mirror of
https://github.com/ekeeke/Genesis-Plus-GX.git
synced 2024-12-31 21:51:50 +01:00
62f1204476
Genesis Plus GX 1.6.0 ---------------------- [Core/Sound] --------------- * added YM2413 emulation in Master System compatibility mode. * fixed SN76489 noise boost initialization. * minor YM2612 core optimizations. [Core/VDP] --------------- * added accurate emulation of SG-1000, Master System (315-5124, 315-5246) & Game Gear VDP. * added support for all TMS9918 rendering modes. * improved Mega Drive VDP timings accuracy in Master System Compatibility mode. * fixed color palette initialization. * fixed shifted sprites rendering in Mode 4. * modified pixel rendering support (pixel depth is now forced at compilation time). [Core/CPU] --------------- * optimized 68k core (rewrote 68k interrupt handling, removed multiple CPU types support & unused code) for 5~8% speed improvment [Core/IO] --------------- * added accurate emulation of Master System (315-5216, 315-5237, 315-5297) & Game Gear I/O controllers. * added Terebi Oekaki tablet emulation. * improved Mouse emulation (fixes mouse support in Cannon Fodder). * improved Justifier emulation (fixes gun support in Lethal Enforcers 2). * improved 6-Buttons control pad emulation (fixes Duke Nukem 3D) * modified lightgun emulation to use common key inputs for all devices. * 2-buttons controller is now picked by default for Master System games. [Core/MD] --------------- * added copy-protection hardware emulation for some new dumped games (Tiny Toon Adventures 3, Mighty Morphin Power Rangers & The Battle of Red Cliffs). * added Game Toshokan in EEPROM database (verified on real cartridge). * fixed Micro Machines 2 - Turbo Tournament EEPROM size (verified on real cartridge). * modified SRAM banswitch hardware emulation to be more compatible with some hacks. [Core/MS] --------------- * added Cyborg Z to Korean mapper database. [Core/GG] --------------- * added 93C46 EEPROM emulation (Majors Pro Baseball, World Series Baseball & World Series Baseball 95). [Core/General] --------------- * added support for .mdx ROM format. * added Game Gear & SG-1000 ROM support. * added accurate emulation of SG-1000, Master System (I, II) & Game Gear hardware models for 100% compatibility. * updated to new Genesis Plus license (see http://cgfm2.emuviews.com/) * removed DOS port * various code cleanup. [Gamecube/Wii] --------------- * IMPORTANT: cheats, screenshots & save files are now stored in console-specific directories (ex: /snaps/md, /cheats/ms, /saves/gg, ...) * added 8-bit Action Replay & Game Genie codes support (for Master System & Game Gear games). * improved audio/video synchronization for PAL games in 50Hz TV modes (now use VSYNC like NTSC games in 60hz modes). * improved gun cursor positioning accuracy. * improved horizontal scaling & screenshots rendering in H32 mode. * fixed a bug with ROM file extension handling that would affect cheats, snapshots, sram & savestate files. * removed ARAM/injected ROM support (unused). * removed WPAD_ and PAD_ update from VSYNC callback. * increased GCC inlining limits for some speed improvment. * compiled with devkitPPC r24 & libogc 1.8.7.
1749 lines
50 KiB
C
1749 lines
50 KiB
C
/*
|
|
**
|
|
** File: ym2413.c - software implementation of YM2413
|
|
** FM sound generator type OPLL
|
|
**
|
|
** Copyright (C) 2002 Jarek Burczynski
|
|
**
|
|
** Version 1.0
|
|
**
|
|
**
|
|
|
|
to do:
|
|
|
|
- make sure of the sinus amplitude bits
|
|
|
|
- make sure of the EG resolution bits (looks like the biggest
|
|
modulation index generated by the modulator is 123, 124 = no modulation)
|
|
- find proper algorithm for attack phase of EG
|
|
|
|
- tune up instruments ROM
|
|
|
|
- support sample replay in test mode (it is NOT as simple as setting bit 0
|
|
in register 0x0f and using register 0x10 for sample data).
|
|
Which games use this feature ?
|
|
|
|
*/
|
|
|
|
/** EkeEke (2011): removed multiple chips support, cleaned code & added FM board interface for Genesis Plus GX **/
|
|
|
|
#include <math.h>
|
|
|
|
#include "shared.h"
|
|
|
|
/* compiler dependence */
|
|
#define INLINE static __inline__
|
|
|
|
#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
|
|
#define EG_SH 16 /* 16.16 fixed point (EG timing) */
|
|
#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
|
|
|
|
#define FREQ_MASK ((1<<FREQ_SH)-1)
|
|
|
|
/* envelope output entries */
|
|
#define ENV_BITS 10
|
|
#define ENV_LEN (1<<ENV_BITS)
|
|
#define ENV_STEP (128.0/ENV_LEN)
|
|
|
|
#define MAX_ATT_INDEX ((1<<(ENV_BITS-2))-1) /*255*/
|
|
#define MIN_ATT_INDEX (0)
|
|
|
|
/* sinwave entries */
|
|
#define SIN_BITS 10
|
|
#define SIN_LEN (1<<SIN_BITS)
|
|
#define SIN_MASK (SIN_LEN-1)
|
|
|
|
#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
|
|
|
|
/* register number to channel number , slot offset */
|
|
#define SLOT1 0
|
|
#define SLOT2 1
|
|
|
|
/* Envelope Generator phases */
|
|
#define EG_DMP 5
|
|
#define EG_ATT 4
|
|
#define EG_DEC 3
|
|
#define EG_SUS 2
|
|
#define EG_REL 1
|
|
#define EG_OFF 0
|
|
|
|
typedef struct
|
|
{
|
|
UINT32 ar; /* attack rate: AR<<2 */
|
|
UINT32 dr; /* decay rate: DR<<2 */
|
|
UINT32 rr; /* release rate:RR<<2 */
|
|
UINT8 KSR; /* key scale rate */
|
|
UINT8 ksl; /* keyscale level */
|
|
UINT8 ksr; /* key scale rate: kcode>>KSR */
|
|
UINT8 mul; /* multiple: mul_tab[ML] */
|
|
|
|
/* Phase Generator */
|
|
UINT32 phase; /* frequency counter */
|
|
UINT32 freq; /* frequency counter step */
|
|
UINT8 fb_shift; /* feedback shift value */
|
|
INT32 op1_out[2]; /* slot1 output for feedback */
|
|
|
|
/* Envelope Generator */
|
|
UINT8 eg_type; /* percussive/nonpercussive mode */
|
|
UINT8 state; /* phase type */
|
|
UINT32 TL; /* total level: TL << 2 */
|
|
INT32 TLL; /* adjusted now TL */
|
|
INT32 volume; /* envelope counter */
|
|
UINT32 sl; /* sustain level: sl_tab[SL] */
|
|
|
|
UINT8 eg_sh_dp; /* (dump state) */
|
|
UINT8 eg_sel_dp; /* (dump state) */
|
|
UINT8 eg_sh_ar; /* (attack state) */
|
|
UINT8 eg_sel_ar; /* (attack state) */
|
|
UINT8 eg_sh_dr; /* (decay state) */
|
|
UINT8 eg_sel_dr; /* (decay state) */
|
|
UINT8 eg_sh_rr; /* (release state for non-perc.) */
|
|
UINT8 eg_sel_rr; /* (release state for non-perc.) */
|
|
UINT8 eg_sh_rs; /* (release state for perc.mode) */
|
|
UINT8 eg_sel_rs; /* (release state for perc.mode) */
|
|
|
|
UINT32 key; /* 0 = KEY OFF, >0 = KEY ON */
|
|
|
|
/* LFO */
|
|
UINT32 AMmask; /* LFO Amplitude Modulation enable mask */
|
|
UINT8 vib; /* LFO Phase Modulation enable flag (active high)*/
|
|
|
|
/* waveform select */
|
|
unsigned int wavetable;
|
|
} YM2413_OPLL_SLOT;
|
|
|
|
typedef struct
|
|
{
|
|
YM2413_OPLL_SLOT SLOT[2];
|
|
|
|
/* phase generator state */
|
|
UINT32 block_fnum; /* block+fnum */
|
|
UINT32 fc; /* Freq. freqement base */
|
|
UINT32 ksl_base; /* KeyScaleLevel Base step */
|
|
UINT8 kcode; /* key code (for key scaling) */
|
|
UINT8 sus; /* sus on/off (release speed in percussive mode) */
|
|
} YM2413_OPLL_CH;
|
|
|
|
/* chip state */
|
|
typedef struct {
|
|
YM2413_OPLL_CH P_CH[9]; /* OPLL chips have 9 channels */
|
|
UINT8 instvol_r[9]; /* instrument/volume (or volume/volume in percussive mode) */
|
|
|
|
UINT32 eg_cnt; /* global envelope generator counter */
|
|
UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/72 */
|
|
UINT32 eg_timer_add; /* step of eg_timer */
|
|
UINT32 eg_timer_overflow; /* envelope generator timer overlfows every 1 sample (on real chip) */
|
|
|
|
UINT8 rhythm; /* Rhythm mode */
|
|
|
|
/* LFO */
|
|
UINT32 lfo_am_cnt;
|
|
UINT32 lfo_am_inc;
|
|
UINT32 lfo_pm_cnt;
|
|
UINT32 lfo_pm_inc;
|
|
|
|
UINT32 noise_rng; /* 23 bit noise shift register */
|
|
UINT32 noise_p; /* current noise 'phase' */
|
|
UINT32 noise_f; /* current noise period */
|
|
|
|
|
|
/* instrument settings */
|
|
/*
|
|
0-user instrument
|
|
1-15 - fixed instruments
|
|
16 -bass drum settings
|
|
17,18 - other percussion instruments
|
|
*/
|
|
UINT8 inst_tab[19][8];
|
|
|
|
UINT32 fn_tab[1024]; /* fnumber->increment counter */
|
|
|
|
UINT8 address; /* address register */
|
|
UINT8 status; /* status flag */
|
|
|
|
double clock; /* master clock (Hz) */
|
|
int rate; /* sampling rate (Hz) */
|
|
} YM2413;
|
|
|
|
/* key scale level */
|
|
/* table is 3dB/octave, DV converts this into 6dB/octave */
|
|
/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */
|
|
#define DV (0.1875/1.0)
|
|
static const UINT32 ksl_tab[8*16]=
|
|
{
|
|
/* OCT 0 */
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
/* OCT 1 */
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
|
|
1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
|
|
/* OCT 2 */
|
|
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
|
|
0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
|
|
3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
|
|
4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
|
|
/* OCT 3 */
|
|
0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
|
|
3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
|
|
6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
|
|
7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
|
|
/* OCT 4 */
|
|
0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
|
|
6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
|
|
9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
|
|
10.875/DV,11.250/DV,11.625/DV,12.000/DV,
|
|
/* OCT 5 */
|
|
0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
|
|
9.000/DV,10.125/DV,10.875/DV,11.625/DV,
|
|
12.000/DV,12.750/DV,13.125/DV,13.500/DV,
|
|
13.875/DV,14.250/DV,14.625/DV,15.000/DV,
|
|
/* OCT 6 */
|
|
0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
|
|
12.000/DV,13.125/DV,13.875/DV,14.625/DV,
|
|
15.000/DV,15.750/DV,16.125/DV,16.500/DV,
|
|
16.875/DV,17.250/DV,17.625/DV,18.000/DV,
|
|
/* OCT 7 */
|
|
0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
|
|
15.000/DV,16.125/DV,16.875/DV,17.625/DV,
|
|
18.000/DV,18.750/DV,19.125/DV,19.500/DV,
|
|
19.875/DV,20.250/DV,20.625/DV,21.000/DV
|
|
};
|
|
#undef DV
|
|
|
|
/* sustain level table (3dB per step) */
|
|
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,45 (dB)*/
|
|
#define SC(db) (UINT32) ( db * (1.0/ENV_STEP) )
|
|
static const UINT32 sl_tab[16]={
|
|
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
|
|
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(15)
|
|
};
|
|
#undef SC
|
|
|
|
|
|
#define RATE_STEPS (8)
|
|
static const unsigned char eg_inc[15*RATE_STEPS]={
|
|
|
|
/*cycle:0 1 2 3 4 5 6 7*/
|
|
|
|
/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */
|
|
/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */
|
|
/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */
|
|
/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */
|
|
|
|
/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */
|
|
/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */
|
|
/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */
|
|
/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */
|
|
|
|
/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */
|
|
/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */
|
|
/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */
|
|
/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */
|
|
|
|
/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */
|
|
/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */
|
|
/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
|
|
};
|
|
|
|
|
|
#define O(a) (a*RATE_STEPS)
|
|
|
|
/*note that there is no O(13) in this table - it's directly in the code */
|
|
static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
|
|
/* 16 infinite time rates */
|
|
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
|
|
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
|
|
|
|
/* rates 00-12 */
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
|
|
/* rate 13 */
|
|
O( 4),O( 5),O( 6),O( 7),
|
|
|
|
/* rate 14 */
|
|
O( 8),O( 9),O(10),O(11),
|
|
|
|
/* rate 15 */
|
|
O(12),O(12),O(12),O(12),
|
|
|
|
/* 16 dummy rates (same as 15 3) */
|
|
O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
|
|
O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
|
|
|
|
};
|
|
#undef O
|
|
|
|
/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */
|
|
/*shift 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0 */
|
|
/*mask 8191, 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0 */
|
|
|
|
#define O(a) (a*1)
|
|
static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
|
|
/* 16 infinite time rates */
|
|
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
|
|
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
|
|
|
|
/* rates 00-12 */
|
|
O(13),O(13),O(13),O(13),
|
|
O(12),O(12),O(12),O(12),
|
|
O(11),O(11),O(11),O(11),
|
|
O(10),O(10),O(10),O(10),
|
|
O( 9),O( 9),O( 9),O( 9),
|
|
O( 8),O( 8),O( 8),O( 8),
|
|
O( 7),O( 7),O( 7),O( 7),
|
|
O( 6),O( 6),O( 6),O( 6),
|
|
O( 5),O( 5),O( 5),O( 5),
|
|
O( 4),O( 4),O( 4),O( 4),
|
|
O( 3),O( 3),O( 3),O( 3),
|
|
O( 2),O( 2),O( 2),O( 2),
|
|
O( 1),O( 1),O( 1),O( 1),
|
|
|
|
/* rate 13 */
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* rate 14 */
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* rate 15 */
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* 16 dummy rates (same as 15 3) */
|
|
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
|
|
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
|
|
|
|
};
|
|
#undef O
|
|
|
|
|
|
/* multiple table */
|
|
#define ML 2
|
|
static const UINT8 mul_tab[16]= {
|
|
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */
|
|
0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
|
|
8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
|
|
};
|
|
#undef ML
|
|
|
|
/* TL_TAB_LEN is calculated as:
|
|
* 11 - sinus amplitude bits (Y axis)
|
|
* 2 - sinus sign bit (Y axis)
|
|
* TL_RES_LEN - sinus resolution (X axis)
|
|
*/
|
|
#define TL_TAB_LEN (11*2*TL_RES_LEN)
|
|
static signed int tl_tab[TL_TAB_LEN];
|
|
|
|
#define ENV_QUIET (TL_TAB_LEN>>5)
|
|
|
|
/* sin waveform table in 'decibel' scale */
|
|
/* two waveforms on OPLL type chips */
|
|
static unsigned int sin_tab[SIN_LEN * 2];
|
|
|
|
|
|
/* LFO Amplitude Modulation table (verified on real YM3812)
|
|
27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples
|
|
|
|
Length: 210 elements.
|
|
|
|
Each of the elements has to be repeated
|
|
exactly 64 times (on 64 consecutive samples).
|
|
The whole table takes: 64 * 210 = 13440 samples.
|
|
|
|
We use data>>1, until we find what it really is on real chip...
