address register indirect */
#define EA_AY_AI_16() EA_AY_AI_8()
#define EA_AY_AI_32() EA_AY_AI_8()
#define EA_AY_PI_8() (AY++) /* postincrement (size = byte) */
#define EA_AY_PI_16() ((AY+=2)-2) /* postincrement (size = word) */
#define EA_AY_PI_32() ((AY+=4)-4) /* postincrement (size = long) */
#define EA_AY_PD_8() (--AY) /* predecrement (size = byte) */
#define EA_AY_PD_16() (AY-=2) /* predecrement (size = word) */
#define EA_AY_PD_32() (AY-=4) /* predecrement (size = long) */
#define EA_AY_DI_8() (AY+MAKE_INT_16(m68ki_read_imm_16())) /* displacement */
#define EA_AY_DI_16() EA_AY_DI_8()
#define EA_AY_DI_32() EA_AY_DI_8()
#define EA_AY_IX_8() m68ki_get_ea_ix(AY) /* indirect + index */
#define EA_AY_IX_16() EA_AY_IX_8()
#define EA_AY_IX_32() EA_AY_IX_8()
#define EA_AX_AI_8() AX
#define EA_AX_AI_16() EA_AX_AI_8()
#define EA_AX_AI_32() EA_AX_AI_8()
#define EA_AX_PI_8() (AX++)
#define EA_AX_PI_16() ((AX+=2)-2)
#define EA_AX_PI_32() ((AX+=4)-4)
#define EA_AX_PD_8() (--AX)
#define EA_AX_PD_16() (AX-=2)
#define EA_AX_PD_32() (AX-=4)
#define EA_AX_DI_8() (AX+MAKE_INT_16(m68ki_read_imm_16()))
#define EA_AX_DI_16() EA_AX_DI_8()
#define EA_AX_DI_32() EA_AX_DI_8()
#define EA_AX_IX_8() m68ki_get_ea_ix(AX)
#define EA_AX_IX_16() EA_AX_IX_8()
#define EA_AX_IX_32() EA_AX_IX_8()
#define EA_A7_PI_8() ((REG_A[7]+=2)-2)
#define EA_A7_PD_8() (REG_A[7]-=2)
#define EA_AW_8() MAKE_INT_16(m68ki_read_imm_16()) /* absolute word */
#define EA_AW_16() EA_AW_8()
#define EA_AW_32() EA_AW_8()
#define EA_AL_8() m68ki_read_imm_32() /* absolute long */
#define EA_AL_16() EA_AL_8()
#define EA_AL_32() EA_AL_8()
#define EA_PCDI_8() m68ki_get_ea_pcdi() /* pc indirect + displacement */
#define EA_PCDI_16() EA_PCDI_8()
#define EA_PCDI_32() EA_PCDI_8()
#define EA_PCIX_8() m68ki_get_ea_pcix() /* pc indirect + index */
#define EA_PCIX_16() EA_PCIX_8()
#define EA_PCIX_32() EA_PCIX_8()
#define OPER_I_8() m68ki_read_imm_8()
#define OPER_I_16() m68ki_read_imm_16()
#define OPER_I_32() m68ki_read_imm_32()
/* --------------------------- Status Register ---------------------------- */
/* Flag Calculation Macros */
#define CFLAG_8(A) (A)
#define CFLAG_16(A) ((A)>>8)
#if M68K_INT_GT_32_BIT
#define CFLAG_ADD_32(S, D, R) ((R)>>24)
#define CFLAG_SUB_32(S, D, R) ((R)>>24)
#else
#define CFLAG_ADD_32(S, D, R) (((S & D) | (~R & (S | D)))>>23)
#define CFLAG_SUB_32(S, D, R) (((S & R) | (~D & (S | R)))>>23)
#endif /* M68K_INT_GT_32_BIT */
#define VFLAG_ADD_8(S, D, R) ((S^R) & (D^R))
#define VFLAG_ADD_16(S, D, R) (((S^R) & (D^R))>>8)
#define VFLAG_ADD_32(S, D, R) (((S^R) & (D^R))>>24)
#define VFLAG_SUB_8(S, D, R) ((S^D) & (R^D))
#define VFLAG_SUB_16(S, D, R) (((S^D) & (R^D))>>8)
#define VFLAG_SUB_32(S, D, R) (((S^D) & (R^D))>>24)
#define NFLAG_8(A) (A)
#define NFLAG_16(A) ((A)>>8)
#define NFLAG_32(A) ((A)>>24)
#define NFLAG_64(A) ((A)>>56)
#define ZFLAG_8(A) MASK_OUT_ABOVE_8(A)
#define ZFLAG_16(A) MASK_OUT_ABOVE_16(A)
#define ZFLAG_32(A) MASK_OUT_ABOVE_32(A)
/* Flag values */
#define NFLAG_SET 0x80
#define NFLAG_CLEAR 0
#define CFLAG_SET 0x100
#define CFLAG_CLEAR 0
#define XFLAG_SET 0x100
#define XFLAG_CLEAR 0
#define VFLAG_SET 0x80
#define VFLAG_CLEAR 0
#define ZFLAG_SET 0
#define ZFLAG_CLEAR 0xffffffff
#define SFLAG_SET 4
#define SFLAG_CLEAR 0
/* Turn flag values into 1 or 0 */
#define XFLAG_AS_1() ((FLAG_X>>8)&1)
#define NFLAG_AS_1() ((FLAG_N>>7)&1)
#define VFLAG_AS_1() ((FLAG_V>>7)&1)
#define ZFLAG_AS_1() (!FLAG_Z)
#define CFLAG_AS_1() ((FLAG_C>>8)&1)
/* Conditions */
#define COND_CS() (FLAG_C&0x100)
#define COND_CC() (!COND_CS())
#define COND_VS() (FLAG_V&0x80)
