ekeeke31 cfa4a08211 fixed m68k 32 bits writes at memory boundaries
fixed UKM3 memory map being incorrectly reseted
added LFO current steps to YM2612 context
fixed IO reinitialization in controllers menu
2009-08-09 09:33:48 +00:00

2063 lines
68 KiB
C

#include <stdio.h>
/* ======================================================================== */
/* ========================= LICENSING & COPYRIGHT ======================== */
/* ======================================================================== */
/*
* MUSASHI
* Version 3.32
*
* A portable Motorola M680x0 processor emulation engine.
* Copyright Karl Stenerud. All rights reserved.
*
* This code may be freely used for non-commercial purposes as long as this
* copyright notice remains unaltered in the source code and any binary files
* containing this code in compiled form.
*
* All other licensing terms must be negotiated with the author
* (Karl Stenerud).
*
* The latest version of this code can be obtained at:
* http://kstenerud.cjb.net
*/
#ifndef M68KCPU__HEADER
#define M68KCPU__HEADER
#include "m68k.h"
#include <limits.h>
#if M68K_EMULATE_ADDRESS_ERROR
#include <setjmp.h>
#endif /* M68K_EMULATE_ADDRESS_ERROR */
extern unsigned int count_m68k;
/* ======================================================================== */
/* ==================== ARCHITECTURE-DEPENDANT DEFINES ==================== */
/* ======================================================================== */
/* Check for > 32bit sizes */
#if UINT_MAX > 0xffffffff
#define M68K_INT_GT_32_BIT 1
#else
#define M68K_INT_GT_32_BIT 0
#endif
/* Data types used in this emulation core */
#undef sint8
#undef sint16
#undef sint32
#undef sint64
#undef uint8
#undef uint16
#undef uint32
#undef uint64
#undef sint
#undef uint
#define sint8 signed char /* ASG: changed from char to signed char */
#define sint16 signed short
#define sint32 signed int /* AWJ: changed from long to int */
#define uint8 unsigned char
#define uint16 unsigned short
#define uint32 unsigned int /* AWJ: changed from long to int */
/* signed and unsigned int must be at least 32 bits wide */
#define sint signed int
#define uint unsigned int
#if M68K_USE_64_BIT
#define sint64 signed long long
#define uint64 unsigned long long
#else
#define sint64 sint32
#define uint64 uint32
#endif /* M68K_USE_64_BIT */
/* Allow for architectures that don't have 8-bit sizes */
#if UCHAR_MAX == 0xff
#define MAKE_INT_8(A) (sint8)(A)
#else
#undef sint8
#define sint8 signed int
#undef uint8
#define uint8 unsigned int
INLINE sint MAKE_INT_8(uint value)
{
return (value & 0x80) ? value | ~0xff : value & 0xff;
}
#endif /* UCHAR_MAX == 0xff */
/* Allow for architectures that don't have 16-bit sizes */
#if USHRT_MAX == 0xffff
#define MAKE_INT_16(A) (sint16)(A)
#else
#undef sint16
#define sint16 signed int
#undef uint16
#define uint16 unsigned int
INLINE sint MAKE_INT_16(uint value)
{
return (value & 0x8000) ? value | ~0xffff : value & 0xffff;
}
#endif /* USHRT_MAX == 0xffff */
/* Allow for architectures that don't have 32-bit sizes */
#if UINT_MAX == 0xffffffff
#define MAKE_INT_32(A) (sint32)(A)
#else
#undef sint32
#define sint32 signed int
#undef uint32
#define uint32 unsigned int
INLINE sint MAKE_INT_32(uint value)
{
return (value & 0x80000000) ? value | ~0xffffffff : value & 0xffffffff;
}
#endif /* UINT_MAX == 0xffffffff */
/* ======================================================================== */
/* ============================ GENERAL DEFINES =========================== */
/* ======================================================================== */
/* Exception Vectors handled by emulation */
#define EXCEPTION_BUS_ERROR 2 /* This one is not emulated! */
#define EXCEPTION_ADDRESS_ERROR 3 /* This one is partially emulated (doesn't stack a proper frame yet) */
#define EXCEPTION_ILLEGAL_INSTRUCTION 4
#define EXCEPTION_ZERO_DIVIDE 5
#define EXCEPTION_CHK 6
#define EXCEPTION_TRAPV 7
#define EXCEPTION_PRIVILEGE_VIOLATION 8
#define EXCEPTION_TRACE 9
#define EXCEPTION_1010 10
#define EXCEPTION_1111 11
#define EXCEPTION_FORMAT_ERROR 14
#define EXCEPTION_UNINITIALIZED_INTERRUPT 15
#define EXCEPTION_SPURIOUS_INTERRUPT 24
#define EXCEPTION_INTERRUPT_AUTOVECTOR 24
#define EXCEPTION_TRAP_BASE 32
/* Function codes set by CPU during data/address bus activity */
#define FUNCTION_CODE_USER_DATA 1
#define FUNCTION_CODE_USER_PROGRAM 2
#define FUNCTION_CODE_SUPERVISOR_DATA 5
#define FUNCTION_CODE_SUPERVISOR_PROGRAM 6
#define FUNCTION_CODE_CPU_SPACE 7
/* CPU types for deciding what to emulate */
#define CPU_TYPE_000 1
#define CPU_TYPE_008 2
#define CPU_TYPE_010 4
#define CPU_TYPE_EC020 8
#define CPU_TYPE_020 16
#define CPU_TYPE_040 32
/* Different ways to stop the CPU */
#define STOP_LEVEL_STOP 1
#define STOP_LEVEL_HALT 2
/* Used for 68000 address error processing */
#define INSTRUCTION_YES 0
#define INSTRUCTION_NO 0x08
#define MODE_READ 0x10
#define MODE_WRITE 0
#define RUN_MODE_NORMAL 0
#define RUN_MODE_BERR_AERR_RESET 1
#ifndef NULL
#define NULL ((void*)0)
#endif
/* ======================================================================== */
/* ================================ MACROS ================================ */
/* ======================================================================== */
/* ---------------------------- General Macros ---------------------------- */
/* Bit Isolation Macros */
#define BIT_0(A) ((A) & 0x00000001)
#define BIT_1(A) ((A) & 0x00000002)
#define BIT_2(A) ((A) & 0x00000004)
#define BIT_3(A) ((A) & 0x00000008)
#define BIT_4(A) ((A) & 0x00000010)
#define BIT_5(A) ((A) & 0x00000020)
#define BIT_6(A) ((A) & 0x00000040)
#define BIT_7(A) ((A) & 0x00000080)
#define BIT_8(A) ((A) & 0x00000100)
#define BIT_9(A) ((A) & 0x00000200)
#define BIT_A(A) ((A) & 0x00000400)
#define BIT_B(A) ((A) & 0x00000800)
#define BIT_C(A) ((A) & 0x00001000)
#define BIT_D(A) ((A) & 0x00002000)
#define BIT_E(A) ((A) & 0x00004000)
#define BIT_F(A) ((A) & 0x00008000)
#define BIT_10(A) ((A) & 0x00010000)
#define BIT_11(A) ((A) & 0x00020000)
#define BIT_12(A) ((A) & 0x00040000)
#define BIT_13(A) ((A) & 0x00080000)
#define BIT_14(A) ((A) & 0x00100000)
#define BIT_15(A) ((A) & 0x00200000)
#define BIT_16(A) ((A) & 0x00400000)
#define BIT_17(A) ((A) & 0x00800000)
#define BIT_18(A) ((A) & 0x01000000)
#define BIT_19(A) ((A) & 0x02000000)
#define BIT_1A(A) ((A) & 0x04000000)
#define BIT_1B(A) ((A) & 0x08000000)
#define BIT_1C(A) ((A) & 0x10000000)
#define BIT_1D(A) ((A) & 0x20000000)
#define BIT_1E(A) ((A) & 0x40000000)
#define BIT_1F(A) ((A) & 0x80000000)
/* Get the most significant bit for specific sizes */
#define GET_MSB_8(A) ((A) & 0x80)
#define GET_MSB_9(A) ((A) & 0x100)
#define GET_MSB_16(A) ((A) & 0x8000)
#define GET_MSB_17(A) ((A) & 0x10000)
#define GET_MSB_32(A) ((A) & 0x80000000)
#if M68K_USE_64_BIT
#define GET_MSB_33(A) ((A) & 0x100000000)
#endif /* M68K_USE_64_BIT */
/* Isolate nibbles */
#define LOW_NIBBLE(A) ((A) & 0x0f)
#define HIGH_NIBBLE(A) ((A) & 0xf0)
/* These are used to isolate 8, 16, and 32 bit sizes */
#define MASK_OUT_ABOVE_2(A) ((A) & 3)
#define MASK_OUT_ABOVE_8(A) ((A) & 0xff)
#define MASK_OUT_ABOVE_16(A) ((A) & 0xffff)
#define MASK_OUT_BELOW_2(A) ((A) & ~3)
#define MASK_OUT_BELOW_8(A) ((A) & ~0xff)
#define MASK_OUT_BELOW_16(A) ((A) & ~0xffff)
/* No need to mask if we are 32 bit */
#if M68K_INT_GT_32_BIT || M68K_USE_64_BIT
#define MASK_OUT_ABOVE_32(A) ((A) & 0xffffffff)
#define MASK_OUT_BELOW_32(A) ((A) & ~0xffffffff)
#else
#define MASK_OUT_ABOVE_32(A) (A)
#define MASK_OUT_BELOW_32(A) 0
#endif /* M68K_INT_GT_32_BIT || M68K_USE_64_BIT */
/* Simulate address lines of 68k family */
#define ADDRESS_68K(A) ((A)&CPU_ADDRESS_MASK)
/* Shift & Rotate Macros. */
#define LSL(A, C) ((A) << (C))
#define LSR(A, C) ((A) >> (C))
/* Some > 32-bit optimizations */
#if M68K_INT_GT_32_BIT
/* Shift left and right */
#define LSR_32(A, C) ((A) >> (C))
#define LSL_32(A, C) ((A) << (C))
#else
/* We have to do this because the morons at ANSI decided that shifts
* by >= data size are undefined.