|
|
|
|
*/
|
|
|
|
#define LFO_AM_TAB_ELEMENTS 210
|
|
|
|
static const UINT8 lfo_am_table[LFO_AM_TAB_ELEMENTS] = {
|
|
0,0,0,0,0,0,0,
|
|
1,1,1,1,
|
|
2,2,2,2,
|
|
3,3,3,3,
|
|
4,4,4,4,
|
|
5,5,5,5,
|
|
6,6,6,6,
|
|
7,7,7,7,
|
|
8,8,8,8,
|
|
9,9,9,9,
|
|
10,10,10,10,
|
|
11,11,11,11,
|
|
12,12,12,12,
|
|
13,13,13,13,
|
|
14,14,14,14,
|
|
15,15,15,15,
|
|
16,16,16,16,
|
|
17,17,17,17,
|
|
18,18,18,18,
|
|
19,19,19,19,
|
|
20,20,20,20,
|
|
21,21,21,21,
|
|
22,22,22,22,
|
|
23,23,23,23,
|
|
24,24,24,24,
|
|
25,25,25,25,
|
|
26,26,26,
|
|
25,25,25,25,
|
|
24,24,24,24,
|
|
23,23,23,23,
|
|
22,22,22,22,
|
|
21,21,21,21,
|
|
20,20,20,20,
|
|
19,19,19,19,
|
|
18,18,18,18,
|
|
17,17,17,17,
|
|
16,16,16,16,
|
|
15,15,15,15,
|
|
14,14,14,14,
|
|
13,13,13,13,
|
|
12,12,12,12,
|
|
11,11,11,11,
|
|
10,10,10,10,
|
|
9,9,9,9,
|
|
8,8,8,8,
|
|
7,7,7,7,
|
|
6,6,6,6,
|
|
5,5,5,5,
|
|
4,4,4,4,
|
|
3,3,3,3,
|
|
2,2,2,2,
|
|
1,1,1,1
|
|
};
|
|
|
|
/* LFO Phase Modulation table (verified on real YM2413) */
|
|
static const INT8 lfo_pm_table[8*8] = {
|
|
|
|
/* FNUM2/FNUM = 0 00xxxxxx (0x0000) */
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
/* FNUM2/FNUM = 0 01xxxxxx (0x0040) */
|
|
1, 0, 0, 0,-1, 0, 0, 0,
|
|
|
|
/* FNUM2/FNUM = 0 10xxxxxx (0x0080) */
|
|
2, 1, 0,-1,-2,-1, 0, 1,
|
|
|
|
/* FNUM2/FNUM = 0 11xxxxxx (0x00C0) */
|
|
3, 1, 0,-1,-3,-1, 0, 1,
|
|
|
|
/* FNUM2/FNUM = 1 00xxxxxx (0x0100) */
|
|
4, 2, 0,-2,-4,-2, 0, 2,
|
|
|
|
/* FNUM2/FNUM = 1 01xxxxxx (0x0140) */
|
|
5, 2, 0,-2,-5,-2, 0, 2,
|
|
|
|
/* FNUM2/FNUM = 1 10xxxxxx (0x0180) */
|
|
6, 3, 0,-3,-6,-3, 0, 3,
|
|
|
|
/* FNUM2/FNUM = 1 11xxxxxx (0x01C0) */
|
|
7, 3, 0,-3,-7,-3, 0, 3,
|
|
};
|
|
|
|
|
|
/* This is not 100% perfect yet but very close */
|
|
/*
|
|
- multi parameters are 100% correct (instruments and drums)
|
|
- LFO PM and AM enable are 100% correct
|
|
- waveform DC and DM select are 100% correct
|
|
*/
|
|
|
|
static unsigned char table[19][8] = {
|
|
/* MULT MULT modTL DcDmFb AR/DR AR/DR SL/RR SL/RR */
|
|
/* 0 1 2 3 4 5 6 7 */
|
|
{0x49, 0x4c, 0x4c, 0x12, 0x00, 0x00, 0x00, 0x00 }, //0
|
|
|
|
{0x61, 0x61, 0x1e, 0x17, 0xf0, 0x78, 0x00, 0x17 }, //1
|
|
{0x13, 0x41, 0x1e, 0x0d, 0xd7, 0xf7, 0x13, 0x13 }, //2
|
|
{0x13, 0x01, 0x99, 0x04, 0xf2, 0xf4, 0x11, 0x23 }, //3
|
|
{0x21, 0x61, 0x1b, 0x07, 0xaf, 0x64, 0x40, 0x27 }, //4
|
|
|
|
//{0x22, 0x21, 0x1e, 0x09, 0xf0, 0x76, 0x08, 0x28 }, //5
|
|
{0x22, 0x21, 0x1e, 0x06, 0xf0, 0x75, 0x08, 0x18 }, //5
|
|
|
|
//{0x31, 0x22, 0x16, 0x09, 0x90, 0x7f, 0x00, 0x08 }, //6
|
|
{0x31, 0x22, 0x16, 0x05, 0x90, 0x71, 0x00, 0x13 }, //6
|
|
|
|
{0x21, 0x61, 0x1d, 0x07, 0x82, 0x80, 0x10, 0x17 }, //7
|
|
{0x23, 0x21, 0x2d, 0x16, 0xc0, 0x70, 0x07, 0x07 }, //8
|
|
{0x61, 0x61, 0x1b, 0x06, 0x64, 0x65, 0x10, 0x17 }, //9
|
|
|
|
//{0x61, 0x61, 0x0c, 0x08, 0x85, 0xa0, 0x79, 0x07 }, //A
|
|
{0x61, 0x61, 0x0c, 0x18, 0x85, 0xf0, 0x70, 0x07 }, //A
|
|
|
|
{0x23, 0x01, 0x07, 0x11, 0xf0, 0xa4, 0x00, 0x22 }, //B
|
|
{0x97, 0xc1, 0x24, 0x07, 0xff, 0xf8, 0x22, 0x12 }, //C
|
|
|
|
//{0x61, 0x10, 0x0c, 0x08, 0xf2, 0xc4, 0x40, 0xc8 }, //D
|
|
{0x61, 0x10, 0x0c, 0x05, 0xf2, 0xf4, 0x40, 0x44 }, //D
|
|
|
|
{0x01, 0x01, 0x55, 0x03, 0xf3, 0x92, 0xf3, 0xf3 }, //E
|
|
{0x61, 0x41, 0x89, 0x03, 0xf1, 0xf4, 0xf0, 0x13 }, //F
|
|
|
|
/* drum instruments definitions */
|
|
/* MULTI MULTI modTL xxx AR/DR AR/DR SL/RR SL/RR */
|
|
/* 0 1 2 3 4 5 6 7 */
|
|
{0x01, 0x01, 0x16, 0x00, 0xfd, 0xf8, 0x2f, 0x6d },/* BD(multi verified, modTL verified, mod env - verified(close), carr. env verifed) */
|
|
{0x01, 0x01, 0x00, 0x00, 0xd8, 0xd8, 0xf9, 0xf8 },/* HH(multi verified), SD(multi not used) */
|
|
{0x05, 0x01, 0x00, 0x00, 0xf8, 0xba, 0x49, 0x55 },/* TOM(multi,env verified), TOP CYM(multi verified, env verified) */
|
|
};
|
|
|
|
static signed int output[2];
|
|
|
|
static UINT32 LFO_AM;
|
|
static INT32 LFO_PM;
|
|
|
|
/* emulated chip */
|
|
static YM2413 ym2413;
|
|
|
|
/* advance LFO to next sample */
|
|
INLINE void advance_lfo(void)
|
|
{
|
|
/* LFO */
|
|
ym2413.lfo_am_cnt += ym2413.lfo_am_inc;
|
|
if (ym2413.lfo_am_cnt >= (LFO_AM_TAB_ELEMENTS<<LFO_SH) ) /* lfo_am_table is 210 elements long */
|
|
ym2413.lfo_am_cnt -= (LFO_AM_TAB_ELEMENTS<<LFO_SH);
|
|
|
|
LFO_AM = lfo_am_table[ ym2413.lfo_am_cnt >> LFO_SH ] >> 1;
|
|
|
|
ym2413.lfo_pm_cnt += ym2413.lfo_pm_inc;
|
|
LFO_PM = (ym2413.lfo_pm_cnt>>LFO_SH) & 7;
|
|
}
|
|
|
|
/* advance to next sample */
|
|
INLINE void advance(void)
|
|
{
|
|
YM2413_OPLL_CH *CH;
|
|
YM2413_OPLL_SLOT *op;
|
|
unsigned int i;
|
|
|
|
/* Envelope Generator */
|
|
ym2413.eg_timer += ym2413.eg_timer_add;
|
|
|
|
while (ym2413.eg_timer >= ym2413.eg_timer_overflow)
|
|
{
|
|
ym2413.eg_timer -= ym2413.eg_timer_overflow;
|
|
|
|
ym2413.eg_cnt++;
|
|
|
|
for (i=0; i<9*2; i++)
|
|
{
|
|
CH = &ym2413.P_CH[i>>1];
|
|
|
|
op = &CH->SLOT[i&1];
|
|
|
|
switch(op->state)