#define COND_VC() (!COND_VS())
#define COND_NE() FLAG_Z
#define COND_EQ() (!COND_NE())
#define COND_MI() (FLAG_N&0x80)
#define COND_PL() (!COND_MI())
#define COND_LT() ((FLAG_N^FLAG_V)&0x80)
#define COND_GE() (!COND_LT())
#define COND_HI() (COND_CC() && COND_NE())
#define COND_LS() (COND_CS() || COND_EQ())
#define COND_GT() (COND_GE() && COND_NE())
#define COND_LE() (COND_LT() || COND_EQ())
/* Reversed conditions */
#define COND_NOT_CS() COND_CC()
#define COND_NOT_CC() COND_CS()
#define COND_NOT_VS() COND_VC()
#define COND_NOT_VC() COND_VS()
#define COND_NOT_NE() COND_EQ()
#define COND_NOT_EQ() COND_NE()
#define COND_NOT_MI() COND_PL()
#define COND_NOT_PL() COND_MI()
#define COND_NOT_LT() COND_GE()
#define COND_NOT_GE() COND_LT()
#define COND_NOT_HI() COND_LS()
#define COND_NOT_LS() COND_HI()
#define COND_NOT_GT() COND_LE()
#define COND_NOT_LE() COND_GT()
/* Not real conditions, but here for convenience */
#define COND_XS() (FLAG_X&0x100)
#define COND_XC() (!COND_XS)
/* Get the condition code register */
#define m68ki_get_ccr() ((COND_XS() >> 4) | \
(COND_MI() >> 4) | \
(COND_EQ() << 2) | \
(COND_VS() >> 6) | \
(COND_CS() >> 8))
/* Get the status register */
#define m68ki_get_sr() ( FLAG_T1 | \
(FLAG_S << 11) | \
FLAG_INT_MASK | \
m68ki_get_ccr())
/* ---------------------------- Cycle Counting ---------------------------- */
#define USE_CYCLES(A) m68ki_cpu.cycles += (A)
#define SET_CYCLES(A) m68ki_cpu.cycles = (A)
/* ----------------------------- Read / Write ----------------------------- */
/* Read data immediately following the PC */
#define m68k_read_immediate_16(address) *(uint16 *)(m68ki_cpu.memory_map[((address)>>16)&0xff].base + ((address) & 0xffff))
#define m68k_read_immediate_32(address) (m68k_read_immediate_16(address) << 16) | (m68k_read_immediate_16(address+2))
/* Read data relative to the PC */
#define m68k_read_pcrelative_8(address) READ_BYTE(m68ki_cpu.memory_map[((address)>>16)&0xff].base, (address) & 0xffff)
#define m68k_read_pcrelative_16(address) m68k_read_immediate_16(address)
#define m68k_read_pcrelative_32(address) m68k_read_immediate_32(address)
/* map read immediate 8 to read immediate 16 */
#define m68ki_read_imm_8() MASK_OUT_ABOVE_8(m68ki_read_imm_16())
/* Map PC-relative reads */
#define m68ki_read_pcrel_8(A) m68k_read_pcrelative_8(A)
#define m68ki_read_pcrel_16(A) m68k_read_pcrelative_16(A)
#define m68ki_read_pcrel_32(A) m68k_read_pcrelative_32(A)
/* ======================================================================== */
/* =============================== PROTOTYPES ============================= */
/* ======================================================================== */
/* Used by shift & rotate instructions */
static const uint8 m68ki_shift_8_table[65] =
{
0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff
};
static const uint16 m68ki_shift_16_table[65] =
{
0x0000, 0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff
};
static const uint32_t m68ki_shift_32_table[65] =
{
0x00000000, 0x80000000, 0xc0000000, 0xe0000000, 0xf0000000, 0xf8000000,
0xfc000000, 0xfe000000, 0xff000000, 0xff800000, 0xffc00000, 0xffe00000,
0xfff00000, 0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000, 0xffff8000,
0xffffc000, 0xffffe000, 0xfffff000, 0xfffff800, 0xfffffc00, 0xfffffe00,
0xffffff00, 0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0, 0xfffffff8,
0xfffffffc, 0xfffffffe, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff
};
/* Number of clock cycles to use for exception processing.
* I used 4 for any vectors that are undocumented for processing times.