*/
#define LSR_32(A, C) ((C) < 32 ? (A) >> (C) : 0)
#define LSL_32(A, C) ((C) < 32 ? (A) << (C) : 0)
#endif /* M68K_INT_GT_32_BIT */
#if M68K_USE_64_BIT
#define LSL_32_64(A, C) ((A) << (C))
#define LSR_32_64(A, C) ((A) >> (C))
#define ROL_33_64(A, C) (LSL_32_64(A, C) | LSR_32_64(A, 33-(C)))
#define ROR_33_64(A, C) (LSR_32_64(A, C) | LSL_32_64(A, 33-(C)))
#endif /* M68K_USE_64_BIT */
#define ROL_8(A, C) MASK_OUT_ABOVE_8(LSL(A, C) | LSR(A, 8-(C)))
#define ROL_9(A, C) (LSL(A, C) | LSR(A, 9-(C)))
#define ROL_16(A, C) MASK_OUT_ABOVE_16(LSL(A, C) | LSR(A, 16-(C)))
#define ROL_17(A, C) (LSL(A, C) | LSR(A, 17-(C)))
#define ROL_32(A, C) MASK_OUT_ABOVE_32(LSL_32(A, C) | LSR_32(A, 32-(C)))
#define ROL_33(A, C) (LSL_32(A, C) | LSR_32(A, 33-(C)))
#define ROR_8(A, C) MASK_OUT_ABOVE_8(LSR(A, C) | LSL(A, 8-(C)))
#define ROR_9(A, C) (LSR(A, C) | LSL(A, 9-(C)))
#define ROR_16(A, C) MASK_OUT_ABOVE_16(LSR(A, C) | LSL(A, 16-(C)))
#define ROR_17(A, C) (LSR(A, C) | LSL(A, 17-(C)))
#define ROR_32(A, C) MASK_OUT_ABOVE_32(LSR_32(A, C) | LSL_32(A, 32-(C)))
#define ROR_33(A, C) (LSR_32(A, C) | LSL_32(A, 33-(C)))
/* ------------------------------ CPU Access ------------------------------ */
/* Access the CPU registers */
#define CPU_TYPE m68ki_cpu.cpu_type
#define REG_DA m68ki_cpu.dar /* easy access to data and address regs */
#define REG_D m68ki_cpu.dar
#define REG_A (m68ki_cpu.dar+8)
#define REG_PPC m68ki_cpu.ppc
#define REG_PC m68ki_cpu.pc
#define REG_SP_BASE m68ki_cpu.sp
#define REG_USP m68ki_cpu.sp[0]
#define REG_ISP m68ki_cpu.sp[4]
#define REG_MSP m68ki_cpu.sp[6]
#define REG_SP m68ki_cpu.dar[15]
#define REG_VBR m68ki_cpu.vbr
#define REG_SFC m68ki_cpu.sfc
#define REG_DFC m68ki_cpu.dfc
#define REG_CACR m68ki_cpu.cacr
#define REG_CAAR m68ki_cpu.caar
#define REG_IR m68ki_cpu.ir
#define REG_FP m68ki_cpu.fpr
#define REG_FPCR m68ki_cpu.fpcr
#define REG_FPSR m68ki_cpu.fpsr
#define REG_FPIAR m68ki_cpu.fpiar
#define FLAG_T1 m68ki_cpu.t1_flag
#define FLAG_T0 m68ki_cpu.t0_flag
#define FLAG_S m68ki_cpu.s_flag
#define FLAG_M m68ki_cpu.m_flag
#define FLAG_X m68ki_cpu.x_flag
#define FLAG_N m68ki_cpu.n_flag
#define FLAG_Z m68ki_cpu.not_z_flag
#define FLAG_V m68ki_cpu.v_flag
#define FLAG_C m68ki_cpu.c_flag
#define FLAG_INT_MASK m68ki_cpu.int_mask
#define CPU_INT_LEVEL m68ki_cpu.int_level /* ASG: changed from CPU_INTS_PENDING */
#define CPU_INT_CYCLES m68ki_cpu.int_cycles /* ASG */
#define CPU_STOPPED m68ki_cpu.stopped
#define CPU_PREF_ADDR m68ki_cpu.pref_addr
#define CPU_PREF_DATA m68ki_cpu.pref_data
#define CPU_ADDRESS_MASK m68ki_cpu.address_mask
#define CPU_SR_MASK m68ki_cpu.sr_mask
#define CPU_INSTR_MODE m68ki_cpu.instr_mode
#define CPU_RUN_MODE m68ki_cpu.run_mode
#define CYC_INSTRUCTION m68ki_cpu.cyc_instruction
#define CYC_EXCEPTION m68ki_cpu.cyc_exception
#define CYC_BCC_NOTAKE_B m68ki_cpu.cyc_bcc_notake_b
#define CYC_BCC_NOTAKE_W m68ki_cpu.cyc_bcc_notake_w
#define CYC_DBCC_F_NOEXP m68ki_cpu.cyc_dbcc_f_noexp
#define CYC_DBCC_F_EXP m68ki_cpu.cyc_dbcc_f_exp
#define CYC_SCC_R_TRUE m68ki_cpu.cyc_scc_r_true
#define CYC_MOVEM_W m68ki_cpu.cyc_movem_w
#define CYC_MOVEM_L m68ki_cpu.cyc_movem_l
#define CYC_SHIFT m68ki_cpu.cyc_shift
#define CYC_RESET m68ki_cpu.cyc_reset
#define CALLBACK_INT_ACK m68ki_cpu.int_ack_callback
#define CALLBACK_BKPT_ACK m68ki_cpu.bkpt_ack_callback
#define CALLBACK_RESET_INSTR m68ki_cpu.reset_instr_callback
#define CALLBACK_CMPILD_INSTR m68ki_cpu.cmpild_instr_callback
#define CALLBACK_RTE_INSTR m68ki_cpu.rte_instr_callback
#define CALLBACK_TAS_INSTR m68ki_cpu.tas_instr_callback
#define CALLBACK_PC_CHANGED m68ki_cpu.pc_changed_callback
#define CALLBACK_SET_FC m68ki_cpu.set_fc_callback
#define CALLBACK_INSTR_HOOK m68ki_cpu.instr_hook_callback
/* ----------------------------- Configuration ---------------------------- */
/* These defines are dependant on the configuration defines in m68kconf.h */
/* Disable certain comparisons if we're not using all CPU types */
#if M68K_EMULATE_040
#define CPU_TYPE_IS_040_PLUS(A) ((A) & CPU_TYPE_040)
#define CPU_TYPE_IS_040_LESS(A) 1
#else
#define CPU_TYPE_IS_040_PLUS(A) 0
#define CPU_TYPE_IS_040_LESS(A) 1
#endif
#if M68K_EMULATE_020
#define CPU_TYPE_IS_020_PLUS(A) ((A) & (CPU_TYPE_020 | CPU_TYPE_040))
#define CPU_TYPE_IS_020_LESS(A) 1
#else
#define CPU_TYPE_IS_020_PLUS(A) 0
#define CPU_TYPE_IS_020_LESS(A) 1
#endif
#if M68K_EMULATE_EC020
#define CPU_TYPE_IS_EC020_PLUS(A) ((A) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_040))
#define CPU_TYPE_IS_EC020_LESS(A) ((A) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010 | CPU_TYPE_EC020))
#else
#define CPU_TYPE_IS_EC020_PLUS(A) CPU_TYPE_IS_020_PLUS(A)
#define CPU_TYPE_IS_EC020_LESS(A) CPU_TYPE_IS_020_LESS(A)
#endif
#if M68K_EMULATE_010
#define CPU_TYPE_IS_010(A) ((A) == CPU_TYPE_010)
#define CPU_TYPE_IS_010_PLUS(A) ((A) & (CPU_TYPE_010 | CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_040))
#define CPU_TYPE_IS_010_LESS(A) ((A) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010))
#else
#define CPU_TYPE_IS_010(A) 0
#define CPU_TYPE_IS_010_PLUS(A) CPU_TYPE_IS_EC020_PLUS(A)
#define CPU_TYPE_IS_010_LESS(A) CPU_TYPE_IS_EC020_LESS(A)
#endif
#if M68K_EMULATE_020 || M68K_EMULATE_EC020
#define CPU_TYPE_IS_020_VARIANT(A) ((A) & (CPU_TYPE_EC020 | CPU_TYPE_020))
#else
#define CPU_TYPE_IS_020_VARIANT(A) 0
#endif
#if M68K_EMULATE_040 || M68K_EMULATE_020 || M68K_EMULATE_EC020 || M68K_EMULATE_010
#define CPU_TYPE_IS_000(A) ((A) == CPU_TYPE_000 || (A) == CPU_TYPE_008)
#else
#define CPU_TYPE_IS_000(A) 1
#endif
#if !M68K_SEPARATE_READS
#define m68k_read_immediate_16(A) m68ki_read_program_16(A)
#define m68k_read_immediate_32(A) m68ki_read_program_32(A)
#define m68k_read_pcrelative_8(A) m68ki_read_program_8(A)
#define m68k_read_pcrelative_16(A) m68ki_read_program_16(A)
#define m68k_read_pcrelative_32(A) m68ki_read_program_32(A)
#endif /* M68K_SEPARATE_READS */
/* Enable or disable callback functions */
#if M68K_EMULATE_INT_ACK
#if M68K_EMULATE_INT_ACK == OPT_SPECIFY_HANDLER
#define m68ki_int_ack(A) M68K_INT_ACK_CALLBACK(A)
#else
#define m68ki_int_ack(A) CALLBACK_INT_ACK(A)
#endif
#else
/* Default action is to used autovector mode, which is most common */
#define m68ki_int_ack(A) M68K_INT_ACK_AUTOVECTOR
#endif /* M68K_EMULATE_INT_ACK */
#if M68K_EMULATE_BKPT_ACK
#if M68K_EMULATE_BKPT_ACK == OPT_SPECIFY_HANDLER
#define m68ki_bkpt_ack(A) M68K_BKPT_ACK_CALLBACK(A)
#else
#define m68ki_bkpt_ack(A) CALLBACK_BKPT_ACK(A)
#endif
#else
#define m68ki_bkpt_ack(A)
#endif /* M68K_EMULATE_BKPT_ACK */
#if M68K_EMULATE_RESET
#if M68K_EMULATE_RESET == OPT_SPECIFY_HANDLER
#define m68ki_output_reset() M68K_RESET_CALLBACK()
#else
#define m68ki_output_reset() CALLBACK_RESET_INSTR()
#endif
#else
#define m68ki_output_reset()
#endif /* M68K_EMULATE_RESET */
#if M68K_CMPILD_HAS_CALLBACK
#if M68K_CMPILD_HAS_CALLBACK == OPT_SPECIFY_HANDLER
#define m68ki_cmpild_callback(v,r) M68K_CMPILD_CALLBACK(v,r)
#else
#define m68ki_cmpild_callback(v,r) CALLBACK_CMPILD_INSTR(v,r)
#endif
#else
#define m68ki_cmpild_callback(v,r)
#endif /* M68K_CMPILD_HAS_CALLBACK */
#if M68K_RTE_HAS_CALLBACK
#if M68K_RTE_HAS_CALLBACK == OPT_SPECIFY_HANDLER
#define m68ki_rte_callback() M68K_RTE_CALLBACK()
#else
#define m68ki_rte_callback() CALLBACK_RTE_INSTR()
#endif
#else
#define m68ki_rte_callback()
#endif /* M68K_RTE_HAS_CALLBACK */
#if M68K_TAS_HAS_CALLBACK
#if M68K_TAS_HAS_CALLBACK == OPT_SPECIFY_HANDLER
#define m68ki_tas_callback() M68K_TAS_CALLBACK()
#else
#define m68ki_tas_callback() CALLBACK_TAS_INSTR()
#endif
#else
#define m68ki_tas_callback() 0
#endif /* M68K_TAS_HAS_CALLBACK */
#if M68K_INSTRUCTION_HOOK
#if M68K_INSTRUCTION_HOOK == OPT_SPECIFY_HANDLER
#define m68ki_instr_hook(pc) M68K_INSTRUCTION_CALLBACK(pc)
#else
#define m68ki_instr_hook(pc) CALLBACK_INSTR_HOOK(pc)
#endif
#else
#define m68ki_instr_hook(pc)
#endif /* M68K_INSTRUCTION_HOOK */