|
|
{
|
|
case EG_DMP: /* dump phase */
|
|
/*dump phase is performed by both operators in each channel*/
|
|
/*when CARRIER envelope gets down to zero level,
|
|
** phases in BOTH opearators are reset (at the same time ?)
|
|
*/
|
|
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_dp)-1) ) )
|
|
{
|
|
op->volume += eg_inc[op->eg_sel_dp + ((ym2413.eg_cnt>>op->eg_sh_dp)&7)];
|
|
|
|
if ( op->volume >= MAX_ATT_INDEX )
|
|
{
|
|
op->volume = MAX_ATT_INDEX;
|
|
op->state = EG_ATT;
|
|
/* restart Phase Generator */
|
|
op->phase = 0;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EG_ATT: /* attack phase */
|
|
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_ar)-1) ) )
|
|
{
|
|
op->volume += (~op->volume *
|
|
(eg_inc[op->eg_sel_ar + ((ym2413.eg_cnt>>op->eg_sh_ar)&7)])
|
|
) >>2;
|
|
|
|
if (op->volume <= MIN_ATT_INDEX)
|
|
{
|
|
op->volume = MIN_ATT_INDEX;
|
|
op->state = EG_DEC;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EG_DEC: /* decay phase */
|
|
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_dr)-1) ) )
|
|
{
|
|
op->volume += eg_inc[op->eg_sel_dr + ((ym2413.eg_cnt>>op->eg_sh_dr)&7)];
|
|
|
|
if ( op->volume >= op->sl )
|
|
op->state = EG_SUS;
|
|
}
|
|
break;
|
|
|
|
case EG_SUS: /* sustain phase */
|
|
/* this is important behaviour:
|
|
one can change percusive/non-percussive modes on the fly and
|
|
the chip will remain in sustain phase - verified on real YM3812 */
|
|
|
|
if(op->eg_type) /* non-percussive mode (sustained tone) */
|
|
{
|
|
/* do nothing */
|
|
}
|
|
else /* percussive mode */
|
|
{
|
|
/* during sustain phase chip adds Release Rate (in percussive mode) */
|
|
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
|
|
{
|
|
op->volume += eg_inc[op->eg_sel_rr + ((ym2413.eg_cnt>>op->eg_sh_rr)&7)];
|
|
|
|
if ( op->volume >= MAX_ATT_INDEX )
|
|
op->volume = MAX_ATT_INDEX;
|
|
}
|
|
/* else do nothing in sustain phase */
|
|
}
|
|
break;
|
|
|
|
case EG_REL: /* release phase */
|
|
/* exclude modulators in melody channels from performing anything in this mode*/
|
|
/* allowed are only carriers in melody mode and rhythm slots in rhythm mode */
|
|
|
|
/*This table shows which operators and on what conditions are allowed to perform EG_REL:
|
|
(a) - always perform EG_REL
|
|
(n) - never perform EG_REL
|
|
(r) - perform EG_REL in Rhythm mode ONLY
|
|
0: 0 (n), 1 (a)
|
|
1: 2 (n), 3 (a)
|
|
2: 4 (n), 5 (a)
|
|
3: 6 (n), 7 (a)
|
|
4: 8 (n), 9 (a)
|
|
5: 10(n), 11(a)
|
|
6: 12(r), 13(a)
|
|
7: 14(r), 15(a)
|
|
8: 16(r), 17(a)
|
|
*/
|
|
if ( (i&1) || ((ym2413.rhythm&0x20) && (i>=12)) )/* exclude modulators */
|
|
{
|
|
if(op->eg_type) /* non-percussive mode (sustained tone) */
|
|
/*this is correct: use RR when SUS = OFF*/
|
|
/*and use RS when SUS = ON*/
|
|
{
|
|
if (CH->sus)
|
|
{
|
|
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_rs)-1) ) )
|
|
{
|
|
op->volume += eg_inc[op->eg_sel_rs + ((ym2413.eg_cnt>>op->eg_sh_rs)&7)];
|
|
if ( op->volume >= MAX_ATT_INDEX )
|
|
{
|
|
op->volume = MAX_ATT_INDEX;
|
|
op->state = EG_OFF;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
|
|
{
|
|
op->volume += eg_inc[op->eg_sel_rr + ((ym2413.eg_cnt>>op->eg_sh_rr)&7)];
|
|
if ( op->volume >= MAX_ATT_INDEX )
|
|
{
|
|
op->volume = MAX_ATT_INDEX;
|
|
op->state = EG_OFF;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else /* percussive mode */
|
|
{
|
|
if ( !(ym2413.eg_cnt & ((1<<op->eg_sh_rs)-1) ) )
|
|
{
|
|
op->volume += eg_inc[op->eg_sel_rs + ((ym2413.eg_cnt>>op->eg_sh_rs)&7)];
|
|
if ( op->volume >= MAX_ATT_INDEX )
|
|
{
|
|
op->volume = MAX_ATT_INDEX;
|
|
op->state = EG_OFF;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i=0; i<9*2; i++)
|
|
{
|
|
CH = &ym2413.P_CH[i/2];
|
|
op = &CH->SLOT[i&1];
|
|
|
|
/* Phase Generator */
|
|
if(op->vib)
|
|
{
|
|
UINT8 block;
|
|
|
|
unsigned int fnum_lfo = 8*((CH->block_fnum&0x01c0) >> 6);
|
|
unsigned int block_fnum = CH->block_fnum * 2;
|
|
signed int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + fnum_lfo ];
|
|
|
|
if (lfo_fn_table_index_offset) /* LFO phase modulation active */
|
|
{
|
|
block_fnum += lfo_fn_table_index_offset;
|
|
block = (block_fnum&0x1c00) >> 10;
|
|
op->phase += (ym2413.fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;
|
|
}
|
|
else /* LFO phase modulation = zero */
|
|
{
|
|
op->phase += op->freq;
|
|
}
|
|
}
|
|
else /* LFO phase modulation disabled for this operator */
|
|
{
|
|
op->phase += op->freq;
|
|
}
|
|
}
|
|
|
|
/* The Noise Generator of the YM3812 is 23-bit shift register.
|
|
* Period is equal to 2^23-2 samples.
|
|
* Register works at sampling frequency of the chip, so output
|
|
* can change on every sample.
|
|
*
|
|
* Output of the register and input to the bit 22 is:
|
|
* bit0 XOR bit14 XOR bit15 XOR bit22
|
|
*
|
|
* Simply use bit 22 as the noise output.
|
|
*/
|
|
|
|
ym2413.noise_p += ym2413.noise_f;
|
|
i = ym2413.noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */
|
|
ym2413.noise_p &= FREQ_MASK;
|
|
while (i)
|
|
{
|
|
/*
|
|
UINT32 j;
|
|
j = ( (chip->noise_rng) ^ (chip->noise_rng>>14) ^ (chip->noise_rng>>15) ^ (chip->noise_rng>>22) ) & 1;
|
|
chip->noise_rng = (j<<22) | (chip->noise_rng>>1);
|
|
*/
|
|
|
|
/*
|
|
Instead of doing all the logic operations above, we
|
|
use a trick here (and use bit 0 as the noise output).
|
|
The difference is only that the noise bit changes one
|
|
step ahead. This doesn't matter since we don't know
|
|
what is real state of the noise_rng after the reset.