*/
static const uint16 m68ki_exception_cycle_table[256] =
{
40*MUL, /* 0: Reset - Initial Stack Pointer */
4*MUL, /* 1: Reset - Initial Program Counter */
50*MUL, /* 2: Bus Error (unemulated) */
50*MUL, /* 3: Address Error (unemulated) */
34*MUL, /* 4: Illegal Instruction */
38*MUL, /* 5: Divide by Zero -- ASG: changed from 42 */
40*MUL, /* 6: CHK -- ASG: chanaged from 44 */
34*MUL, /* 7: TRAPV */
34*MUL, /* 8: Privilege Violation */
34*MUL, /* 9: Trace */
4*MUL, /* 10: 1010 */
4*MUL, /* 11: 1111 */
4*MUL, /* 12: RESERVED */
4*MUL, /* 13: Coprocessor Protocol Violation (unemulated) */
4*MUL, /* 14: Format Error */
44*MUL, /* 15: Uninitialized Interrupt */
4*MUL, /* 16: RESERVED */
4*MUL, /* 17: RESERVED */
4*MUL, /* 18: RESERVED */
4*MUL, /* 19: RESERVED */
4*MUL, /* 20: RESERVED */
4*MUL, /* 21: RESERVED */
4*MUL, /* 22: RESERVED */
4*MUL, /* 23: RESERVED */
44*MUL, /* 24: Spurious Interrupt */
54*MUL, /* 25: Level 1 Interrupt Autovector */
54*MUL, /* 26: Level 2 Interrupt Autovector */
54*MUL, /* 27: Level 3 Interrupt Autovector */
54*MUL, /* 28: Level 4 Interrupt Autovector */
54*MUL, /* 29: Level 5 Interrupt Autovector */
54*MUL, /* 30: Level 6 Interrupt Autovector */
54*MUL, /* 31: Level 7 Interrupt Autovector */
34*MUL, /* 32: TRAP #0 -- ASG: chanaged from 38 */
34*MUL, /* 33: TRAP #1 */
34*MUL, /* 34: TRAP #2 */
34*MUL, /* 35: TRAP #3 */
34*MUL, /* 36: TRAP #4 */
34*MUL, /* 37: TRAP #5 */
34*MUL, /* 38: TRAP #6 */
34*MUL, /* 39: TRAP #7 */
34*MUL, /* 40: TRAP #8 */
34*MUL, /* 41: TRAP #9 */
34*MUL, /* 42: TRAP #10 */
34*MUL, /* 43: TRAP #11 */
34*MUL, /* 44: TRAP #12 */
34*MUL, /* 45: TRAP #13 */
34*MUL, /* 46: TRAP #14 */
34*MUL, /* 47: TRAP #15 */
4*MUL, /* 48: FP Branch or Set on Unknown Condition (unemulated) */
4*MUL, /* 49: FP Inexact Result (unemulated) */
4*MUL, /* 50: FP Divide by Zero (unemulated) */
4*MUL, /* 51: FP Underflow (unemulated) */
4*MUL, /* 52: FP Operand Error (unemulated) */
4*MUL, /* 53: FP Overflow (unemulated) */
4*MUL, /* 54: FP Signaling NAN (unemulated) */
4*MUL, /* 55: FP Unimplemented Data Type (unemulated) */
4*MUL, /* 56: MMU Configuration Error (unemulated) */
4*MUL, /* 57: MMU Illegal Operation Error (unemulated) */
4*MUL, /* 58: MMU Access Level Violation Error (unemulated) */
4*MUL, /* 59: RESERVED */
4*MUL, /* 60: RESERVED */
4*MUL, /* 61: RESERVED */
4*MUL, /* 62: RESERVED */
4*MUL, /* 63: RESERVED */
/* 64-255: User Defined */
4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,
4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,
4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,
4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,
4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,
4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL,4*MUL
};
/* Read data immediately after the program counter */
INLINE uint32_t m68ki_read_imm_16(void);
INLINE uint32_t m68ki_read_imm_32(void);
/* Read from the current address space */
INLINE uint m68ki_read_8(uint address);
INLINE uint m68ki_read_16(uint address);
INLINE uint m68ki_read_32(uint address);
/* Write to the current data space */
INLINE void m68ki_write_8(uint address, uint value);
INLINE void m68ki_write_16(uint address, uint value);
INLINE void m68ki_write_32(uint address, uint value);
/* Indexed and PC-relative ea fetching */
INLINE uint32_t m68ki_get_ea_pcdi(void);
INLINE uint32_t m68ki_get_ea_pcix(void);
INLINE uint32_t m68ki_get_ea_ix(uint32_t An);
/* Operand fetching */
INLINE uint32_t OPER_AY_AI_8(void);
INLINE uint32_t OPER_AY_AI_16(void);
INLINE uint32_t OPER_AY_AI_32(void);
INLINE uint32_t OPER_AY_PI_8(void);
INLINE uint32_t OPER_AY_PI_16(void);
INLINE uint32_t OPER_AY_PI_32(void);
INLINE uint32_t OPER_AY_PD_8(void);
INLINE uint32_t OPER_AY_PD_16(void);
INLINE uint32_t OPER_AY_PD_32(void);
INLINE uint32_t OPER_AY_DI_8(void);
INLINE uint32_t OPER_AY_DI_16(void);
INLINE uint32_t OPER_AY_DI_32(void);
INLINE uint32_t OPER_AY_IX_8(void);
INLINE uint32_t OPER_AY_IX_16(void);
INLINE uint32_t OPER_AY_IX_32(void);
INLINE uint32_t OPER_AX_AI_8(void);
INLINE uint32_t OPER_AX_AI_16(void);
INLINE uint32_t OPER_AX_AI_32(void);
INLINE uint32_t OPER_AX_PI_8(void);
INLINE uint32_t OPER_AX_PI_16(void);
INLINE uint32_t OPER_AX_PI_32(void);
INLINE uint32_t OPER_AX_PD_8(void);
INLINE uint32_t OPER_AX_PD_16(void);
INLINE uint32_t OPER_AX_PD_32(void);
INLINE uint32_t OPER_AX_DI_8(void);
INLINE uint32_t OPER_AX_DI_16(void);
INLINE uint32_t OPER_AX_DI_32(void);
INLINE uint32_t OPER_AX_IX_8(void);
INLINE uint32_t OPER_AX_IX_16(void);
INLINE uint32_t OPER_AX_IX_32(void);
INLINE uint32_t OPER_A7_PI_8(void);