#if M68K_MONITOR_PC
#if M68K_MONITOR_PC == OPT_SPECIFY_HANDLER
#define m68ki_pc_changed(A) M68K_SET_PC_CALLBACK(ADDRESS_68K(A))
#else
#define m68ki_pc_changed(A) CALLBACK_PC_CHANGED(ADDRESS_68K(A))
#endif
#else
#define m68ki_pc_changed(A)
#endif /* M68K_MONITOR_PC */
/* Enable or disable function code emulation */
#if M68K_EMULATE_FC
#if M68K_EMULATE_FC == OPT_SPECIFY_HANDLER
#define m68ki_set_fc(A) M68K_SET_FC_CALLBACK(A)
#else
#define m68ki_set_fc(A) CALLBACK_SET_FC(A)
#endif
#define m68ki_use_data_space() m68ki_address_space = FUNCTION_CODE_USER_DATA
#define m68ki_use_program_space() m68ki_address_space = FUNCTION_CODE_USER_PROGRAM
#define m68ki_get_address_space() m68ki_address_space
#else
#define m68ki_set_fc(A)
#define m68ki_use_data_space()
#define m68ki_use_program_space()
#define m68ki_get_address_space() FUNCTION_CODE_USER_DATA
#endif /* M68K_EMULATE_FC */
/* Enable or disable trace emulation */
#if M68K_EMULATE_TRACE
/* Initiates trace checking before each instruction (t1) */
#define m68ki_trace_t1() m68ki_tracing = FLAG_T1
/* adds t0 to trace checking if we encounter change of flow */
#define m68ki_trace_t0() m68ki_tracing |= FLAG_T0
/* Clear all tracing */
#define m68ki_clear_trace() m68ki_tracing = 0
/* Cause a trace exception if we are tracing */
#define m68ki_exception_if_trace() if(m68ki_tracing) m68ki_exception_trace()
#else
#define m68ki_trace_t1()
#define m68ki_trace_t0()
#define m68ki_clear_trace()
#define m68ki_exception_if_trace()
#endif /* M68K_EMULATE_TRACE */
/* Address error */
#if M68K_EMULATE_ADDRESS_ERROR
#include <setjmp.h>
extern jmp_buf m68ki_aerr_trap;
extern int emulate_address_error;
#define m68ki_set_address_error_trap() \
if(setjmp(m68ki_aerr_trap) != 0) \
{ \
m68ki_exception_address_error(); \
if(CPU_STOPPED) \
{ \
SET_CYCLES(0); \
CPU_INT_CYCLES = 0; \
} \
}
#define m68ki_check_address_error(ADDR, WRITE_MODE, FC) \
if(((ADDR)&1) && emulate_address_error)\
{ \
m68ki_aerr_address = ADDR; \
m68ki_aerr_write_mode = WRITE_MODE; \
m68ki_aerr_fc = FC; \
longjmp(m68ki_aerr_trap, 1); \
}
#define m68ki_check_address_error_010_less(ADDR, WRITE_MODE, FC) \
if (CPU_TYPE_IS_010_LESS(CPU_TYPE)) \
{ \
m68ki_check_address_error(ADDR, WRITE_MODE, FC) \
}
#else
#define m68ki_set_address_error_trap()
#define m68ki_check_address_error(ADDR, WRITE_MODE, FC)
#define m68ki_check_address_error_010_less(ADDR, WRITE_MODE, FC)
#endif /* M68K_ADDRESS_ERROR */
/* Logging */
#if M68K_LOG_ENABLE
#include <stdio.h>
extern FILE* M68K_LOG_FILEHANDLE
extern const char *const m68ki_cpu_names[];
#define M68K_DO_LOG(A) if(M68K_LOG_FILEHANDLE) fprintf A
#if M68K_LOG_1010_1111
#define M68K_DO_LOG_EMU(A) if(M68K_LOG_FILEHANDLE) fprintf A
#else
#define M68K_DO_LOG_EMU(A)
#endif
#else
#define M68K_DO_LOG(A)
#define M68K_DO_LOG_EMU(A)
#endif
/* -------------------------- EA / Operand Access ------------------------- */
/*
* The general instruction format follows this pattern:
* .... XXX. .... .YYY
* where XXX is register X and YYY is register Y
*/
/* Data Register Isolation */
#define DX (REG_D[(REG_IR >> 9) & 7])
#define DY (REG_D[REG_IR & 7])
/* Address Register Isolation */
#define AX (REG_A[(REG_IR >> 9) & 7])
#define AY (REG_A[REG_IR & 7])
/* Effective Address Calculations */
#define EA_AY_AI_8() AY /* address register indirect */
#define EA_AY_AI_16() EA_AY_AI_8()
#define EA_AY_AI_32() EA_AY_AI_8()
#define EA_AY_PI_8() (AY++) /* postincrement (size = byte) */
#define EA_AY_PI_16() ((AY+=2)-2) /* postincrement (size = word) */
#define EA_AY_PI_32() ((AY+=4)-4) /* postincrement (size = long) */
#define EA_AY_PD_8() (--AY) /* predecrement (size = byte) */
#define EA_AY_PD_16() (AY-=2) /* predecrement (size = word) */
#define EA_AY_PD_32() (AY-=4) /* predecrement (size = long) */
#define EA_AY_DI_8() (AY+MAKE_INT_16(m68ki_read_imm_16())) /* displacement */
#define EA_AY_DI_16() EA_AY_DI_8()
#define EA_AY_DI_32() EA_AY_DI_8()
#define EA_AY_IX_8() m68ki_get_ea_ix(AY) /* indirect + index */
#define EA_AY_IX_16() EA_AY_IX_8()
#define EA_AY_IX_32() EA_AY_IX_8()
#define EA_AX_AI_8() AX
#define EA_AX_AI_16() EA_AX_AI_8()
#define EA_AX_AI_32() EA_AX_AI_8()
#define EA_AX_PI_8() (AX++)
#define EA_AX_PI_16() ((AX+=2)-2)
#define EA_AX_PI_32() ((AX+=4)-4)
#define EA_AX_PD_8() (--AX)
#define EA_AX_PD_16() (AX-=2)
#define EA_AX_PD_32() (AX-=4)
#define EA_AX_DI_8() (AX+MAKE_INT_16(m68ki_read_imm_16()))
#define EA_AX_DI_16() EA_AX_DI_8()
#define EA_AX_DI_32() EA_AX_DI_8()
#define EA_AX_IX_8() m68ki_get_ea_ix(AX)
#define EA_AX_IX_16() EA_AX_IX_8()
#define EA_AX_IX_32() EA_AX_IX_8()
#define EA_A7_PI_8() ((REG_A[7]+=2)-2)
#define EA_A7_PD_8() (REG_A[7]-=2)
#define EA_AW_8() MAKE_INT_16(m68ki_read_imm_16()) /* absolute word */
#define EA_AW_16() EA_AW_8()
#define EA_AW_32() EA_AW_8()
#define EA_AL_8() m68ki_read_imm_32() /* absolute long */
#define EA_AL_16() EA_AL_8()
#define EA_AL_32() EA_AL_8()
#define EA_PCDI_8() m68ki_get_ea_pcdi() /* pc indirect + displacement */
#define EA_PCDI_16() EA_PCDI_8()
#define EA_PCDI_32() EA_PCDI_8()
#define EA_PCIX_8() m68ki_get_ea_pcix() /* pc indirect + index */
#define EA_PCIX_16() EA_PCIX_8()
#define EA_PCIX_32() EA_PCIX_8()
#define OPER_I_8() m68ki_read_imm_8()
#define OPER_I_16() m68ki_read_imm_16()
#define OPER_I_32() m68ki_read_imm_32()
/* --------------------------- Status Register ---------------------------- */
/* Flag Calculation Macros */
#define CFLAG_8(A) (A)
#define CFLAG_16(A) ((A)>>8)
#if M68K_INT_GT_32_BIT
#define CFLAG_ADD_32(S, D, R) ((R)>>24)
#define CFLAG_SUB_32(S, D, R) ((R)>>24)
#else
#define CFLAG_ADD_32(S, D, R) (((S & D) | (~R & (S | D)))>>23)
#define CFLAG_SUB_32(S, D, R) (((S & R) | (~D & (S | R)))>>23)
#endif /* M68K_INT_GT_32_BIT */
#define VFLAG_ADD_8(S, D, R) ((S^R) & (D^R))
#define VFLAG_ADD_16(S, D, R) (((S^R) & (D^R))>>8)
#define VFLAG_ADD_32(S, D, R) (((S^R) & (D^R))>>24)
#define VFLAG_SUB_8(S, D, R) ((S^D) & (R^D))
#define VFLAG_SUB_16(S, D, R) (((S^D) & (R^D))>>8)
#define VFLAG_SUB_32(S, D, R) (((S^D) & (R^D))>>24)
#define NFLAG_8(A) (A)
#define NFLAG_16(A) ((A)>>8)
#define NFLAG_32(A) ((A)>>24)
#define NFLAG_64(A) ((A)>>56)
#define ZFLAG_8(A) MASK_OUT_ABOVE_8(A)
#define ZFLAG_16(A) MASK_OUT_ABOVE_16(A)
#define ZFLAG_32(A) MASK_OUT_ABOVE_32(A)
/* Flag values */
#define NFLAG_SET 0x80
#define NFLAG_CLEAR 0
#define CFLAG_SET 0x100
#define CFLAG_CLEAR 0
#define XFLAG_SET 0x100
#define XFLAG_CLEAR 0
#define VFLAG_SET 0x80
#define VFLAG_CLEAR 0
#define ZFLAG_SET 0
#define ZFLAG_CLEAR 0xffffffff
#define SFLAG_SET 4
#define SFLAG_CLEAR 0
#define MFLAG_SET 2
#define MFLAG_CLEAR 0
/* Turn flag values into 1 or 0 */
#define XFLAG_AS_1() ((FLAG_X>>8)&1)
#define NFLAG_AS_1() ((FLAG_N>>7)&1)
#define VFLAG_AS_1() ((FLAG_V>>7)&1)
#define ZFLAG_AS_1() (!FLAG_Z)
#define CFLAG_AS_1() ((FLAG_C>>8)&1)
/* Conditions */
#define COND_CS() (FLAG_C&0x100)
#define COND_CC() (!COND_CS())
#define COND_VS() (FLAG_V&0x80)
#define COND_VC() (!COND_VS())
#define COND_NE() FLAG_Z
#define COND_EQ() (!COND_NE())
#define COND_MI() (FLAG_N&0x80)
#define COND_PL() (!COND_MI())
#define COND_LT() ((FLAG_N^FLAG_V)&0x80)
#define COND_GE() (!COND_LT())
#define COND_HI() (COND_CC() && COND_NE())
#define COND_LS() (COND_CS() || COND_EQ())
#define COND_GT() (COND_GE() && COND_NE())
#define COND_LE() (COND_LT() || COND_EQ())
/* Reversed conditions */
#define COND_NOT_CS() COND_CC()
#define COND_NOT_CC() COND_CS()
#define COND_NOT_VS() COND_VC()
#define COND_NOT_VC() COND_VS()
#define COND_NOT_NE() COND_EQ()
#define COND_NOT_EQ() COND_NE()
#define COND_NOT_MI() COND_PL()
#define COND_NOT_PL() COND_MI()
#define COND_NOT_LT() COND_GE()
#define COND_NOT_GE() COND_LT()
#define COND_NOT_HI() COND_LS()
#define COND_NOT_LS() COND_HI()
#define COND_NOT_GT() COND_LE()
#define COND_NOT_LE() COND_GT()
/* Not real conditions, but here for convenience */