|
|
*/
|
|
|
|
if (ym2413.noise_rng & 1) ym2413.noise_rng ^= 0x800302;
|
|
ym2413.noise_rng >>= 1;
|
|
|
|
i--;
|
|
}
|
|
}
|
|
|
|
|
|
INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
|
|
{
|
|
UINT32 p = (env<<5) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<17))) >> FREQ_SH ) & SIN_MASK) ];
|
|
|
|
if (p >= TL_TAB_LEN)
|
|
return 0;
|
|
return tl_tab[p];
|
|
}
|
|
|
|
INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
|
|
{
|
|
UINT32 p = (env<<5) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm)) >> FREQ_SH ) & SIN_MASK) ];
|
|
|
|
if (p >= TL_TAB_LEN)
|
|
return 0;
|
|
return tl_tab[p];
|
|
}
|
|
|
|
#define volume_calc(OP) ((OP)->TLL + ((UINT32)(OP)->volume) + (LFO_AM & (OP)->AMmask))
|
|
|
|
/* calculate output */
|
|
INLINE void chan_calc( YM2413_OPLL_CH *CH )
|
|
{
|
|
YM2413_OPLL_SLOT *SLOT;
|
|
unsigned int env;
|
|
signed int out;
|
|
signed int phase_modulation; /* phase modulation input (SLOT 2) */
|
|
|
|
/* SLOT 1 */
|
|
SLOT = &CH->SLOT[SLOT1];
|
|
env = volume_calc(SLOT);
|
|
out = SLOT->op1_out[0] + SLOT->op1_out[1];
|
|
|
|
SLOT->op1_out[0] = SLOT->op1_out[1];
|
|
phase_modulation = SLOT->op1_out[0];
|
|
|
|
SLOT->op1_out[1] = 0;
|
|
|
|
if( env < ENV_QUIET )
|
|
{
|
|
if (!SLOT->fb_shift)
|
|
out = 0;
|
|
SLOT->op1_out[1] = op_calc1(SLOT->phase, env, (out<<SLOT->fb_shift), SLOT->wavetable );
|
|
}
|
|
|
|
/* SLOT 2 */
|
|
|
|
SLOT++;
|
|
env = volume_calc(SLOT);
|
|
if( env < ENV_QUIET )
|
|
{
|
|
output[0] += op_calc(SLOT->phase, env, phase_modulation, SLOT->wavetable);
|
|
}
|
|
}
|
|
|
|
/*
|
|
operators used in the rhythm sounds generation process:
|
|
|
|
Envelope Generator:
|
|
|
|
channel operator register number Bass High Snare Tom Top
|
|
/ slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal
|
|
6 / 0 12 50 70 90 f0 +
|
|
6 / 1 15 53 73 93 f3 +
|
|
7 / 0 13 51 71 91 f1 +
|
|
7 / 1 16 54 74 94 f4 +
|
|
8 / 0 14 52 72 92 f2 +
|
|
8 / 1 17 55 75 95 f5 +
|
|
|
|
Phase Generator:
|
|
|
|
channel operator register number Bass High Snare Tom Top
|
|
/ slot number MULTIPLE Drum Hat Drum Tom Cymbal
|
|
6 / 0 12 30 +
|
|
6 / 1 15 33 +
|
|
7 / 0 13 31 + + +
|
|
7 / 1 16 34 ----- n o t u s e d -----
|
|
8 / 0 14 32 +
|
|
8 / 1 17 35 + +
|
|
|
|
channel operator register number Bass High Snare Tom Top
|
|
number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal
|
|
6 12,15 B6 A6 +
|
|
|
|
7 13,16 B7 A7 + + +
|
|
|
|
8 14,17 B8 A8 + + +
|
|
|
|
*/
|
|
|
|
/* calculate rhythm */
|
|
|
|
INLINE void rhythm_calc( YM2413_OPLL_CH *CH, unsigned int noise )
|
|
{
|
|
YM2413_OPLL_SLOT *SLOT;
|
|
signed int out;
|
|
unsigned int env;
|
|
signed int phase_modulation; /* phase modulation input (SLOT 2) */
|
|
|
|
|
|
/* Bass Drum (verified on real YM3812):
|
|
- depends on the channel 6 'connect' register:
|
|
when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out)
|
|
when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored
|
|
- output sample always is multiplied by 2
|
|
*/
|
|
|
|
|
|
/* SLOT 1 */
|
|
SLOT = &CH[6].SLOT[SLOT1];
|
|
env = volume_calc(SLOT);
|
|
|
|
out = SLOT->op1_out[0] + SLOT->op1_out[1];
|
|
SLOT->op1_out[0] = SLOT->op1_out[1];
|
|
|
|
phase_modulation = SLOT->op1_out[0];
|
|
|
|
SLOT->op1_out[1] = 0;
|
|
if( env < ENV_QUIET )
|
|
{
|
|
if (!SLOT->fb_shift)
|
|
out = 0;
|
|
SLOT->op1_out[1] = op_calc1(SLOT->phase, env, (out<<SLOT->fb_shift), SLOT->wavetable );
|
|
}
|
|
|
|
/* SLOT 2 */
|
|
SLOT++;
|
|
env = volume_calc(SLOT);
|
|
if( env < ENV_QUIET )
|
|
output[1] += op_calc(SLOT->phase, env, phase_modulation, SLOT->wavetable);
|
|
|
|
|
|
/* Phase generation is based on: */
|
|
// HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases)
|
|
// SD (16) channel 7->slot 1
|
|
// TOM (14) channel 8->slot 1
|
|
// TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases)
|
|
|
|
/* Envelope generation based on: */
|
|
// HH channel 7->slot1
|
|
// SD channel 7->slot2
|
|
// TOM channel 8->slot1
|
|
// TOP channel 8->slot2
|
|
|
|
|
|
/* The following formulas can be well optimized.
|
|
I leave them in direct form for now (in case I've missed something).
|
|
*/
|
|
|
|
/* High Hat (verified on real YM3812) */
|
|
env = volume_calc(&CH[7].SLOT[SLOT1]);
|
|
if( env < ENV_QUIET )
|
|
{
|
|
|
|
/* high hat phase generation:
|
|
phase = d0 or 234 (based on frequency only)
|
|
phase = 34 or 2d0 (based on noise)
|
|
*/
|
|
|
|
/* base frequency derived from operator 1 in channel 7 */
|
|
unsigned char bit7 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>7)&1;
|
|
unsigned char bit3 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>3)&1;
|
|
unsigned char bit2 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>2)&1;
|
|
|
|
unsigned char res1 = (bit2 ^ bit7) | bit3;
|
|
|
|
/* when res1 = 0 phase = 0x000 | 0xd0; */
|
|
/* when res1 = 1 phase = 0x200 | (0xd0>>2); */
|
|
UINT32 phase = res1 ? (0x200|(0xd0>>2)) : 0xd0;
|
|
|
|
/* enable gate based on frequency of operator 2 in channel 8 */
|
|
unsigned char bit5e= ((CH[8].SLOT[SLOT2].phase>>FREQ_SH)>>5)&1;
|
|
unsigned char bit3e= ((CH[8].SLOT[SLOT2].phase>>FREQ_SH)>>3)&1;
|
|
|
|
unsigned char res2 = (bit3e | bit5e);
|
|
|
|
/* when res2 = 0 pass the phase from calculation above (res1); */
|
|
/* when res2 = 1 phase = 0x200 | (0xd0>>2); */
|
|
if (res2)
|
|
phase = (0x200|(0xd0>>2));
|
|
|
|
|
|
/* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */
|
|
/* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */
|
|
if (phase&0x200)
|
|
{
|
|
if (noise)
|
|
phase = 0x200|0xd0;
|
|
}
|
|
else
|
|
/* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */
|
|
/* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */
|
|
{
|
|
if (noise)
|
|
phase = 0xd0>>2;
|
|
}
|
|
|
|
output[1] += op_calc(phase<<FREQ_SH, env, 0, CH[7].SLOT[SLOT1].wavetable);
|
|
}
|
|
|
|
/* Snare Drum (verified on real YM3812) */
|
|
env = volume_calc(&CH[7].SLOT[SLOT2]);
|
|
if( env < ENV_QUIET )
|
|
{
|
|
/* base frequency derived from operator 1 in channel 7 */
|
|
unsigned char bit8 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>8)&1;
|
|
|
|
/* when bit8 = 0 phase = 0x100; */
|
|
/* when bit8 = 1 phase = 0x200; */
|
|
UINT32 phase = bit8 ? 0x200 : 0x100;
|
|
|
|
/* Noise bit XOR'es phase by 0x100 */
|
|
/* when noisebit = 0 pass the phase from calculation above */
|
|
/* when noisebit = 1 phase ^= 0x100; */
|
|
/* in other words: phase ^= (noisebit<<8); */
|
|
if (noise)
|
|
phase ^= 0x100;
|
|
|
|
output[1] += op_calc(phase<<FREQ_SH, env, 0, CH[7].SLOT[SLOT2].wavetable);
|
|
}
|
|
|
|