INLINE uint32_t OPER_A7_PD_8(void);
INLINE uint32_t OPER_AW_8(void);
INLINE uint32_t OPER_AW_16(void);
INLINE uint32_t OPER_AW_32(void);
INLINE uint32_t OPER_AL_8(void);
INLINE uint32_t OPER_AL_16(void);
INLINE uint32_t OPER_AL_32(void);
INLINE uint32_t OPER_PCDI_8(void);
INLINE uint32_t OPER_PCDI_16(void);
INLINE uint32_t OPER_PCDI_32(void);
INLINE uint32_t OPER_PCIX_8(void);
INLINE uint32_t OPER_PCIX_16(void);
INLINE uint32_t OPER_PCIX_32(void);
/* Stack operations */
INLINE void m68ki_push_16(uint32_t value);
INLINE void m68ki_push_32(uint32_t value);
INLINE uint32_t m68ki_pull_16(void);
INLINE uint32_t m68ki_pull_32(void);
/* Program flow operations */
INLINE void m68ki_jump(uint32_t new_pc);
INLINE void m68ki_jump_vector(uint32_t vector);
INLINE void m68ki_branch_8(uint32_t offset);
INLINE void m68ki_branch_16(uint32_t offset);
INLINE void m68ki_branch_32(uint32_t offset);
/* Status register operations. */
INLINE void m68ki_set_s_flag(uint32_t value); /* Only bit 2 of value should be set (i.e. 4 or 0) */
INLINE void m68ki_set_ccr(uint32_t value); /* set the condition code register */
INLINE void m68ki_set_sr(uint32_t value); /* set the status register */
/* Exception processing */
INLINE uint32_t m68ki_init_exception(void); /* Initial exception processing */
INLINE void m68ki_stack_frame_3word(uint32_t pc, uint32_t sr); /* Stack various frame types */
#if M68K_EMULATE_ADDRESS_ERROR
INLINE void m68ki_stack_frame_buserr(uint32_t sr);
#endif
INLINE void m68ki_exception_trap(uint32_t vector);
INLINE void m68ki_exception_trapN(uint32_t vector);
#if M68K_EMULATE_TRACE
INLINE void m68ki_exception_trace(void);
#endif
static void m68ki_exception_privilege_violation(void); /* do not inline in order to reduce function size and allow inlining of read/write functions by the compile */
INLINE void m68ki_exception_1010(void);
INLINE void m68ki_exception_1111(void);
INLINE void m68ki_exception_illegal(void);
#if M68K_EMULATE_ADDRESS_ERROR
INLINE void m68ki_exception_address_error(void);
#endif
INLINE void m68ki_exception_interrupt(uint32_t int_level);
INLINE void m68ki_check_interrupts(void); /* ASG: check for interrupts */
/* ======================================================================== */
/* =========================== UTILITY FUNCTIONS ========================== */
/* ======================================================================== */
/* ---------------------------- Read Immediate ---------------------------- */
/* Handles all immediate reads, does address error check, function code setting,
* and prefetching if they are enabled in m68kconf.h
*/
INLINE uint32_t m68ki_read_imm_16(void)
{
m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM) /* auto-disable (see m68kcpu.h) */
#if M68K_CHECK_PC_ADDRESS_ERROR
m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM) /* auto-disable (see m68kcpu.h) */
#endif
#if M68K_EMULATE_PREFETCH
if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
{
CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
CPU_PREF_DATA = m68k_read_immediate_32(CPU_PREF_ADDR);
}
REG_PC += 2;
return MASK_OUT_ABOVE_16(CPU_PREF_DATA >> ((2-((REG_PC-2)&2))<<3));
#else
uint32_t pc = REG_PC;
REG_PC += 2;
return m68k_read_immediate_16(pc);
#endif /* M68K_EMULATE_PREFETCH */
}
INLINE uint32_t m68ki_read_imm_32(void)
{
#if M68K_EMULATE_PREFETCH
uint32_t temp_val;
m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM) /* auto-disable (see m68kcpu.h) */
#if M68K_CHECK_PC_ADDRESS_ERROR
m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM) /* auto-disable (see m68kcpu.h) */
#endif
if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
{
CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
CPU_PREF_DATA = m68k_read_immediate_32(CPU_PREF_ADDR);
}
temp_val = CPU_PREF_DATA;
REG_PC += 2;
if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
{
CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
CPU_PREF_DATA = m68k_read_immediate_32(CPU_PREF_ADDR);
temp_val = MASK_OUT_ABOVE_32((temp_val << 16) | (CPU_PREF_DATA >> 16));
}
REG_PC += 2;
return temp_val;
#else
m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM) /* auto-disable (see m68kcpu.h) */
#if M68K_CHECK_PC_ADDRESS_ERROR
m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM) /* auto-disable (see m68kcpu.h) */
#endif
uint32_t pc = REG_PC;
REG_PC += 4;
return m68k_read_immediate_32(pc);
#endif /* M68K_EMULATE_PREFETCH */
}
/* ------------------------- Top level read/write ------------------------- */
/* Handles all memory accesses (except for immediate reads if they are
* configured to use separate functions in m68kconf.h).