#define COND_XS() (FLAG_X&0x100)
#define COND_XC() (!COND_XS)
/* Get the condition code register */
#define m68ki_get_ccr() ((COND_XS() >> 4) | \
(COND_MI() >> 4) | \
(COND_EQ() << 2) | \
(COND_VS() >> 6) | \
(COND_CS() >> 8))
/* Get the status register */
#define m68ki_get_sr() ( FLAG_T1 | \
FLAG_T0 | \
(FLAG_S << 11) | \
(FLAG_M << 11) | \
FLAG_INT_MASK | \
m68ki_get_ccr())
/* ---------------------------- Cycle Counting ---------------------------- */
#define ADD_CYCLES(A) m68ki_remaining_cycles += (A)
#define USE_CYCLES(A) m68ki_remaining_cycles -= (A)
#define SET_CYCLES(A) m68ki_remaining_cycles = A
#define GET_CYCLES() m68ki_remaining_cycles
#define USE_ALL_CYCLES() m68ki_remaining_cycles = 0
/* ----------------------------- Read / Write ----------------------------- */
/* Read from the current address space */
#define m68ki_read_8(A) m68ki_read_8_fc (A, FLAG_S | m68ki_get_address_space())
#define m68ki_read_16(A) m68ki_read_16_fc(A, FLAG_S | m68ki_get_address_space())
#define m68ki_read_32(A) m68ki_read_32_fc(A, FLAG_S | m68ki_get_address_space())
/* Write to the current data space */
#define m68ki_write_8(A, V) m68ki_write_8_fc (A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
#define m68ki_write_16(A, V) m68ki_write_16_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
#define m68ki_write_32(A, V) m68ki_write_32_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
#if M68K_SIMULATE_PD_WRITES
#define m68ki_write_32_pd(A, V) m68ki_write_32_pd_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
#else
#define m68ki_write_32_pd(A, V) m68ki_write_32_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA, V)
#endif
/* map read immediate 8 to read immediate 16 */
#define m68ki_read_imm_8() MASK_OUT_ABOVE_8(m68ki_read_imm_16())
/* Map PC-relative reads */
#define m68ki_read_pcrel_8(A) m68k_read_pcrelative_8(A)
#define m68ki_read_pcrel_16(A) m68k_read_pcrelative_16(A)
#define m68ki_read_pcrel_32(A) m68k_read_pcrelative_32(A)
/* Read from the program space */
#define m68ki_read_program_8(A) m68ki_read_8_fc(A, FLAG_S | FUNCTION_CODE_USER_PROGRAM)
#define m68ki_read_program_16(A) m68ki_read_16_fc(A, FLAG_S | FUNCTION_CODE_USER_PROGRAM)
#define m68ki_read_program_32(A) m68ki_read_32_fc(A, FLAG_S | FUNCTION_CODE_USER_PROGRAM)
/* Read from the data space */
#define m68ki_read_data_8(A) m68ki_read_8_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA)
#define m68ki_read_data_16(A) m68ki_read_16_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA)
#define m68ki_read_data_32(A) m68ki_read_32_fc(A, FLAG_S | FUNCTION_CODE_USER_DATA)
/* ======================================================================== */
/* =============================== PROTOTYPES ============================= */
/* ======================================================================== */
typedef union
{
uint64 i;
double f;
} fp_reg;
typedef struct
{
uint cpu_type; /* CPU Type: 68000, 68008, 68010, 68EC020, or 68020 */
uint dar[16]; /* Data and Address Registers */
uint ppc; /* Previous program counter */
uint pc; /* Program Counter */
uint sp[7]; /* User, Interrupt, and Master Stack Pointers */
uint vbr; /* Vector Base Register (m68010+) */
uint sfc; /* Source Function Code Register (m68010+) */
uint dfc; /* Destination Function Code Register (m68010+) */
uint cacr; /* Cache Control Register (m68020, unemulated) */
uint caar; /* Cache Address Register (m68020, unemulated) */
uint ir; /* Instruction Register */
fp_reg fpr[8]; /* FPU Data Register (m68040) */
uint fpiar; /* FPU Instruction Address Register (m68040) */
uint fpsr; /* FPU Status Register (m68040) */
uint fpcr; /* FPU Control Register (m68040) */
uint t1_flag; /* Trace 1 */
uint t0_flag; /* Trace 0 */
uint s_flag; /* Supervisor */
uint m_flag; /* Master/Interrupt state */
uint x_flag; /* Extend */
uint n_flag; /* Negative */
uint not_z_flag; /* Zero, inverted for speedups */
uint v_flag; /* Overflow */
uint c_flag; /* Carry */
uint int_mask; /* I0-I2 */
uint int_level; /* State of interrupt pins IPL0-IPL2 -- ASG: changed from ints_pending */
uint int_cycles; /* ASG: extra cycles from generated interrupts */
uint stopped; /* Stopped state */
uint pref_addr; /* Last prefetch address */
uint pref_data; /* Data in the prefetch queue */
uint address_mask; /* Available address pins */
uint sr_mask; /* Implemented status register bits */
uint instr_mode; /* Stores whether we are in instruction mode or group 0/1 exception mode */
uint run_mode; /* Stores whether we are processing a reset, bus error, address error, or something else */
/* Clocks required for instructions / exceptions */
uint cyc_bcc_notake_b;
uint cyc_bcc_notake_w;
uint cyc_dbcc_f_noexp;
uint cyc_dbcc_f_exp;
uint cyc_scc_r_true;
uint cyc_movem_w;
uint cyc_movem_l;
uint cyc_shift;
uint cyc_reset;
const uint8* cyc_instruction;
const uint8* cyc_exception;
/* Callbacks to host */
int (*int_ack_callback)(int int_line); /* Interrupt Acknowledge */
void (*bkpt_ack_callback)(unsigned int data); /* Breakpoint Acknowledge */
void (*reset_instr_callback)(void); /* Called when a RESET instruction is encountered */
void (*cmpild_instr_callback)(unsigned int, int); /* Called when a CMPI.L #v, Dn instruction is encountered */
void (*rte_instr_callback)(void); /* Called when a RTE instruction is encountered */
int (*tas_instr_callback)(void); /* Called when a TAS instruction is encountered, allows / disallows writeback */
void (*pc_changed_callback)(unsigned int new_pc); /* Called when the PC changes by a large amount */
void (*set_fc_callback)(unsigned int new_fc); /* Called when the CPU function code changes */
void (*instr_hook_callback)(unsigned int pc); /* Called every instruction cycle prior to execution */
} m68ki_cpu_core;
extern m68ki_cpu_core m68ki_cpu;
extern sint m68ki_remaining_cycles;
extern uint m68ki_tracing;
extern const uint8 m68ki_shift_8_table[];
extern const uint16 m68ki_shift_16_table[];
extern const uint m68ki_shift_32_table[];
extern const uint8 m68ki_exception_cycle_table[][256];
extern uint m68ki_address_space;
extern const uint8 m68ki_ea_idx_cycle_table[];
extern uint m68ki_aerr_address;
extern uint m68ki_aerr_write_mode;
extern uint m68ki_aerr_fc;
/* Read data immediately after the program counter */
INLINE uint m68ki_read_imm_16(void);
INLINE uint m68ki_read_imm_32(void);
/* Read data with specific function code */
INLINE uint m68ki_read_8_fc (uint address, uint fc);
INLINE uint m68ki_read_16_fc (uint address, uint fc);
INLINE uint m68ki_read_32_fc (uint address, uint fc);
/* Write data with specific function code */
INLINE void m68ki_write_8_fc (uint address, uint fc, uint value);
INLINE void m68ki_write_16_fc(uint address, uint fc, uint value);
INLINE void m68ki_write_32_fc(uint address, uint fc, uint value);
#if M68K_SIMULATE_PD_WRITES
INLINE void m68ki_write_32_pd_fc(uint address, uint fc, uint value);
#endif /* M68K_SIMULATE_PD_WRITES */
/* Indexed and PC-relative ea fetching */
INLINE uint m68ki_get_ea_pcdi(void);
INLINE uint m68ki_get_ea_pcix(void);
INLINE uint m68ki_get_ea_ix(uint An);
/* Operand fetching */
INLINE uint OPER_AY_AI_8(void);
INLINE uint OPER_AY_AI_16(void);
INLINE uint OPER_AY_AI_32(void);
INLINE uint OPER_AY_PI_8(void);
INLINE uint OPER_AY_PI_16(void);
INLINE uint OPER_AY_PI_32(void);
INLINE uint OPER_AY_PD_8(void);
INLINE uint OPER_AY_PD_16(void);
INLINE uint OPER_AY_PD_32(void);
INLINE uint OPER_AY_DI_8(void);
INLINE uint OPER_AY_DI_16(void);
INLINE uint OPER_AY_DI_32(void);
INLINE uint OPER_AY_IX_8(void);
INLINE uint OPER_AY_IX_16(void);
INLINE uint OPER_AY_IX_32(void);
INLINE uint OPER_AX_AI_8(void);
INLINE uint OPER_AX_AI_16(void);
INLINE uint OPER_AX_AI_32(void);
INLINE uint OPER_AX_PI_8(void);
INLINE uint OPER_AX_PI_16(void);
INLINE uint OPER_AX_PI_32(void);
INLINE uint OPER_AX_PD_8(void);