/* Tom Tom (verified on real YM3812) */
|
|
env = volume_calc(&CH[8].SLOT[SLOT1]);
|
|
if( env < ENV_QUIET )
|
|
output[1] += op_calc(CH[8].SLOT[SLOT1].phase, env, 0, CH[8].SLOT[SLOT1].wavetable);
|
|
|
|
/* Top Cymbal (verified on real YM2413) */
|
|
env = volume_calc(&CH[8].SLOT[SLOT2]);
|
|
if( env < ENV_QUIET )
|
|
{
|
|
/* base frequency derived from operator 1 in channel 7 */
|
|
unsigned char bit7 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>7)&1;
|
|
unsigned char bit3 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>3)&1;
|
|
unsigned char bit2 = ((CH[7].SLOT[SLOT1].phase>>FREQ_SH)>>2)&1;
|
|
|
|
unsigned char res1 = (bit2 ^ bit7) | bit3;
|
|
|
|
/* when res1 = 0 phase = 0x000 | 0x100; */
|
|
/* when res1 = 1 phase = 0x200 | 0x100; */
|
|
UINT32 phase = res1 ? 0x300 : 0x100;
|
|
|
|
/* enable gate based on frequency of operator 2 in channel 8 */
|
|
unsigned char bit5e= ((CH[8].SLOT[SLOT2].phase>>FREQ_SH)>>5)&1;
|
|
unsigned char bit3e= ((CH[8].SLOT[SLOT2].phase>>FREQ_SH)>>3)&1;
|
|
|
|
unsigned char res2 = (bit3e | bit5e);
|
|
/* when res2 = 0 pass the phase from calculation above (res1); */
|
|
/* when res2 = 1 phase = 0x200 | 0x100; */
|
|
if (res2)
|
|
phase = 0x300;
|
|
|
|
output[1] += op_calc(phase<<FREQ_SH, env, 0, CH[8].SLOT[SLOT2].wavetable);
|
|
}
|
|
}
|
|
|
|
|
|
/* generic table initialize */
|
|
static int init_tables(void)
|
|
{
|
|
signed int i,x;
|
|
signed int n;
|
|
double o,m;
|
|
|
|
for (x=0; x<TL_RES_LEN; x++)
|
|
{
|
|
m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
|
|
m = floor(m);
|
|
|
|
/* we never reach (1<<16) here due to the (x+1) */
|
|
/* result fits within 16 bits at maximum */
|
|
|
|
n = (int)m; /* 16 bits here */
|
|
n >>= 4; /* 12 bits here */
|
|
if (n&1) /* round to nearest */
|
|
n = (n>>1)+1;
|
|
else
|
|
n = n>>1;
|
|
/* 11 bits here (rounded) */
|
|
tl_tab[ x*2 + 0 ] = n;
|
|
tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
|
|
|
|
for (i=1; i<11; i++)
|
|
{
|
|
tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
|
|
tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ];
|
|
}
|
|
}
|
|
|
|
for (i=0; i<SIN_LEN; i++)
|
|
{
|
|
/* non-standard sinus */
|
|
m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
|
|
|
|
/* we never reach zero here due to ((i*2)+1) */
|
|
|
|
if (m>0.0)
|
|
o = 8*log(1.0/m)/log(2); /* convert to 'decibels' */
|
|
else
|
|
o = 8*log(-1.0/m)/log(2); /* convert to 'decibels' */
|
|
|
|
o = o / (ENV_STEP/4);
|
|
|
|
n = (int)(2.0*o);
|
|
if (n&1) /* round to nearest */
|
|
n = (n>>1)+1;
|
|
else
|
|
n = n>>1;
|
|
|
|
/* waveform 0: standard sinus */
|
|
sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
|
|
|
|
/* waveform 1: __ __ */
|
|
/* / \____/ \____*/
|
|
/* output only first half of the sinus waveform (positive one) */
|
|
if (i & (1<<(SIN_BITS-1)) )
|
|
sin_tab[1*SIN_LEN+i] = TL_TAB_LEN;
|
|
else
|
|
sin_tab[1*SIN_LEN+i] = sin_tab[i];
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static void OPLL_initalize(void)
|
|
{
|
|
int i;
|
|
|
|
/* frequency base */
|
|
double freqbase = (ym2413.clock / 72.0) / (double)ym2413.rate;
|
|
|
|
/* YM2413 running at original frequency */
|
|
if (config.hq_fm) freqbase = 1.0;
|
|
|
|
/* make fnumber -> increment counter table */
|
|
for( i = 0 ; i < 1024; i++ )
|
|
{
|
|
/* OPLL (YM2413) phase increment counter = 18bit */
|
|
ym2413.fn_tab[i] = (UINT32)( (double)i * 64 * freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
|
|
}
|
|
|
|
/* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */
|
|
/* One entry from LFO_AM_TABLE lasts for 64 samples */
|
|
ym2413.lfo_am_inc = (1.0 / 64.0 ) * (1<<LFO_SH) * freqbase;
|
|
|
|
/* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */
|
|
ym2413.lfo_pm_inc = (1.0 / 1024.0) * (1<<LFO_SH) * freqbase;
|
|
|
|
/* Noise generator: a step takes 1 sample */
|
|
ym2413.noise_f = (1.0 / 1.0) * (1<<FREQ_SH) * freqbase;
|
|
|
|
ym2413.eg_timer_add = (1<<EG_SH) * freqbase;
|
|
ym2413.eg_timer_overflow = ( 1 ) * (1<<EG_SH);
|
|
}
|
|
|
|
INLINE void KEY_ON(YM2413_OPLL_SLOT *SLOT, UINT32 key_set)
|
|
{
|
|
if( !SLOT->key )
|
|
{
|
|
/* do NOT restart Phase Generator (verified on real YM2413)*/
|
|
/* phase -> Dump */
|
|
SLOT->state = EG_DMP;
|
|
}
|
|
SLOT->key |= key_set;
|
|
}
|
|
|
|
INLINE void KEY_OFF(YM2413_OPLL_SLOT *SLOT, UINT32 key_clr)
|
|
{
|
|
if( SLOT->key )
|
|
{
|
|
SLOT->key &= key_clr;
|
|
|
|
if( !SLOT->key )
|
|
{
|
|
/* phase -> Release */
|
|
if (SLOT->state>EG_REL)
|
|
SLOT->state = EG_REL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* update phase increment counter of operator (also update the EG rates if necessary) */
|
|
INLINE void CALC_FCSLOT(YM2413_OPLL_CH *CH,YM2413_OPLL_SLOT *SLOT)
|
|
{
|
|
int ksr;
|
|
UINT32 SLOT_rs;
|
|
UINT32 SLOT_dp;
|
|
|
|
/* (frequency) phase increment counter */
|
|
SLOT->freq = CH->fc * SLOT->mul;
|
|
ksr = CH->kcode >> SLOT->KSR;
|
|
|
|
if( SLOT->ksr != ksr )
|
|
{
|
|
SLOT->ksr = ksr;
|
|
|
|
/* calculate envelope generator rates */
|
|
if ((SLOT->ar + SLOT->ksr) < 16+62)
|
|
{
|
|
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
|
|
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
|
|
}
|
|
else
|
|
{
|
|
SLOT->eg_sh_ar = 0;
|
|
SLOT->eg_sel_ar = 13*RATE_STEPS;
|
|
}
|
|
SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
|
|
SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
|
|
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
|
|
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
|
|
|
|
}
|
|
|
|
if (CH->sus)
|
|
SLOT_rs = 16 + (5<<2);
|
|
else
|
|
SLOT_rs = 16 + (7<<2);
|
|
|
|
SLOT->eg_sh_rs = eg_rate_shift [SLOT_rs + SLOT->ksr ];
|
|
SLOT->eg_sel_rs = eg_rate_select[SLOT_rs + SLOT->ksr ];
|
|
|
|
SLOT_dp = 16 + (13<<2);
|
|
SLOT->eg_sh_dp = eg_rate_shift [SLOT_dp + SLOT->ksr ];
|
|
SLOT->eg_sel_dp = eg_rate_select[SLOT_dp + SLOT->ksr ];
|
|
}
|
|
|
|
/* set multi,am,vib,EG-TYP,KSR,mul */
|
|
INLINE void set_mul(int slot,int v)
|
|
{
|
|
YM2413_OPLL_CH *CH = &ym2413.P_CH[slot/2];
|
|
YM2413_OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
|
|
|
|
SLOT->mul = mul_tab[v&0x0f];
|
|
SLOT->KSR = (v&0x10) ? 0 : 2;
|
|
SLOT->eg_type = (v&0x20);
|
|
SLOT->vib = (v&0x40);
|
|
SLOT->AMmask = (v&0x80) ? ~0 : 0;
|
|
CALC_FCSLOT(CH,SLOT);
|
|
}
|
|
|
|
/* set ksl, tl */
|
|
INLINE void set_ksl_tl(int chan,int v)
|
|
{
|
|
YM2413_OPLL_CH *CH = &ym2413.P_CH[chan];
|
|
/* modulator */
|
|
YM2413_OPLL_SLOT *SLOT = &CH->SLOT[SLOT1];
|
|
|
|
int ksl = v>>6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */
|
|
|
|
SLOT->ksl = ksl ? 3-ksl : 31;