* All memory accesses must go through these top level functions.
* These functions will also check for address error and set the function
* code if they are enabled in m68kconf.h.
*/
INLINE uint m68ki_read_8(uint address)
{
cpu_memory_map *temp = &m68ki_cpu.memory_map[((address)>>16)&0xff];;
m68ki_set_fc(FLAG_S | m68ki_get_address_space()) /* auto-disable (see m68kcpu.h) */
if (temp->read8) return (*temp->read8)(ADDRESS_68K(address));
else return READ_BYTE(temp->base, (address) & 0xffff);
}
INLINE uint m68ki_read_16(uint address)
{
cpu_memory_map *temp;
m68ki_set_fc(FLAG_S | m68ki_get_address_space()) /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error(address, MODE_READ, FLAG_S | m68ki_get_address_space()) /* auto-disable (see m68kcpu.h) */
temp = &m68ki_cpu.memory_map[((address)>>16)&0xff];
if (temp->read16) return (*temp->read16)(ADDRESS_68K(address));
else return *(uint16 *)(temp->base + ((address) & 0xffff));
}
INLINE uint m68ki_read_32(uint address)
{
cpu_memory_map *temp;
m68ki_set_fc(FLAG_S | m68ki_get_address_space()) /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error(address, MODE_READ, FLAG_S | m68ki_get_address_space()) /* auto-disable (see m68kcpu.h) */
temp = &m68ki_cpu.memory_map[((address)>>16)&0xff];
if (temp->read16) return ((*temp->read16)(ADDRESS_68K(address)) << 16) | ((*temp->read16)(ADDRESS_68K(address + 2)));
else return m68k_read_immediate_32(address);
}
INLINE void m68ki_write_8(uint address, uint value)
{
cpu_memory_map *temp;
m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_DATA) /* auto-disable (see m68kcpu.h) */
temp = &m68ki_cpu.memory_map[((address)>>16)&0xff];
if (temp->write8) (*temp->write8)(ADDRESS_68K(address),value);
else WRITE_BYTE(temp->base, (address) & 0xffff, value);
}
INLINE void m68ki_write_16(uint address, uint value)
{
cpu_memory_map *temp;
m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_DATA) /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error(address, MODE_WRITE, FLAG_S | FUNCTION_CODE_USER_DATA); /* auto-disable (see m68kcpu.h) */
temp = &m68ki_cpu.memory_map[((address)>>16)&0xff];
if (temp->write16) (*temp->write16)(ADDRESS_68K(address),value);
else *(uint16 *)(temp->base + ((address) & 0xffff)) = value;
}
INLINE void m68ki_write_32(uint address, uint value)
{
cpu_memory_map *temp;
m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_DATA) /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error(address, MODE_WRITE, FLAG_S | FUNCTION_CODE_USER_DATA) /* auto-disable (see m68kcpu.h) */
temp = &m68ki_cpu.memory_map[((address)>>16)&0xff];
if (temp->write16) (*temp->write16)(ADDRESS_68K(address),value>>16);
else *(uint16 *)(temp->base + ((address) & 0xffff)) = value >> 16;
temp = &m68ki_cpu.memory_map[((address + 2)>>16)&0xff];
if (temp->write16) (*temp->write16)(ADDRESS_68K(address+2),value&0xffff);
else *(uint16 *)(temp->base + ((address + 2) & 0xffff)) = value;
}
/* --------------------- Effective Address Calculation -------------------- */
/* The program counter relative addressing modes cause operands to be
* retrieved from program space, not data space.
