Genesis-Plus-GX/source/sound/sn76489.c
ekeeke31 a0fe59e1fc ~fixed VDP bug from last revision
~updated DOS & WIN32 ports to reflect recent changes
2009-06-02 18:12:31 +00:00

312 lines
9.4 KiB
C

/*
SN76489 emulation
by Maxim in 2001 and 2002
converted from my original Delphi implementation
I'm a C newbie so I'm sure there are loads of stupid things
in here which I'll come back to some day and redo
Includes:
- Super-high quality tone channel "oversampling" by calculating fractional positions on transitions
- Noise output pattern reverse engineered from actual SMS output
- Volume levels taken from actual SMS output
07/08/04 Charles MacDonald
Modified for use with SMS Plus:
- Added support for multiple PSG chips.
- Added reset/config/update routines.
- Added context management routines.
- Removed SN76489_GetValues().
- Removed some unused variables.
25/04/07 Eke-Eke (Genesis Plus GX)
- Removed stereo GG support (unused)
- Rade SN76489_Update outputs 16bits mono samples
- Replaced volume table with VGM plugin's one
05/01/09 Eke-Eke (Genesis Plus GX)
- Modified Cut-Off frequency (according to Steve Snake: http://www.smspower.org/forums/viewtopic.php?t=1746)
25/05/09 Eke-Eke (Genesis Plus GX)
- Removed multichip support (unused)
- Removed alternate volume table, panning & mute support (unused)
- Removed configurable Feedback and Shift Register Width (always use Sega ones)
- Added linear resampling using Blip Buffer (Blargg's implementation: http://www.smspower.org/forums/viewtopic.php?t=11376)
*/
#include "shared.h"
#include "blip.h"
#include <float.h>
/* Initial state of shift register */
#define NoiseInitialState 0x8000
/* Value below which PSG does not output */
/*#define PSG_CUTOFF 0x6*/
#define PSG_CUTOFF 0x1
static const int PSGVolumeValues[16] =
{
/* These values are taken from a real SMS2's output */
/*{892,892,892,760,623,497,404,323,257,198,159,123,96,75,60,0}, *//* I can't remember why 892... :P some scaling I did at some point */
/* these values are true volumes for 2dB drops at each step (multiply previous by 10^-0.1), normalised at 760 */
1516,1205,957,760,603,479,381,303,240,191,152,120,96,76,60,0
};
static SN76489_Context SN76489;
void SN76489_Init(int PSGClockValue, int SamplingRate)
{
SN76489_Context *p = &SN76489;
/* SamplingRate*16 instead of PSGClockValue/16 since division would lose some
precision. blip_alloc doesn't care about the absolute sampling rate, just the
ratio to clock rate. */
p->blip_buffer = blip_alloc(PSGClockValue, SamplingRate * 16, SamplingRate / 4);
SN76489_Reset();
}
void SN76489_Reset()
{
SN76489_Context *p = &SN76489;
int i;
for(i = 0; i <= 3; i++)
{
/* Initialise PSG state */
p->Registers[2*i] = 1; /* tone freq=1 */
p->Registers[2*i+1] = 0xf; /* vol=off */
p->NoiseFreq = 0x10;
/* Set counters to 0 */
p->ToneFreqVals[i] = 0;
/* Set flip-flops to 1 */
p->ToneFreqPos[i] = 1;
/* Clear current amplitudes in Blip delta buffer */
p->chan_amp[i] = 0;
}
p->LatchedRegister=0;
/* Initialise noise generator */
p->NoiseShiftRegister=NoiseInitialState;
/* Clear Blip delta buffer */
blip_clear(p->blip_buffer);
}
void SN76489_Shutdown(void)
{
SN76489_Context *p = &SN76489;
if (p->blip_buffer) blip_free(p->blip_buffer);
p->blip_buffer = NULL;
}
void SN76489_SetContext(uint8 *data)
{
memcpy(&SN76489, data, sizeof(SN76489_Context));
}
void SN76489_GetContext(uint8 *data)
{
memcpy(data, &SN76489, sizeof(SN76489_Context));
}
uint8 *SN76489_GetContextPtr(void)
{
return (uint8 *)&SN76489;
}
int SN76489_GetContextSize(void)
{
return sizeof(SN76489_Context);
}
void SN76489_Write(int data)
{
SN76489_Context *p = &SN76489;
if (data&0x80)
{
/* Latch/data byte %1 cc t dddd */
p->LatchedRegister=((data>>4)&0x07);
p->Registers[p->LatchedRegister] =
(p->Registers[p->LatchedRegister] & 0x3f0) | /* zero low 4 bits */
(data&0xf); /* and replace with data */
}
else
{
/* Data byte %0 - dddddd */
if (!(p->LatchedRegister%2)&&(p->LatchedRegister<5))
/* Tone register */
p->Registers[p->LatchedRegister]=
(p->Registers[p->LatchedRegister] & 0x00f) | /* zero high 6 bits */
((data&0x3f)<<4); /* and replace with data */
else
/* Other register */
p->Registers[p->LatchedRegister]=data&0x0f; /* Replace with data */
}
switch (p->LatchedRegister)
{
case 0:
case 2:
case 4: /* Tone channels */
/* Zero frequency changed to 1 to avoid div/0 */
if (p->Registers[p->LatchedRegister]==0) p->Registers[p->LatchedRegister]=1;