|
|
SLOT->TL = (v&0x3f)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
|
|
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
|
|
}
|
|
|
|
/* set ksl , waveforms, feedback */
|
|
INLINE void set_ksl_wave_fb(int chan,int v)
|
|
{
|
|
YM2413_OPLL_CH *CH = &ym2413.P_CH[chan];
|
|
/* modulator */
|
|
YM2413_OPLL_SLOT *SLOT = &CH->SLOT[SLOT1];
|
|
SLOT->wavetable = ((v&0x08)>>3)*SIN_LEN;
|
|
SLOT->fb_shift = (v&7) ? (v&7) + 8 : 0;
|
|
|
|
/*carrier*/
|
|
SLOT = &CH->SLOT[SLOT2];
|
|
int ksl = v>>6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */
|
|
|
|
SLOT->ksl = ksl ? 3-ksl : 31;
|
|
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
|
|
|
|
SLOT->wavetable = ((v&0x10)>>4)*SIN_LEN;
|
|
}
|
|
|
|
/* set attack rate & decay rate */
|
|
INLINE void set_ar_dr(int slot,int v)
|
|
{
|
|
YM2413_OPLL_CH *CH = &ym2413.P_CH[slot/2];
|
|
YM2413_OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
|
|
|
|
SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0;
|
|
|
|
if ((SLOT->ar + SLOT->ksr) < 16+62)
|
|
{
|
|
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
|
|
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
|
|
}
|
|
else
|
|
{
|
|
SLOT->eg_sh_ar = 0;
|
|
SLOT->eg_sel_ar = 13*RATE_STEPS;
|
|
}
|
|
|
|
SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
|
|
SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
|
|
SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
|
|
}
|
|
|
|
/* set sustain level & release rate */
|
|
INLINE void set_sl_rr(int slot,int v)
|
|
{
|
|
YM2413_OPLL_CH *CH = &ym2413.P_CH[slot/2];
|
|
YM2413_OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
|
|
|
|
SLOT->sl = sl_tab[ v>>4 ];
|
|
|
|
SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
|
|
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
|
|
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
|
|
}
|
|
|
|
static void load_instrument(UINT32 chan, UINT32 slot, UINT8* inst )
|
|
{
|
|
set_mul(slot, inst[0]);
|
|
set_mul(slot+1, inst[1]);
|
|
set_ksl_tl(chan, inst[2]);
|
|
set_ksl_wave_fb(chan, inst[3]);
|
|
set_ar_dr(slot, inst[4]);
|
|
set_ar_dr(slot+1, inst[5]);
|
|
set_sl_rr(slot, inst[6]);
|
|
set_sl_rr(slot+1, inst[7]);
|
|
}
|
|
|
|
static void update_instrument_zero(UINT8 r)
|
|
{
|
|
UINT8* inst = &ym2413.inst_tab[0][0]; /* point to user instrument */
|
|
UINT32 chan;
|
|
|
|
UINT32 chan_max = 9;
|
|
if (ym2413.rhythm & 0x20)
|
|
chan_max=6;
|
|
|
|
switch(r&7)
|
|
{
|
|
case 0:
|
|
for (chan=0; chan<chan_max; chan++)
|
|
{
|
|
if ((ym2413.instvol_r[chan]&0xf0)==0)
|
|
{
|
|
set_mul(chan*2, inst[0]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
for (chan=0; chan<chan_max; chan++)
|
|
{
|
|
if ((ym2413.instvol_r[chan]&0xf0)==0)
|
|
{
|
|
set_mul(chan*2+1, inst[1]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
for (chan=0; chan<chan_max; chan++)
|
|
{
|
|
if ((ym2413.instvol_r[chan]&0xf0)==0)
|
|
{
|
|
set_ksl_tl(chan, inst[2]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
for (chan=0; chan<chan_max; chan++)
|
|
{
|
|
if ((ym2413.instvol_r[chan]&0xf0)==0)
|
|
{
|
|
set_ksl_wave_fb(chan, inst[3]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 4:
|
|
for (chan=0; chan<chan_max; chan++)
|
|
{
|
|
if ((ym2413.instvol_r[chan]&0xf0)==0)
|
|
{
|
|
set_ar_dr(chan*2, inst[4]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 5:
|
|
for (chan=0; chan<chan_max; chan++)
|
|
{
|
|
if ((ym2413.instvol_r[chan]&0xf0)==0)
|
|
{
|
|
set_ar_dr(chan*2+1, inst[5]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 6:
|
|
for (chan=0; chan<chan_max; chan++)
|
|
{
|
|
if ((ym2413.instvol_r[chan]&0xf0)==0)
|
|
{
|
|
set_sl_rr(chan*2, inst[6]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 7:
|
|
for (chan=0; chan<chan_max; chan++)
|
|
{
|
|
if ((ym2413.instvol_r[chan]&0xf0)==0)
|
|
{
|
|
set_sl_rr(chan*2+1, inst[7]);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* write a value v to register r on chip chip */
|
|
static void OPLLWriteReg(int r, int v)
|
|
{
|
|
YM2413_OPLL_CH *CH;
|
|
YM2413_OPLL_SLOT *SLOT;
|
|
|
|
/* adjust bus to 8 bits */
|
|
r &= 0xff;
|
|
v &= 0xff;
|
|
|
|
switch(r&0xf0)
|
|
{
|
|
case 0x00: /* 00-0f:control */
|
|
{
|
|
switch(r&0x0f)
|
|
{
|
|
case 0x00: /* AM/VIB/EGTYP/KSR/MULTI (modulator) */
|
|
case 0x01: /* AM/VIB/EGTYP/KSR/MULTI (carrier) */
|
|
case 0x02: /* Key Scale Level, Total Level (modulator) */
|
|
case 0x03: /* Key Scale Level, carrier waveform, modulator waveform, Feedback */
|
|
case 0x04: /* Attack, Decay (modulator) */
|
|
case 0x05: /* Attack, Decay (carrier) */
|
|
case 0x06: /* Sustain, Release (modulator) */
|
|
case 0x07: /* Sustain, Release (carrier) */
|
|
{
|
|
ym2413.inst_tab[0][r] = v;
|
|
update_instrument_zero(r);
|
|
break;
|
|
}
|
|
|
|
case 0x0e: /* x, x, r,bd,sd,tom,tc,hh */
|
|
{
|
|
if(v&0x20)
|
|
{
|
|
/* rhythm OFF to ON */
|
|
if ((ym2413.rhythm&0x20)==0)
|
|
{
|
|
/* Load instrument settings for channel seven(chan=6 since we're zero based). (Bass drum) */
|
|
load_instrument(6, 12, &ym2413.inst_tab[16][0]);
|
|
|
|
/* Load instrument settings for channel eight. (High hat and snare drum) */
|
|
load_instrument(7, 14, &ym2413.inst_tab[17][0]);
|
|
|
|
CH = &ym2413.P_CH[7];
|
|
SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is HH */
|
|
SLOT->TL = ((ym2413.instvol_r[7]>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
|
|
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
|
|
|
|
/* Load instrument settings for channel nine. (Tom-tom and top cymbal) */
|
|
load_instrument(8, 16, &ym2413.inst_tab[18][0]);
|
|
|
|
CH = &ym2413.P_CH[8];
|
|
SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is TOM */
|
|
SLOT->TL = ((ym2413.instvol_r[8]>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
|
|
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
|
|
}
|
|
|
|
/* BD key on/off */
|
|
if(v&0x10)
|
|
{
|
|
KEY_ON (&ym2413.P_CH[6].SLOT[SLOT1], 2);
|
|
KEY_ON (&ym2413.P_CH[6].SLOT[SLOT2], 2);
|
|
}
|
|
else
|
|
{
|
|
KEY_OFF(&ym2413.P_CH[6].SLOT[SLOT1],~2);
|
|
KEY_OFF(&ym2413.P_CH[6].SLOT[SLOT2],~2);
|
|
}
|
|
|
|
/* HH key on/off */
|
|
if(v&0x01) KEY_ON (&ym2413.P_CH[7].SLOT[SLOT1], 2);
|
|
else KEY_OFF(&ym2413.P_CH[7].SLOT[SLOT1],~2);
|
|
|
|
/* SD key on/off */
|
|
if(v&0x08) KEY_ON (&ym2413.P_CH[7].SLOT[SLOT2], 2);
|
|
else KEY_OFF(&ym2413.P_CH[7].SLOT[SLOT2],~2);
|
|
|
|
/* TOM key on/off */
|
|
if(v&0x04) KEY_ON (&ym2413.P_CH[8].SLOT[SLOT1], 2);
|
|
else KEY_OFF(&ym2413.P_CH[8].SLOT[SLOT1],~2);
|
|
|
|
/* TOP-CY key on/off */
|
|
if(v&0x02) KEY_ON (&ym2413.P_CH[8].SLOT[SLOT2], 2);
|
|