*/
INLINE uint32_t m68ki_get_ea_pcdi(void)
{
uint32_t old_pc = REG_PC;
m68ki_use_program_space() /* auto-disable */
return old_pc + MAKE_INT_16(m68ki_read_imm_16());
}
INLINE uint32_t m68ki_get_ea_pcix(void)
{
m68ki_use_program_space() /* auto-disable */
return m68ki_get_ea_ix(REG_PC);
}
/* Indexed addressing modes are encoded as follows:
*
* Base instruction format:
* F E D C B A 9 8 7 6 | 5 4 3 | 2 1 0
* x x x x x x x x x x | 1 1 0 | BASE REGISTER (An)
*
* Base instruction format for destination EA in move instructions:
* F E D C | B A 9 | 8 7 6 | 5 4 3 2 1 0
* x x x x | BASE REG | 1 1 0 | X X X X X X (An)
*
* Brief extension format:
* F | E D C | B | A 9 | 8 | 7 6 5 4 3 2 1 0
* D/A | REGISTER | W/L | SCALE | 0 | DISPLACEMENT
*
* Full extension format:
* F E D C B A 9 8 7 6 5 4 3 2 1 0
* D/A | REGISTER | W/L | SCALE | 1 | BS | IS | BD SIZE | 0 | I/IS
* BASE DISPLACEMENT (0, 16, 32 bit) (bd)
* OUTER DISPLACEMENT (0, 16, 32 bit) (od)
*
* D/A: 0 = Dn, 1 = An (Xn)
* W/L: 0 = W (sign extend), 1 = L (.SIZE)
* SCALE: 00=1, 01=2, 10=4, 11=8 (*SCALE)
* BS: 0=add base reg, 1=suppress base reg (An suppressed)
* IS: 0=add index, 1=suppress index (Xn suppressed)
* BD SIZE: 00=reserved, 01=NULL, 10=Word, 11=Long (size of bd)
*
* IS I/IS Operation
* 0 000 No Memory Indirect
* 0 001 indir prex with null outer
* 0 010 indir prex with word outer
* 0 011 indir prex with long outer
* 0 100 reserved
* 0 101 indir postx with null outer
* 0 110 indir postx with word outer
* 0 111 indir postx with long outer
* 1 000 no memory indirect
* 1 001 mem indir with null outer
* 1 010 mem indir with word outer
* 1 011 mem indir with long outer
* 1 100-111 reserved
*/
INLINE uint32_t m68ki_get_ea_ix(uint32_t An)
{
/* An = base register */
uint32_t extension = m68ki_read_imm_16();
uint32_t Xn = 0; /* Index register */
/* Calculate index */
Xn = REG_DA[extension>>12]; /* Xn */
if(!BIT_B(extension)) /* W/L */
Xn = MAKE_INT_16(Xn);
/* Add base register and displacement and return */
return An + Xn + MAKE_INT_8(extension);
}
/* Fetch operands */
INLINE uint32_t OPER_AY_AI_8(void) {uint32_t ea = EA_AY_AI_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AY_AI_16(void) {uint32_t ea = EA_AY_AI_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AY_AI_32(void) {uint32_t ea = EA_AY_AI_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_AY_PI_8(void) {uint32_t ea = EA_AY_PI_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AY_PI_16(void) {uint32_t ea = EA_AY_PI_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AY_PI_32(void) {uint32_t ea = EA_AY_PI_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_AY_PD_8(void) {uint32_t ea = EA_AY_PD_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AY_PD_16(void) {uint32_t ea = EA_AY_PD_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AY_PD_32(void) {uint32_t ea = EA_AY_PD_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_AY_DI_8(void) {uint32_t ea = EA_AY_DI_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AY_DI_16(void) {uint32_t ea = EA_AY_DI_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AY_DI_32(void) {uint32_t ea = EA_AY_DI_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_AY_IX_8(void) {uint32_t ea = EA_AY_IX_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AY_IX_16(void) {uint32_t ea = EA_AY_IX_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AY_IX_32(void) {uint32_t ea = EA_AY_IX_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_AX_AI_8(void) {uint32_t ea = EA_AX_AI_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AX_AI_16(void) {uint32_t ea = EA_AX_AI_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AX_AI_32(void) {uint32_t ea = EA_AX_AI_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_AX_PI_8(void) {uint32_t ea = EA_AX_PI_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AX_PI_16(void) {uint32_t ea = EA_AX_PI_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AX_PI_32(void) {uint32_t ea = EA_AX_PI_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_AX_PD_8(void) {uint32_t ea = EA_AX_PD_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AX_PD_16(void) {uint32_t ea = EA_AX_PD_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AX_PD_32(void) {uint32_t ea = EA_AX_PD_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_AX_DI_8(void) {uint32_t ea = EA_AX_DI_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AX_DI_16(void) {uint32_t ea = EA_AX_DI_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AX_DI_32(void) {uint32_t ea = EA_AX_DI_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_AX_IX_8(void) {uint32_t ea = EA_AX_IX_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AX_IX_16(void) {uint32_t ea = EA_AX_IX_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AX_IX_32(void) {uint32_t ea = EA_AX_IX_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_A7_PI_8(void) {uint32_t ea = EA_A7_PI_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_A7_PD_8(void) {uint32_t ea = EA_A7_PD_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AW_8(void) {uint32_t ea = EA_AW_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AW_16(void) {uint32_t ea = EA_AW_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AW_32(void) {uint32_t ea = EA_AW_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_AL_8(void) {uint32_t ea = EA_AL_8(); return m68ki_read_8(ea); }
INLINE uint32_t OPER_AL_16(void) {uint32_t ea = EA_AL_16(); return m68ki_read_16(ea);}
INLINE uint32_t OPER_AL_32(void) {uint32_t ea = EA_AL_32(); return m68ki_read_32(ea);}
INLINE uint32_t OPER_PCDI_8(void) {uint32_t ea = EA_PCDI_8(); return m68ki_read_pcrel_8(ea); }
INLINE uint32_t OPER_PCDI_16(void) {uint32_t ea = EA_PCDI_16(); return m68ki_read_pcrel_16(ea);}
INLINE uint32_t OPER_PCDI_32(void) {uint32_t ea = EA_PCDI_32(); return m68ki_read_pcrel_32(ea);}
INLINE uint32_t OPER_PCIX_8(void) {uint32_t ea = EA_PCIX_8(); return m68ki_read_pcrel_8(ea); }
INLINE uint32_t OPER_PCIX_16(void) {uint32_t ea = EA_PCIX_16(); return m68ki_read_pcrel_16(ea);}
INLINE uint32_t OPER_PCIX_32(void) {uint32_t ea = EA_PCIX_32(); return m68ki_read_pcrel_32(ea);}
/* ---------------------------- Stack Functions --------------------------- */
/* Push/pull data from the stack */
INLINE void m68ki_push_16(uint value)
{
REG_SP = MASK_OUT_ABOVE_32(REG_SP - 2);
m68ki_write_16(REG_SP, value);
}
INLINE void m68ki_push_32(uint32_t value)
{
REG_SP = MASK_OUT_ABOVE_32(REG_SP - 4);
m68ki_write_32(REG_SP, value);
}
INLINE uint32_t m68ki_pull_16(void)
{
uint32_t sp = REG_SP;
REG_SP = MASK_OUT_ABOVE_32(REG_SP + 2);
return m68ki_read_16(sp);
}
INLINE uint32_t m68ki_pull_32(void)
{
uint32_t sp = REG_SP;
REG_SP = MASK_OUT_ABOVE_32(REG_SP + 4);
return m68ki_read_32(sp);
}
/* ----------------------------- Program Flow ----------------------------- */
/* Jump to a new program location or vector.