INLINE uint OPER_AX_PD_16(void);
INLINE uint OPER_AX_PD_32(void);
INLINE uint OPER_AX_DI_8(void);
INLINE uint OPER_AX_DI_16(void);
INLINE uint OPER_AX_DI_32(void);
INLINE uint OPER_AX_IX_8(void);
INLINE uint OPER_AX_IX_16(void);
INLINE uint OPER_AX_IX_32(void);
INLINE uint OPER_A7_PI_8(void);
INLINE uint OPER_A7_PD_8(void);
INLINE uint OPER_AW_8(void);
INLINE uint OPER_AW_16(void);
INLINE uint OPER_AW_32(void);
INLINE uint OPER_AL_8(void);
INLINE uint OPER_AL_16(void);
INLINE uint OPER_AL_32(void);
INLINE uint OPER_PCDI_8(void);
INLINE uint OPER_PCDI_16(void);
INLINE uint OPER_PCDI_32(void);
INLINE uint OPER_PCIX_8(void);
INLINE uint OPER_PCIX_16(void);
INLINE uint OPER_PCIX_32(void);
/* Stack operations */
INLINE void m68ki_push_16(uint value);
INLINE void m68ki_push_32(uint value);
INLINE uint m68ki_pull_16(void);
INLINE uint m68ki_pull_32(void);
/* Program flow operations */
INLINE void m68ki_jump(uint new_pc);
INLINE void m68ki_jump_vector(uint vector);
INLINE void m68ki_branch_8(uint offset);
INLINE void m68ki_branch_16(uint offset);
INLINE void m68ki_branch_32(uint offset);
/* Status register operations. */
INLINE void m68ki_set_s_flag(uint value); /* Only bit 2 of value should be set (i.e. 4 or 0) */
INLINE void m68ki_set_sm_flag(uint value); /* only bits 1 and 2 of value should be set */
INLINE void m68ki_set_ccr(uint value); /* set the condition code register */
INLINE void m68ki_set_sr(uint value); /* set the status register */
INLINE void m68ki_set_sr_noint(uint value); /* set the status register */
/* Exception processing */
INLINE uint m68ki_init_exception(void); /* Initial exception processing */
INLINE void m68ki_stack_frame_3word(uint pc, uint sr); /* Stack various frame types */
INLINE void m68ki_stack_frame_buserr(uint sr);
INLINE void m68ki_stack_frame_0000(uint pc, uint sr, uint vector);
INLINE void m68ki_stack_frame_0001(uint pc, uint sr, uint vector);
INLINE void m68ki_stack_frame_0010(uint sr, uint vector);
INLINE void m68ki_stack_frame_1000(uint pc, uint sr, uint vector);
INLINE void m68ki_stack_frame_1010(uint sr, uint vector, uint pc);
INLINE void m68ki_stack_frame_1011(uint sr, uint vector, uint pc);
INLINE void m68ki_exception_trap(uint vector);
INLINE void m68ki_exception_trapN(uint vector);
INLINE void m68ki_exception_trace(void);
INLINE void m68ki_exception_privilege_violation(void);
INLINE void m68ki_exception_1010(void);
INLINE void m68ki_exception_1111(void);
INLINE void m68ki_exception_illegal(void);
INLINE void m68ki_exception_format_error(void);
INLINE void m68ki_exception_address_error(void);
INLINE void m68ki_exception_interrupt(uint int_level);
INLINE void m68ki_check_interrupts(void); /* ASG: check for interrupts */
/* quick disassembly (used for logging) */
char* m68ki_disassemble_quick(unsigned int pc, unsigned int cpu_type);
/* ======================================================================== */
/* =========================== UTILITY FUNCTIONS ========================== */
/* ======================================================================== */
/* ---------------------------- Read Immediate ---------------------------- */
/* Handles all immediate reads, does address error check, function code setting,
* and prefetching if they are enabled in m68kconf.h
*/
INLINE uint m68ki_read_imm_16(void)
{
m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
#if M68K_EMULATE_PREFETCH
if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
{
CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
CPU_PREF_DATA = m68k_read_immediate_32(CPU_PREF_ADDR);
}
REG_PC += 2;
return MASK_OUT_ABOVE_16(CPU_PREF_DATA >> ((2-((REG_PC-2)&2))<<3));
#else
REG_PC += 2;
return m68k_read_immediate_16(REG_PC-2);
#endif /* M68K_EMULATE_PREFETCH */
}
INLINE uint m68ki_read_imm_32(void)
{
#if M68K_EMULATE_PREFETCH
uint temp_val;
m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
{
CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
CPU_PREF_DATA = m68k_read_immediate_32(CPU_PREF_ADDR);
}
temp_val = CPU_PREF_DATA;
REG_PC += 2;
if(MASK_OUT_BELOW_2(REG_PC) != CPU_PREF_ADDR)
{
CPU_PREF_ADDR = MASK_OUT_BELOW_2(REG_PC);
CPU_PREF_DATA = m68k_read_immediate_32(CPU_PREF_ADDR);
temp_val = MASK_OUT_ABOVE_32((temp_val << 16) | (CPU_PREF_DATA >> 16));
}
REG_PC += 2;
return temp_val;
#else
m68ki_set_fc(FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error(REG_PC, MODE_READ, FLAG_S | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */
REG_PC += 4;
return m68k_read_immediate_32(REG_PC-4);
#endif /* M68K_EMULATE_PREFETCH */
}
/* ------------------------- Top level read/write ------------------------- */
/* Handles all memory accesses (except for immediate reads if they are
* configured to use separate functions in m68kconf.h).
* All memory accesses must go through these top level functions.
* These functions will also check for address error and set the function
* code if they are enabled in m68kconf.h.
*/
INLINE uint m68ki_read_8_fc(uint address, uint fc)
{
m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
_m68k_memory_map *temp = &m68k_memory_map[((address)>>16)&0xff];
if (temp->read8) return (*temp->read8)(ADDRESS_68K(address));
else return READ_BYTE(temp->base, (address) & 0xffff);
}
INLINE uint m68ki_read_16_fc(uint address, uint fc)
{
m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error_010_less(address, MODE_READ, fc); /* auto-disable (see m68kcpu.h) */
_m68k_memory_map *temp = &m68k_memory_map[((address)>>16)&0xff];
if (temp->read16) return (*temp->read16)(ADDRESS_68K(address));
else return *(uint16 *)(temp->base + ((address) & 0xffff));
}
INLINE uint m68ki_read_32_fc(uint address, uint fc)
{
m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error_010_less(address, MODE_READ, fc); /* auto-disable (see m68kcpu.h) */
_m68k_memory_map *temp = &m68k_memory_map[((address)>>16)&0xff];
if (temp->read16) return ((*temp->read16)(ADDRESS_68K(address)) << 16) | ((*temp->read16)(ADDRESS_68K(address + 2)));
else return m68k_read_immediate_32(address);
}
INLINE void m68ki_write_8_fc(uint address, uint fc, uint value)
{
m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
_m68k_memory_map *temp = &m68k_memory_map[((address)>>16)&0xff];
if (temp->write8) (*temp->write8)(ADDRESS_68K(address),value);
else WRITE_BYTE(temp->base, (address) & 0xffff, value);
}
INLINE void m68ki_write_16_fc(uint address, uint fc, uint value)
{
m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error_010_less(address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */
_m68k_memory_map *temp = &m68k_memory_map[((address)>>16)&0xff];
if (temp->write16) (*temp->write16)(ADDRESS_68K(address),value);
else *(uint16 *)(temp->base + ((address) & 0xffff)) = value;
}
INLINE void m68ki_write_32_fc(uint address, uint fc, uint value)
{
m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error_010_less(address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */
_m68k_memory_map *temp = &m68k_memory_map[((address)>>16)&0xff];
if (temp->write16) (*temp->write16)(ADDRESS_68K(address),value>>16);
else *(uint16 *)(temp->base + ((address) & 0xffff)) = value >> 16;
temp = &m68k_memory_map[((address + 2)>>16)&0xff];
if (temp->write16) (*temp->write16)(ADDRESS_68K(address+2),value&0xffff);
else *(uint16 *)(temp->base + ((address + 2) & 0xffff)) = value;
}
#if M68K_SIMULATE_PD_WRITES
INLINE void m68ki_write_32_pd_fc(uint address, uint fc, uint value)
{
m68ki_set_fc(fc); /* auto-disable (see m68kcpu.h) */
m68ki_check_address_error_010_less(address, MODE_WRITE, fc); /* auto-disable (see m68kcpu.h) */
m68k_write_memory_32_pd(ADDRESS_68K(address), value);
}
#endif
/* --------------------- Effective Address Calculation -------------------- */
/* The program counter relative addressing modes cause operands to be
* retrieved from program space, not data space.