else KEY_OFF(&ym2413.P_CH[8].SLOT[SLOT2],~2);
|
|
}
|
|
else
|
|
{
|
|
/* rhythm ON to OFF */
|
|
if (ym2413.rhythm&0x20)
|
|
{
|
|
/* Load instrument settings for channel seven(chan=6 since we're zero based).*/
|
|
load_instrument(6, 12, &ym2413.inst_tab[ym2413.instvol_r[6]>>4][0]);
|
|
|
|
/* Load instrument settings for channel eight.*/
|
|
load_instrument(7, 14, &ym2413.inst_tab[ym2413.instvol_r[7]>>4][0]);
|
|
|
|
/* Load instrument settings for channel nine.*/
|
|
load_instrument(8, 16, &ym2413.inst_tab[ym2413.instvol_r[8]>>4][0]);
|
|
}
|
|
|
|
/* BD key off */
|
|
KEY_OFF(&ym2413.P_CH[6].SLOT[SLOT1],~2);
|
|
KEY_OFF(&ym2413.P_CH[6].SLOT[SLOT2],~2);
|
|
|
|
/* HH key off */
|
|
KEY_OFF(&ym2413.P_CH[7].SLOT[SLOT1],~2);
|
|
|
|
/* SD key off */
|
|
KEY_OFF(&ym2413.P_CH[7].SLOT[SLOT2],~2);
|
|
|
|
/* TOM key off */
|
|
KEY_OFF(&ym2413.P_CH[8].SLOT[SLOT1],~2);
|
|
|
|
/* TOP-CY off */
|
|
KEY_OFF(&ym2413.P_CH[8].SLOT[SLOT2],~2);
|
|
}
|
|
|
|
ym2413.rhythm = v&0x3f;
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case 0x10:
|
|
case 0x20:
|
|
{
|
|
int block_fnum;
|
|
|
|
int chan = r&0x0f;
|
|
|
|
if (chan >= 9)
|
|
chan -= 9; /* verified on real YM2413 */
|
|
|
|
CH = &ym2413.P_CH[chan];
|
|
|
|
if(r&0x10)
|
|
{
|
|
/* 10-18: FNUM 0-7 */
|
|
block_fnum = (CH->block_fnum&0x0f00) | v;
|
|
}
|
|
else
|
|
{
|
|
/* 20-28: suson, keyon, block, FNUM 8 */
|
|
block_fnum = ((v&0x0f)<<8) | (CH->block_fnum&0xff);
|
|
|
|
if(v&0x10)
|
|
{
|
|
KEY_ON (&CH->SLOT[SLOT1], 1);
|
|
KEY_ON (&CH->SLOT[SLOT2], 1);
|
|
}
|
|
else
|
|
{
|
|
KEY_OFF(&CH->SLOT[SLOT1],~1);
|
|
KEY_OFF(&CH->SLOT[SLOT2],~1);
|
|
}
|
|
|
|
CH->sus = v & 0x20;
|
|
}
|
|
|
|
/* update */
|
|
if(CH->block_fnum != block_fnum)
|
|
{
|
|
CH->block_fnum = block_fnum;
|
|
|
|
/* BLK 2,1,0 bits -> bits 3,2,1 of kcode, FNUM MSB -> kcode LSB */
|
|
CH->kcode = (block_fnum&0x0f00)>>8;
|
|
|
|
CH->ksl_base = ksl_tab[block_fnum>>5];
|
|
|
|
block_fnum = block_fnum * 2;
|
|
UINT8 block = (block_fnum&0x1c00) >> 10;
|
|
CH->fc = ym2413.fn_tab[block_fnum&0x03ff] >> (7-block);
|
|
|
|
/* refresh Total Level in both SLOTs of this channel */
|
|
CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
|
|
CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
|
|
|
|
/* refresh frequency counter in both SLOTs of this channel */
|
|
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
|
|
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case 0x30: /* inst 4 MSBs, VOL 4 LSBs */
|
|
{
|
|
int chan = r&0x0f;
|
|
|
|
if (chan >= 9)
|
|
chan -= 9; /* verified on real YM2413 */
|
|
|
|
CH = &ym2413.P_CH[chan];
|
|
SLOT = &CH->SLOT[SLOT2]; /* carrier */
|
|
SLOT->TL = ((v&0x0f)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
|
|
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
|
|
|
|
/*check wether we are in rhythm mode and handle instrument/volume register accordingly*/
|
|
if ((chan>=6) && (ym2413.rhythm&0x20))
|
|
{
|
|
/* we're in rhythm mode*/
|
|
|
|
if (chan>=7) /* only for channel 7 and 8 (channel 6 is handled in usual way)*/
|
|
{
|
|
SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is HH(chan=7) or TOM(chan=8) */
|
|
SLOT->TL = ((v>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
|
|
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((ym2413.instvol_r[chan]&0xf0) != (v&0xf0))
|
|
{
|
|
ym2413.instvol_r[chan] = v; /* store for later use */
|
|
load_instrument(chan, chan * 2, &ym2413.inst_tab[v>>4][0]);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void YM2413Init(double clock, int rate)
|
|
{
|
|
init_tables();
|
|
|
|
/* clear */
|
|
memset(&ym2413,0,sizeof(YM2413));
|
|
|
|
ym2413.clock = clock;
|
|
ym2413.rate = rate;
|
|
|
|
/* init global tables */
|
|
OPLL_initalize();
|
|
}
|
|
|
|
void YM2413ResetChip(void)
|
|
{
|
|
int c,s;
|
|
int i;
|
|
|
|
ym2413.eg_timer = 0;
|
|
ym2413.eg_cnt = 0;
|
|
|
|
ym2413.noise_rng = 1; /* noise shift register */
|
|
|
|
|
|
/* setup instruments table */
|
|
for (i=0; i<19; i++)
|
|
{
|
|
for (c=0; c<8; c++)
|
|
{
|
|
ym2413.inst_tab[i][c] = table[i][c];
|
|
}
|
|
}
|
|
|
|
|
|
/* reset with register write */
|
|
OPLLWriteReg(0x0f,0); /*test reg*/
|
|
for(i = 0x3f ; i >= 0x10 ; i-- ) OPLLWriteReg(i,0x00);
|
|
|
|
/* reset operator parameters */
|
|
for( c = 0 ; c < 9 ; c++ )
|
|
{
|
|
YM2413_OPLL_CH *CH = &ym2413.P_CH[c];
|
|
for(s = 0 ; s < 2 ; s++ )
|
|
{
|
|
/* wave table */
|
|
CH->SLOT[s].wavetable = 0;
|
|
CH->SLOT[s].state = EG_OFF;
|
|
CH->SLOT[s].volume = MAX_ATT_INDEX;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* YM2413 I/O interface */
|
|
|
|
void YM2413Write(unsigned int a, unsigned int v)
|
|
{
|
|
if( !(a&2) )
|
|
{
|
|
if( !(a&1) )
|
|
{
|
|
/* address port */
|
|
ym2413.address = v & 0xff;
|
|
}
|
|
else
|
|
{
|
|
/* data port */
|
|
OPLLWriteReg(ym2413.address,v);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* latched bit (Master System specific) */
|
|
ym2413.status = v & 0x01;
|
|
}
|
|
}
|
|
|
|
unsigned int YM2413Read(unsigned int a)
|
|
{
|
|
/* D0=latched bit, D1-D2 need to be zero (Master System specific) */
|
|
return 0xF8 | ym2413.status;
|
|
}
|
|
|
|
void YM2413Update(long int *buffer, int length)
|
|
{
|
|
int i, out;
|
|
|
|
for( i=0; i < length ; i++ )
|
|
{
|
|
output[0] = 0;
|
|
output[1] = 0;
|
|
|
|
advance_lfo();
|
|
|
|
/* FM part */
|
|
chan_calc(&ym2413.P_CH[0]);
|
|
chan_calc(&ym2413.P_CH[1]);
|
|
chan_calc(&ym2413.P_CH[2]);
|
|
chan_calc(&ym2413.P_CH[3]);
|
|
chan_calc(&ym2413.P_CH[4]);
|
|
chan_calc(&ym2413.P_CH[5]);
|
|
|
|
if(!(ym2413.rhythm&0x20))
|
|
{
|
|
chan_calc(&ym2413.P_CH[6]);
|
|
chan_calc(&ym2413.P_CH[7]);
|
|
chan_calc(&ym2413.P_CH[8]);
|
|
}
|
|
else /* Rhythm part */
|
|
{
|
|
rhythm_calc(&ym2413.P_CH[0], (ym2413.noise_rng>>0)&1 );
|
|
}
|
|
|
|
/* Melody (MO) & Rythm (RO) outputs mixing & amplification (latched bit controls FM output) */
|
|
out = (output[0] + (output[1] * 2)) * 2 * ym2413.status;
|
|
|
|
/* Store to stereo sound buffer */
|
|
*buffer++ = out;
|
|
*buffer++ = out;
|
|
|
|
advance();
|
|
}
|
|
}
|
|
|
|
unsigned char *YM2413GetContextPtr(void)
|
|
{
|
|
return (unsigned char *)&ym2413;
|
|
}
|
|
|
|
unsigned int YM2413GetContextSize(void)
|
|
{
|
|
return sizeof(YM2413);
|
|
}
|
|
|
|
void YM2413Restore(unsigned char *buffer)
|
|
{
|
|
/* save current timings */
|
|
double clock = ym2413.clock;
|
|
int rate = ym2413.rate;
|
|
|
|
/* restore internal state */
|
|
memcpy(&ym2413, buffer, sizeof(YM2413));
|
|
|
|
/* keep current timings */
|
|
ym2413.clock = clock;
|
|
ym2413.rate = rate;
|
|
OPLL_initalize();
|
|
}
|