* These functions will also call the pc_changed callback if it was enabled
* in m68kconf.h.
*/
INLINE void m68ki_jump(uint32_t new_pc)
{
REG_PC = new_pc;
}
INLINE void m68ki_jump_vector(uint32_t vector)
{
m68ki_use_data_space() /* auto-disable (see m68kcpu.h) */
REG_PC = m68ki_read_32(vector<<2);
}
/* Branch to a new memory location.
* The 32-bit branch will call pc_changed if it was enabled in m68kconf.h.
* So far I've found no problems with not calling pc_changed for 8 or 16
* bit branches.
*/
INLINE void m68ki_branch_8(uint32_t offset)
{
REG_PC += MAKE_INT_8(offset);
}
INLINE void m68ki_branch_16(uint32_t offset)
{
REG_PC += MAKE_INT_16(offset);
}
INLINE void m68ki_branch_32(uint32_t offset)
{
REG_PC += offset;
}
/* ---------------------------- Status Register --------------------------- */
/* Set the S flag and change the active stack pointer.
* Note that value MUST be 4 or 0.
*/
INLINE void m68ki_set_s_flag(uint32_t value)
{
/* Backup the old stack pointer */
REG_SP_BASE[FLAG_S] = REG_SP;
/* Set the S flag */
FLAG_S = value;
/* Set the new stack pointer */
REG_SP = REG_SP_BASE[FLAG_S];
}
/* Set the condition code register */
INLINE void m68ki_set_ccr(uint32_t value)
{
FLAG_X = BIT_4(value) << 4;
FLAG_N = BIT_3(value) << 4;
FLAG_Z = !BIT_2(value);
FLAG_V = BIT_1(value) << 6;
FLAG_C = BIT_0(value) << 8;
}
/* Set the status register and check for interrupts */
INLINE void m68ki_set_sr(uint32_t value)
{
/* Set the status register */
FLAG_T1 = BIT_F(value);
FLAG_INT_MASK = value & 0x0700;
m68ki_set_ccr(value);
m68ki_set_s_flag((value >> 11) & 4);
/* Check current IRQ status */
m68ki_check_interrupts();
}
/* ------------------------- Exception Processing ------------------------- */
/* Initiate exception processing */
INLINE uint32_t m68ki_init_exception(void)
{
/* Save the old status register */
uint32_t sr = m68ki_get_sr();
/* Turn off trace flag, clear pending traces */
FLAG_T1 = 0;
m68ki_clear_trace()
/* Enter supervisor mode */
m68ki_set_s_flag(SFLAG_SET);
return sr;
}
/* 3 word stack frame (68000 only) */
INLINE void m68ki_stack_frame_3word(uint32_t pc, uint32_t sr)
{
m68ki_push_32(pc);
m68ki_push_16(sr);
}
#if M68K_EMULATE_ADDRESS_ERROR
/* Bus error stack frame (68000 only).
*/
INLINE void m68ki_stack_frame_buserr(uint32_t sr)
{
m68ki_push_32(REG_PC);
m68ki_push_16(sr);
m68ki_push_16(REG_IR);
m68ki_push_32(m68ki_cpu.aerr_address); /* access address */
/* 0 0 0 0 0 0 0 0 0 0 0 R/W I/N FC
* R/W 0 = write, 1 = read
* I/N 0 = instruction, 1 = not
* FC 3-bit function code
*/
m68ki_push_16(m68ki_cpu.aerr_write_mode | CPU_INSTR_MODE | m68ki_cpu.aerr_fc);
}
#endif
/* Used for Group 2 exceptions.