*/
INLINE uint m68ki_get_ea_pcdi(void)
{
uint old_pc = REG_PC;
m68ki_use_program_space(); /* auto-disable */
return old_pc + MAKE_INT_16(m68ki_read_imm_16());
}
INLINE uint m68ki_get_ea_pcix(void)
{
m68ki_use_program_space(); /* auto-disable */
return m68ki_get_ea_ix(REG_PC);
}
/* Indexed addressing modes are encoded as follows:
*
* Base instruction format:
* F E D C B A 9 8 7 6 | 5 4 3 | 2 1 0
* x x x x x x x x x x | 1 1 0 | BASE REGISTER (An)
*
* Base instruction format for destination EA in move instructions:
* F E D C | B A 9 | 8 7 6 | 5 4 3 2 1 0
* x x x x | BASE REG | 1 1 0 | X X X X X X (An)
*
* Brief extension format:
* F | E D C | B | A 9 | 8 | 7 6 5 4 3 2 1 0
* D/A | REGISTER | W/L | SCALE | 0 | DISPLACEMENT
*
* Full extension format:
* F E D C B A 9 8 7 6 5 4 3 2 1 0
* D/A | REGISTER | W/L | SCALE | 1 | BS | IS | BD SIZE | 0 | I/IS
* BASE DISPLACEMENT (0, 16, 32 bit) (bd)
* OUTER DISPLACEMENT (0, 16, 32 bit) (od)
*
* D/A: 0 = Dn, 1 = An (Xn)
* W/L: 0 = W (sign extend), 1 = L (.SIZE)
* SCALE: 00=1, 01=2, 10=4, 11=8 (*SCALE)
* BS: 0=add base reg, 1=suppress base reg (An suppressed)
* IS: 0=add index, 1=suppress index (Xn suppressed)
* BD SIZE: 00=reserved, 01=NULL, 10=Word, 11=Long (size of bd)
*
* IS I/IS Operation
* 0 000 No Memory Indirect
* 0 001 indir prex with null outer
* 0 010 indir prex with word outer
* 0 011 indir prex with long outer
* 0 100 reserved
* 0 101 indir postx with null outer
* 0 110 indir postx with word outer
* 0 111 indir postx with long outer
* 1 000 no memory indirect
* 1 001 mem indir with null outer
* 1 010 mem indir with word outer
* 1 011 mem indir with long outer
* 1 100-111 reserved
*/
INLINE uint m68ki_get_ea_ix(uint An)
{
/* An = base register */
uint extension = m68ki_read_imm_16();
uint Xn = 0; /* Index register */
uint bd = 0; /* Base Displacement */
uint od = 0; /* Outer Displacement */
if(CPU_TYPE_IS_010_LESS(CPU_TYPE))
{
/* Calculate index */
Xn = REG_DA[extension>>12]; /* Xn */
if(!BIT_B(extension)) /* W/L */
Xn = MAKE_INT_16(Xn);
/* Add base register and displacement and return */
return An + Xn + MAKE_INT_8(extension);
}
/* Brief extension format */
if(!BIT_8(extension))
{
/* Calculate index */
Xn = REG_DA[extension>>12]; /* Xn */
if(!BIT_B(extension)) /* W/L */
Xn = MAKE_INT_16(Xn);
/* Add scale if proper CPU type */
if(CPU_TYPE_IS_EC020_PLUS(CPU_TYPE))
Xn <<= (extension>>9) & 3; /* SCALE */
/* Add base register and displacement and return */
return An + Xn + MAKE_INT_8(extension);
}
/* Full extension format */
USE_CYCLES(m68ki_ea_idx_cycle_table[extension&0x3f]);
/* Check if base register is present */
if(BIT_7(extension)) /* BS */
An = 0; /* An */
/* Check if index is present */
if(!BIT_6(extension)) /* IS */
{
Xn = REG_DA[extension>>12]; /* Xn */
if(!BIT_B(extension)) /* W/L */
Xn = MAKE_INT_16(Xn);
Xn <<= (extension>>9) & 3; /* SCALE */
}
/* Check if base displacement is present */
if(BIT_5(extension)) /* BD SIZE */
bd = BIT_4(extension) ? m68ki_read_imm_32() : MAKE_INT_16(m68ki_read_imm_16());
/* If no indirect action, we are done */
if(!(extension&7)) /* No Memory Indirect */
return An + bd + Xn;
/* Check if outer displacement is present */
if(BIT_1(extension)) /* I/IS: od */
od = BIT_0(extension) ? m68ki_read_imm_32() : MAKE_INT_16(m68ki_read_imm_16());
/* Postindex */
if(BIT_2(extension)) /* I/IS: 0 = preindex, 1 = postindex */
return m68ki_read_32(An + bd) + Xn + od;
/* Preindex */
return m68ki_read_32(An + bd + Xn) + od;
}
/* Fetch operands */
INLINE uint OPER_AY_AI_8(void) {uint ea = EA_AY_AI_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AY_AI_16(void) {uint ea = EA_AY_AI_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AY_AI_32(void) {uint ea = EA_AY_AI_32(); return m68ki_read_32(ea);}
INLINE uint OPER_AY_PI_8(void) {uint ea = EA_AY_PI_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AY_PI_16(void) {uint ea = EA_AY_PI_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AY_PI_32(void) {uint ea = EA_AY_PI_32(); return m68ki_read_32(ea);}
INLINE uint OPER_AY_PD_8(void) {uint ea = EA_AY_PD_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AY_PD_16(void) {uint ea = EA_AY_PD_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AY_PD_32(void) {uint ea = EA_AY_PD_32(); return m68ki_read_32(ea);}
INLINE uint OPER_AY_DI_8(void) {uint ea = EA_AY_DI_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AY_DI_16(void) {uint ea = EA_AY_DI_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AY_DI_32(void) {uint ea = EA_AY_DI_32(); return m68ki_read_32(ea);}
INLINE uint OPER_AY_IX_8(void) {uint ea = EA_AY_IX_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AY_IX_16(void) {uint ea = EA_AY_IX_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AY_IX_32(void) {uint ea = EA_AY_IX_32(); return m68ki_read_32(ea);}
INLINE uint OPER_AX_AI_8(void) {uint ea = EA_AX_AI_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AX_AI_16(void) {uint ea = EA_AX_AI_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AX_AI_32(void) {uint ea = EA_AX_AI_32(); return m68ki_read_32(ea);}
INLINE uint OPER_AX_PI_8(void) {uint ea = EA_AX_PI_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AX_PI_16(void) {uint ea = EA_AX_PI_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AX_PI_32(void) {uint ea = EA_AX_PI_32(); return m68ki_read_32(ea);}
INLINE uint OPER_AX_PD_8(void) {uint ea = EA_AX_PD_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AX_PD_16(void) {uint ea = EA_AX_PD_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AX_PD_32(void) {uint ea = EA_AX_PD_32(); return m68ki_read_32(ea);}
INLINE uint OPER_AX_DI_8(void) {uint ea = EA_AX_DI_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AX_DI_16(void) {uint ea = EA_AX_DI_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AX_DI_32(void) {uint ea = EA_AX_DI_32(); return m68ki_read_32(ea);}
INLINE uint OPER_AX_IX_8(void) {uint ea = EA_AX_IX_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AX_IX_16(void) {uint ea = EA_AX_IX_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AX_IX_32(void) {uint ea = EA_AX_IX_32(); return m68ki_read_32(ea);}
INLINE uint OPER_A7_PI_8(void) {uint ea = EA_A7_PI_8(); return m68ki_read_8(ea); }
INLINE uint OPER_A7_PD_8(void) {uint ea = EA_A7_PD_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AW_8(void) {uint ea = EA_AW_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AW_16(void) {uint ea = EA_AW_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AW_32(void) {uint ea = EA_AW_32(); return m68ki_read_32(ea);}
INLINE uint OPER_AL_8(void) {uint ea = EA_AL_8(); return m68ki_read_8(ea); }
INLINE uint OPER_AL_16(void) {uint ea = EA_AL_16(); return m68ki_read_16(ea);}
INLINE uint OPER_AL_32(void) {uint ea = EA_AL_32(); return m68ki_read_32(ea);}
INLINE uint OPER_PCDI_8(void) {uint ea = EA_PCDI_8(); return m68ki_read_pcrel_8(ea); }
INLINE uint OPER_PCDI_16(void) {uint ea = EA_PCDI_16(); return m68ki_read_pcrel_16(ea);}
INLINE uint OPER_PCDI_32(void) {uint ea = EA_PCDI_32(); return m68ki_read_pcrel_32(ea);}
INLINE uint OPER_PCIX_8(void) {uint ea = EA_PCIX_8(); return m68ki_read_pcrel_8(ea); }
INLINE uint OPER_PCIX_16(void) {uint ea = EA_PCIX_16(); return m68ki_read_pcrel_16(ea);}
INLINE uint OPER_PCIX_32(void) {uint ea = EA_PCIX_32(); return m68ki_read_pcrel_32(ea);}
/* ---------------------------- Stack Functions --------------------------- */
/* Push/pull data from the stack */
INLINE void m68ki_push_16(uint value)
{
REG_SP = MASK_OUT_ABOVE_32(REG_SP - 2);
m68ki_write_16(REG_SP, value);
}
INLINE void m68ki_push_32(uint value)
{
REG_SP = MASK_OUT_ABOVE_32(REG_SP - 4);
m68ki_write_32(REG_SP, value);
}
INLINE uint m68ki_pull_16(void)
{
REG_SP = MASK_OUT_ABOVE_32(REG_SP + 2);
return m68ki_read_16(REG_SP-2);
}
INLINE uint m68ki_pull_32(void)
{
REG_SP = MASK_OUT_ABOVE_32(REG_SP + 4);
return m68ki_read_32(REG_SP-4);
}
/* Increment/decrement the stack as if doing a push/pull but
* don't do any memory access.