break;
case 6: /* Noise */
p->NoiseShiftRegister=NoiseInitialState; /* reset shift register */
p->NoiseFreq=0x10<<(p->Registers[6]&0x3); /* set noise signal generator frequency */
break;
}
}
/* Updates channel amplitude in delta buffer. Call whenever amplitude might have changed. */
static inline void UpdateChanAmplitude(SN76489_Context* chip, int i, int time)
{
/* Build stereo result into buffer */
int buffer = chip->Channels[i];
/* Update amplitudes in left and right buffers */
int delta = buffer - chip->chan_amp[i];
if (delta != 0)
{
chip->chan_amp[i] = buffer;
blip_add(chip->blip_buffer, time, delta);
}
}
/* Updates tone amplitude in delta buffer. Call whenever amplitude might have changed. */
static inline void UpdateToneAmplitude(SN76489_Context* chip, int i, int time)
{
/* Tone channels */
chip->Channels[i]= PSGVolumeValues[chip->Registers[2 * i + 1]] * chip->ToneFreqPos[i];
UpdateChanAmplitude(chip, i, time);
}
/* Updates noise amplitude in delta buffer. Call whenever amplitude might have changed. */
static inline void UpdateNoiseAmplitude(SN76489_Context* chip, int time)
{
/* Noise channel */
chip->Channels[3] = PSGVolumeValues[chip->Registers[7]] * ( chip->NoiseShiftRegister & 0x1 );
/* Boost noise volume */
chip->Channels[3] <<= chip->BoostNoise;
UpdateChanAmplitude(chip, 3, time);
}
/* Runs tone channel for clock_length clocks */
static inline void RunTone(SN76489_Context* chip, int i, int clock_length)
{
int time;
/* Update in case a register changed etc. */
UpdateToneAmplitude(chip, i, 0);
/* Time of next transition */
time = chip->ToneFreqVals[i];
/* Process any transitions that occur within clocks we're running */
while (time < clock_length)
{
if (chip->Registers[i*2]>PSG_CUTOFF) {
/* Flip the flip-flop */
chip->ToneFreqPos[i] = -chip->ToneFreqPos[i];
} else {
/* stuck value */
chip->ToneFreqPos[i] = 1;
}
UpdateToneAmplitude(chip, i, time);
/* Advance to time of next transition */
time += chip->Registers[i*2] + 1;
}
/* Calculate new value for register, now that next transition is past number of clocks we're running */
chip->ToneFreqVals[i] = time - clock_length;
}
/* Runs noise channel for clock_length clocks */
static inline void RunNoise(SN76489_Context* chip, int clock_length)
{
int time;
/* Noise channel: match to tone2 if in slave mode */
int NoiseFreq = chip->NoiseFreq;
if (NoiseFreq == 0x80)
{
NoiseFreq = chip->Registers[2*2];
chip->ToneFreqVals[3] = chip->ToneFreqVals[2];
}
/* Update in case a register changed etc. */
UpdateNoiseAmplitude(chip, 0);
/* Time of next transition */
time = chip->ToneFreqVals[3];
/* Process any transitions that occur within clocks we're running */
while ( time < clock_length )
{
/* Flip the flip-flop */
chip->ToneFreqPos[3] = -chip->ToneFreqPos[3];
if (chip->ToneFreqPos[3] == 1) {
/* On the positive edge of the square wave (only once per cycle) */
int Feedback;
if ( chip->Registers[6] & 0x4 ) {
/* White noise */
/* Calculate parity of fed-back bits for feedback */
/* Do some optimised calculations for common (known) feedback values */
/* If two bits fed back, I can do Feedback=(nsr & fb) && (nsr & fb ^ fb) */
/* since that's (one or more bits set) && (not all bits set) */
Feedback = ( ( chip->NoiseShiftRegister & FB_SEGAVDP)
&& ( (chip->NoiseShiftRegister & FB_SEGAVDP) ^ FB_SEGAVDP) );
} else /* Periodic noise */
Feedback=chip->NoiseShiftRegister&1;
chip->NoiseShiftRegister=(chip->NoiseShiftRegister>>1) | (Feedback << (SRW_SEGAVDP-1));
UpdateNoiseAmplitude(chip, time);
}
/* Advance to time of next transition */
time += NoiseFreq + 1;
}
/* Calculate new value for register, now that next transition is past number of clocks we're running */
chip->ToneFreqVals[3] = time - clock_length;
}
void SN76489_Update(INT16 *buffer, int length)
{
int i;
SN76489_Context *p = &SN76489;
/* Determine how many clocks we need to run until 'length' samples are available */
int clock_length = blip_clocks_needed(p->blip_buffer, length);
/* Run noise first, since it might use current value of third tone frequency counter */
RunNoise(p, clock_length);
/* Run tone channels */
for( i = 0; i <= 2; ++i )
RunTone(p, i, clock_length);
/* Read samples into output buffer */
blip_end_frame(p->blip_buffer,clock_length);
blip_read_samples(p->blip_buffer,buffer,length,0);
}
void SN76489_BoostNoise(int boost)
{
SN76489.BoostNoise = boost;
}