*/
INLINE void m68ki_exception_trap(uint32_t vector)
{
uint32_t sr = m68ki_init_exception();
m68ki_stack_frame_3word(REG_PC, sr);
m68ki_jump_vector(vector);
/* Use up some clock cycles */
USE_CYCLES(CYC_EXCEPTION[vector]);
}
/* Trap#n stacks a 0 frame but behaves like group2 otherwise */
INLINE void m68ki_exception_trapN(uint32_t vector)
{
uint32_t sr = m68ki_init_exception();
m68ki_stack_frame_3word(REG_PC, sr);
m68ki_jump_vector(vector);
/* Use up some clock cycles */
USE_CYCLES(CYC_EXCEPTION[vector]);
}
#if M68K_EMULATE_TRACE
/* Exception for trace mode */
INLINE void m68ki_exception_trace(void)
{
uint32_t sr = m68ki_init_exception();
#if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
CPU_INSTR_MODE = INSTRUCTION_NO;
#endif /* M68K_EMULATE_ADDRESS_ERROR */
m68ki_stack_frame_3word(REG_PC, sr);
m68ki_jump_vector(EXCEPTION_TRACE);
/* Trace nullifies a STOP instruction */
CPU_STOPPED &= ~STOP_LEVEL_STOP;
/* Use up some clock cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_TRACE]);
}
#endif
/* Exception for privilege violation */
static void m68ki_exception_privilege_violation(void)
{
uint32_t sr = m68ki_init_exception();
#if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
CPU_INSTR_MODE = INSTRUCTION_NO;
#endif /* M68K_EMULATE_ADDRESS_ERROR */
m68ki_stack_frame_3word(REG_PC-2, sr);
m68ki_jump_vector(EXCEPTION_PRIVILEGE_VIOLATION);
/* Use up some clock cycles and undo the instruction's cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_PRIVILEGE_VIOLATION] - CYC_INSTRUCTION[REG_IR]);
}
/* Exception for A-Line instructions */
INLINE void m68ki_exception_1010(void)
{
uint32_t sr = m68ki_init_exception();
m68ki_stack_frame_3word(REG_PC-2, sr);
m68ki_jump_vector(EXCEPTION_1010);
/* Use up some clock cycles and undo the instruction's cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_1010] - CYC_INSTRUCTION[REG_IR]);
}
/* Exception for F-Line instructions */
INLINE void m68ki_exception_1111(void)
{
uint32_t sr = m68ki_init_exception();
m68ki_stack_frame_3word(REG_PC-2, sr);
m68ki_jump_vector(EXCEPTION_1111);
/* Use up some clock cycles and undo the instruction's cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_1111] - CYC_INSTRUCTION[REG_IR]);
}
/* Exception for illegal instructions */
INLINE void m68ki_exception_illegal(void)
{
uint32_t sr = m68ki_init_exception();
#if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
CPU_INSTR_MODE = INSTRUCTION_NO;
#endif /* M68K_EMULATE_ADDRESS_ERROR */
m68ki_stack_frame_3word(REG_PC-2, sr);
m68ki_jump_vector(EXCEPTION_ILLEGAL_INSTRUCTION);
/* Use up some clock cycles and undo the instruction's cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_ILLEGAL_INSTRUCTION] - CYC_INSTRUCTION[REG_IR]);
}
#if M68K_EMULATE_ADDRESS_ERROR
/* Exception for address error */
INLINE void m68ki_exception_address_error(void)
{
uint32_t sr = m68ki_init_exception();
/* If we were processing a bus error, address error, or reset,
* this is a catastrophic failure.
* Halt the CPU
*/
if(CPU_RUN_MODE == RUN_MODE_BERR_AERR_RESET)
{
CPU_STOPPED = STOP_LEVEL_HALT;
SET_CYCLES(m68ki_cpu.cycle_end - CYC_INSTRUCTION[REG_IR]);
return;
}
CPU_RUN_MODE = RUN_MODE_BERR_AERR_RESET;
/* Note: This is implemented for 68000 only! */
m68ki_stack_frame_buserr(sr);
m68ki_jump_vector(EXCEPTION_ADDRESS_ERROR);
/* Use up some clock cycles and undo the instruction's cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_ADDRESS_ERROR] - CYC_INSTRUCTION[REG_IR]);
}
#endif
/* Service an interrupt request and start exception processing */
INLINE void m68ki_exception_interrupt(uint32_t int_level)
{
uint32_t vector, sr, new_pc;
#if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
CPU_INSTR_MODE = INSTRUCTION_NO;
#endif /* M68K_EMULATE_ADDRESS_ERROR */
/* Turn off the stopped state */
CPU_STOPPED &= STOP_LEVEL_HALT;
/* If we are halted, don't do anything */
if(CPU_STOPPED)
return;
/* Always use the autovectors. */
vector = EXCEPTION_INTERRUPT_AUTOVECTOR+int_level;
/* Start exception processing */
sr = m68ki_init_exception();
/* Set the interrupt mask to the level of the one being serviced */
FLAG_INT_MASK = int_level<<8;
/* Acknowledge the interrupt */
m68ki_int_ack(int_level);
/* Get the new PC */
m68ki_use_data_space() /* auto-disable (see m68kcpu.h) */
new_pc = m68ki_read_32(vector<<2);
/* If vector is uninitialized, call the uninitialized interrupt vector */
if(new_pc == 0)
new_pc = m68ki_read_32((EXCEPTION_UNINITIALIZED_INTERRUPT<<2));
/* Generate a stack frame */
m68ki_stack_frame_3word(REG_PC, sr);
m68ki_jump(new_pc);
/* Update cycle count now */
USE_CYCLES(CYC_EXCEPTION[vector]);
}
/* ASG: Check for interrupts */
INLINE void m68ki_check_interrupts(void)
{
if(CPU_INT_LEVEL > FLAG_INT_MASK)
m68ki_exception_interrupt(CPU_INT_LEVEL>>8);
}
/* ======================================================================== */
/* ============================== END OF FILE ============================= */
/* ======================================================================== */
#endif /* M68KCPU__HEADER */