*/
INLINE void m68ki_fake_push_16(void)
{
REG_SP = MASK_OUT_ABOVE_32(REG_SP - 2);
}
INLINE void m68ki_fake_push_32(void)
{
REG_SP = MASK_OUT_ABOVE_32(REG_SP - 4);
}
INLINE void m68ki_fake_pull_16(void)
{
REG_SP = MASK_OUT_ABOVE_32(REG_SP + 2);
}
INLINE void m68ki_fake_pull_32(void)
{
REG_SP = MASK_OUT_ABOVE_32(REG_SP + 4);
}
/* ----------------------------- Program Flow ----------------------------- */
/* Jump to a new program location or vector.
* These functions will also call the pc_changed callback if it was enabled
* in m68kconf.h.
*/
INLINE void m68ki_jump(uint new_pc)
{
REG_PC = new_pc;
m68ki_pc_changed(REG_PC);
}
INLINE void m68ki_jump_vector(uint vector)
{
REG_PC = (vector<<2) + REG_VBR;
REG_PC = m68ki_read_data_32(REG_PC);
m68ki_pc_changed(REG_PC);
}
/* Branch to a new memory location.
* The 32-bit branch will call pc_changed if it was enabled in m68kconf.h.
* So far I've found no problems with not calling pc_changed for 8 or 16
* bit branches.
*/
INLINE void m68ki_branch_8(uint offset)
{
REG_PC += MAKE_INT_8(offset);
}
INLINE void m68ki_branch_16(uint offset)
{
REG_PC += MAKE_INT_16(offset);
}
INLINE void m68ki_branch_32(uint offset)
{
REG_PC += offset;
m68ki_pc_changed(REG_PC);
}
/* ---------------------------- Status Register --------------------------- */
/* Set the S flag and change the active stack pointer.
* Note that value MUST be 4 or 0.
*/
INLINE void m68ki_set_s_flag(uint value)
{
/* Backup the old stack pointer */
REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)] = REG_SP;
/* Set the S flag */
FLAG_S = value;
/* Set the new stack pointer */
REG_SP = REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)];
}
/* Set the S and M flags and change the active stack pointer.
* Note that value MUST be 0, 2, 4, or 6 (bit2 = S, bit1 = M).
*/
INLINE void m68ki_set_sm_flag(uint value)
{
/* Backup the old stack pointer */
REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)] = REG_SP;
/* Set the S and M flags */
FLAG_S = value & SFLAG_SET;
FLAG_M = value & MFLAG_SET;
/* Set the new stack pointer */
REG_SP = REG_SP_BASE[FLAG_S | ((FLAG_S>>1) & FLAG_M)];
}
/* Set the S and M flags. Don't touch the stack pointer. */
INLINE void m68ki_set_sm_flag_nosp(uint value)
{
/* Set the S and M flags */
FLAG_S = value & SFLAG_SET;
FLAG_M = value & MFLAG_SET;
}
/* Set the condition code register */
INLINE void m68ki_set_ccr(uint value)
{
FLAG_X = BIT_4(value) << 4;
FLAG_N = BIT_3(value) << 4;
FLAG_Z = !BIT_2(value);
FLAG_V = BIT_1(value) << 6;
FLAG_C = BIT_0(value) << 8;
}
/* Set the status register but don't check for interrupts */
INLINE void m68ki_set_sr_noint(uint value)
{
/* Mask out the "unimplemented" bits */
value &= CPU_SR_MASK;
/* Now set the status register */
FLAG_T1 = BIT_F(value);
FLAG_T0 = BIT_E(value);
FLAG_INT_MASK = value & 0x0700;
m68ki_set_ccr(value);
m68ki_set_sm_flag((value >> 11) & 6);
}
/* Set the status register but don't check for interrupts nor
* change the stack pointer
*/
INLINE void m68ki_set_sr_noint_nosp(uint value)
{
/* Mask out the "unimplemented" bits */
value &= CPU_SR_MASK;
/* Now set the status register */
FLAG_T1 = BIT_F(value);
FLAG_T0 = BIT_E(value);
FLAG_INT_MASK = value & 0x0700;
m68ki_set_ccr(value);
m68ki_set_sm_flag_nosp((value >> 11) & 6);
}
/* Set the status register and check for interrupts */
INLINE void m68ki_set_sr(uint value)
{
m68ki_set_sr_noint(value);
m68ki_check_interrupts();
}
/* ------------------------- Exception Processing ------------------------- */
/* Initiate exception processing */
INLINE uint m68ki_init_exception(void)
{
/* Save the old status register */
uint sr = m68ki_get_sr();
/* Turn off trace flag, clear pending traces */
FLAG_T1 = FLAG_T0 = 0;
m68ki_clear_trace();
/* Enter supervisor mode */
m68ki_set_s_flag(SFLAG_SET);
return sr;
}
/* 3 word stack frame (68000 only) */
INLINE void m68ki_stack_frame_3word(uint pc, uint sr)
{
m68ki_push_32(pc);
m68ki_push_16(sr);
}
/* Format 0 stack frame.
* This is the standard stack frame for 68010+.
*/
INLINE void m68ki_stack_frame_0000(uint pc, uint sr, uint vector)
{
/* Stack a 3-word frame if we are 68000 */
if(CPU_TYPE == CPU_TYPE_000 || CPU_TYPE == CPU_TYPE_008)
{
m68ki_stack_frame_3word(pc, sr);
return;
}
m68ki_push_16(vector<<2);
m68ki_push_32(pc);
m68ki_push_16(sr);
}
/* Format 1 stack frame (68020).
* For 68020, this is the 4 word throwaway frame.
*/
INLINE void m68ki_stack_frame_0001(uint pc, uint sr, uint vector)
{
m68ki_push_16(0x1000 | (vector<<2));
m68ki_push_32(pc);
m68ki_push_16(sr);
}
/* Format 2 stack frame.
* This is used only by 68020 for trap exceptions.
*/
INLINE void m68ki_stack_frame_0010(uint sr, uint vector)
{
m68ki_push_32(REG_PPC);
m68ki_push_16(0x2000 | (vector<<2));
m68ki_push_32(REG_PC);
m68ki_push_16(sr);
}
/* Bus error stack frame (68000 only).
*/
INLINE void m68ki_stack_frame_buserr(uint sr)
{
m68ki_push_32(REG_PC);
m68ki_push_16(sr);
m68ki_push_16(REG_IR);
m68ki_push_32(m68ki_aerr_address); /* access address */
/* 0 0 0 0 0 0 0 0 0 0 0 R/W I/N FC
* R/W 0 = write, 1 = read
* I/N 0 = instruction, 1 = not
* FC 3-bit function code
*/
m68ki_push_16(m68ki_aerr_write_mode | CPU_INSTR_MODE | m68ki_aerr_fc);
}
/* Format 8 stack frame (68010).
* 68010 only. This is the 29 word bus/address error frame.
*/
void m68ki_stack_frame_1000(uint pc, uint sr, uint vector)
{
/* VERSION
* NUMBER
* INTERNAL INFORMATION, 16 WORDS
*/
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
m68ki_fake_push_32();
/* INSTRUCTION INPUT BUFFER */
m68ki_push_16(0);
/* UNUSED, RESERVED (not written) */
m68ki_fake_push_16();
/* DATA INPUT BUFFER */
m68ki_push_16(0);
/* UNUSED, RESERVED (not written) */
m68ki_fake_push_16();
/* DATA OUTPUT BUFFER */
m68ki_push_16(0);
/* UNUSED, RESERVED (not written) */
m68ki_fake_push_16();
/* FAULT ADDRESS */
m68ki_push_32(0);
/* SPECIAL STATUS WORD */
m68ki_push_16(0);
/* 1000, VECTOR OFFSET */
m68ki_push_16(0x8000 | (vector<<2));
/* PROGRAM COUNTER */
m68ki_push_32(pc);
/* STATUS REGISTER */
m68ki_push_16(sr);
}
/* Format A stack frame (short bus fault).
* This is used only by 68020 for bus fault and address error
* if the error happens at an instruction boundary.
* PC stacked is address of next instruction.
*/
void m68ki_stack_frame_1010(uint sr, uint vector, uint pc)
{
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* DATA OUTPUT BUFFER (2 words) */
m68ki_push_32(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* DATA CYCLE FAULT ADDRESS (2 words) */
m68ki_push_32(0);
/* INSTRUCTION PIPE STAGE B */
m68ki_push_16(0);
/* INSTRUCTION PIPE STAGE C */
m68ki_push_16(0);
/* SPECIAL STATUS REGISTER */
m68ki_push_16(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* 1010, VECTOR OFFSET */
m68ki_push_16(0xa000 | (vector<<2));
/* PROGRAM COUNTER */
m68ki_push_32(pc);
/* STATUS REGISTER */
m68ki_push_16(sr);
}
/* Format B stack frame (long bus fault).
* This is used only by 68020 for bus fault and address error
* if the error happens during instruction execution.
* PC stacked is address of instruction in progress.
*/
void m68ki_stack_frame_1011(uint sr, uint vector, uint pc)
{
/* INTERNAL REGISTERS (18 words) */
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
m68ki_push_32(0);
/* VERSION# (4 bits), INTERNAL INFORMATION */
m68ki_push_16(0);
/* INTERNAL REGISTERS (3 words) */
m68ki_push_32(0);
m68ki_push_16(0);
/* DATA INTPUT BUFFER (2 words) */
m68ki_push_32(0);
/* INTERNAL REGISTERS (2 words) */
m68ki_push_32(0);
/* STAGE B ADDRESS (2 words) */
m68ki_push_32(0);
/* INTERNAL REGISTER (4 words) */
m68ki_push_32(0);
m68ki_push_32(0);
/* DATA OUTPUT BUFFER (2 words) */
m68ki_push_32(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* DATA CYCLE FAULT ADDRESS (2 words) */
m68ki_push_32(0);
/* INSTRUCTION PIPE STAGE B */
m68ki_push_16(0);
/* INSTRUCTION PIPE STAGE C */
m68ki_push_16(0);
/* SPECIAL STATUS REGISTER */
m68ki_push_16(0);
/* INTERNAL REGISTER */
m68ki_push_16(0);
/* 1011, VECTOR OFFSET */
m68ki_push_16(0xb000 | (vector<<2));
/* PROGRAM COUNTER */
m68ki_push_32(pc);
/* STATUS REGISTER */
m68ki_push_16(sr);
}
/* Used for Group 2 exceptions.
* These stack a type 2 frame on the 020.
*/
INLINE void m68ki_exception_trap(uint vector)
{
uint sr = m68ki_init_exception();
if(CPU_TYPE_IS_010_LESS(CPU_TYPE))
m68ki_stack_frame_0000(REG_PC, sr, vector);
else
m68ki_stack_frame_0010(sr, vector);
m68ki_jump_vector(vector);
/* Use up some clock cycles */
USE_CYCLES(CYC_EXCEPTION[vector]);
}
/* Trap#n stacks a 0 frame but behaves like group2 otherwise */
INLINE void m68ki_exception_trapN(uint vector)
{
uint sr = m68ki_init_exception();
m68ki_stack_frame_0000(REG_PC, sr, vector);
m68ki_jump_vector(vector);
/* Use up some clock cycles */
USE_CYCLES(CYC_EXCEPTION[vector]);
}
/* Exception for trace mode */
INLINE void m68ki_exception_trace(void)
{
uint sr = m68ki_init_exception();
if(CPU_TYPE_IS_010_LESS(CPU_TYPE))
{
#if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
if(CPU_TYPE_IS_000(CPU_TYPE))
{
CPU_INSTR_MODE = INSTRUCTION_NO;
}
#endif /* M68K_EMULATE_ADDRESS_ERROR */
m68ki_stack_frame_0000(REG_PC, sr, EXCEPTION_TRACE);
}
else
m68ki_stack_frame_0010(sr, EXCEPTION_TRACE);
m68ki_jump_vector(EXCEPTION_TRACE);
/* Trace nullifies a STOP instruction */
CPU_STOPPED &= ~STOP_LEVEL_STOP;
/* Use up some clock cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_TRACE]);
}
/* Exception for privilege violation */
INLINE void m68ki_exception_privilege_violation(void)
{
uint sr = m68ki_init_exception();
#if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
if(CPU_TYPE_IS_000(CPU_TYPE))
{
CPU_INSTR_MODE = INSTRUCTION_NO;
}
#endif /* M68K_EMULATE_ADDRESS_ERROR */
m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_PRIVILEGE_VIOLATION);
m68ki_jump_vector(EXCEPTION_PRIVILEGE_VIOLATION);
/* Use up some clock cycles and undo the instruction's cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_PRIVILEGE_VIOLATION] - CYC_INSTRUCTION[REG_IR]);
}
/* Exception for A-Line instructions */
INLINE void m68ki_exception_1010(void)
{
uint sr;
#if M68K_LOG_1010_1111 == OPT_ON
M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: called 1010 instruction %04x (%s)\n",
m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR,
m68ki_disassemble_quick(ADDRESS_68K(REG_PPC))));
#endif
sr = m68ki_init_exception();
m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_1010);
m68ki_jump_vector(EXCEPTION_1010);
/* Use up some clock cycles and undo the instruction's cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_1010] - CYC_INSTRUCTION[REG_IR]);
}
/* Exception for F-Line instructions */
INLINE void m68ki_exception_1111(void)
{
uint sr;
#if M68K_LOG_1010_1111 == OPT_ON
M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: called 1111 instruction %04x (%s)\n",
m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR,
m68ki_disassemble_quick(ADDRESS_68K(REG_PPC))));
#endif
sr = m68ki_init_exception();
m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_1111);
m68ki_jump_vector(EXCEPTION_1111);
/* Use up some clock cycles and undo the instruction's cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_1111] - CYC_INSTRUCTION[REG_IR]);
}
/* Exception for illegal instructions */
INLINE void m68ki_exception_illegal(void)
{
uint sr;
M68K_DO_LOG((M68K_LOG_FILEHANDLE "%s at %08x: illegal instruction %04x (%s)\n",
m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PPC), REG_IR,
m68ki_disassemble_quick(ADDRESS_68K(REG_PPC))));
sr = m68ki_init_exception();
#if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
if(CPU_TYPE_IS_000(CPU_TYPE))
{
CPU_INSTR_MODE = INSTRUCTION_NO;
}
#endif /* M68K_EMULATE_ADDRESS_ERROR */
m68ki_stack_frame_0000(REG_PPC, sr, EXCEPTION_ILLEGAL_INSTRUCTION);
m68ki_jump_vector(EXCEPTION_ILLEGAL_INSTRUCTION);
/* Use up some clock cycles and undo the instruction's cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_ILLEGAL_INSTRUCTION] - CYC_INSTRUCTION[REG_IR]);
}
/* Exception for format errror in RTE */
INLINE void m68ki_exception_format_error(void)
{
uint sr = m68ki_init_exception();
m68ki_stack_frame_0000(REG_PC, sr, EXCEPTION_FORMAT_ERROR);
m68ki_jump_vector(EXCEPTION_FORMAT_ERROR);
/* Use up some clock cycles and undo the instruction's cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_FORMAT_ERROR] - CYC_INSTRUCTION[REG_IR]);
}
/* Exception for address error */
INLINE void m68ki_exception_address_error(void)
{
uint sr = m68ki_init_exception();
/* If we were processing a bus error, address error, or reset,
* this is a catastrophic failure.
* Halt the CPU
*/
if(CPU_RUN_MODE == RUN_MODE_BERR_AERR_RESET)
{
CPU_STOPPED = STOP_LEVEL_HALT;
return;
}
CPU_RUN_MODE = RUN_MODE_BERR_AERR_RESET;
/* Note: This is implemented for 68000 only! */
m68ki_stack_frame_buserr(sr);
m68ki_jump_vector(EXCEPTION_ADDRESS_ERROR);
/* Use up some clock cycles and undo the instruction's cycles */
USE_CYCLES(CYC_EXCEPTION[EXCEPTION_ADDRESS_ERROR] - CYC_INSTRUCTION[REG_IR]);
}
/* Service an interrupt request and start exception processing */
INLINE void m68ki_exception_interrupt(uint int_level)
{
uint vector;
uint sr;
uint new_pc;
#if M68K_EMULATE_ADDRESS_ERROR == OPT_ON
if(CPU_TYPE_IS_000(CPU_TYPE))
{
CPU_INSTR_MODE = INSTRUCTION_NO;
}
#endif /* M68K_EMULATE_ADDRESS_ERROR */
/* Turn off the stopped state */
CPU_STOPPED &= ~STOP_LEVEL_STOP;
/* If we are halted, don't do anything */
if(CPU_STOPPED)
return;
/* Acknowledge the interrupt */
vector = m68ki_int_ack(int_level);
/* Get the interrupt vector */
if(vector == M68K_INT_ACK_AUTOVECTOR)
/* Use the autovectors. This is the most commonly used implementation */
vector = EXCEPTION_INTERRUPT_AUTOVECTOR+int_level;
else if(vector == M68K_INT_ACK_SPURIOUS)
/* Called if no devices respond to the interrupt acknowledge */
vector = EXCEPTION_SPURIOUS_INTERRUPT;
else if(vector > 255)
{
M68K_DO_LOG_EMU((M68K_LOG_FILEHANDLE "%s at %08x: Interrupt acknowledge returned invalid vector $%x\n",
m68ki_cpu_names[CPU_TYPE], ADDRESS_68K(REG_PC), vector));
return;
}
/* Start exception processing */
sr = m68ki_init_exception();
/* Set the interrupt mask to the level of the one being serviced */
FLAG_INT_MASK = int_level<<8;
/* Get the new PC */
new_pc = m68ki_read_data_32((vector<<2) + REG_VBR);
/* If vector is uninitialized, call the uninitialized interrupt vector */
if(new_pc == 0)
new_pc = m68ki_read_data_32((EXCEPTION_UNINITIALIZED_INTERRUPT<<2) + REG_VBR);
/* Generate a stack frame */
m68ki_stack_frame_0000(REG_PC, sr, vector);
if(FLAG_M && CPU_TYPE_IS_EC020_PLUS(CPU_TYPE))
{
/* Create throwaway frame */
m68ki_set_sm_flag(FLAG_S); /* clear M */
sr |= 0x2000; /* Same as SR in master stack frame except S is forced high */
m68ki_stack_frame_0001(REG_PC, sr, vector);
}
m68ki_jump(new_pc);
/* Defer cycle counting until later */
count_m68k += CYC_EXCEPTION[vector];
//#if !M68K_EMULATE_INT_ACK
/* Automatically clear IRQ if we are not using an acknowledge scheme */
CPU_INT_LEVEL = 0;
//#endif /* M68K_EMULATE_INT_ACK */
}
/* ASG: Check for interrupts */
INLINE void m68ki_check_interrupts(void)
{
if(CPU_INT_LEVEL > FLAG_INT_MASK)
m68ki_exception_interrupt(CPU_INT_LEVEL>>8);
}
/* ======================================================================== */
/* ============================== END OF FILE ============================= */
/* ======================================================================== */
#endif /* M68KCPU__HEADER */