Genesis-Plus-GX/source/sound/Fir_Resampler.c
ekeeke31 cab4ecba99 [Wii/Gamecube]
* added an option to set VDP mode (PAL/NTSC) independently from console region.
* added an option to select console master clock frequency (PAL/NTSC/AUTO): emulation now run at selected frequency when VSYNC is disabled.
* added an option to force VSYNC disabled.
* improved screen scaling.

[Core]
* moved INLINE definition to macros.h
* removed unused typedef from osd_cpu.h
* cleanup include files
2012-01-31 22:50:54 +00:00

355 lines
7.9 KiB
C

/* Finite impulse response (FIR) resampler with adjustable FIR size */
/* Game_Music_Emu 0.5.2. http://www.slack.net/~ant/ */
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
/* C Conversion by Eke-Eke for use in Genesis Plus GX (2009). */
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "Fir_Resampler.h"
#include "macros.h"
/* sound buffer */
static sample_t *buffer = NULL;
static int buffer_size = 0;
static sample_t impulses[MAX_RES][WIDTH];
static sample_t* write_pos = NULL;
static int res = 1;
static int imp_phase = 0;
static unsigned long skip_bits = 0;
static int step = STEREO;
static int input_per_cycle;
static double ratio = 1.0;
static void gen_sinc(double rolloff, int width, double offset, double spacing, double scale, int count, sample_t *out )
{
double w, rolloff_cos_a, num, den, sinc;
double const maxh = 256;
double const fstep = M_PI / maxh * spacing;
double const to_w = maxh * 2 / width;
double const pow_a_n = pow( rolloff, maxh );
double angle = (count / 2 - 1 + offset) * -fstep;
scale /= maxh * 2;
do
{
*out++ = 0;
w = angle * to_w;
if ( fabs( w ) < M_PI )
{
rolloff_cos_a = rolloff * cos( angle );
num = 1 - rolloff_cos_a -
pow_a_n * cos( maxh * angle ) +
pow_a_n * rolloff * cos( (maxh - 1) * angle );
den = 1 - rolloff_cos_a - rolloff_cos_a + rolloff * rolloff;
sinc = scale * num / den - scale;
out [-1] = (short) (cos( w ) * sinc + sinc);
}
angle += fstep;
}
while(--count);
}
/*static int available( long input_count )
{
int cycle_count = input_count / input_per_cycle;
int output_count = cycle_count * res * STEREO;
input_count -= cycle_count * input_per_cycle;
unsigned long skip = skip_bits >> imp_phase;
int remain = res - imp_phase;
while ( input_count >= 0 )
{
input_count -= step + (skip & 1) * STEREO;
skip >>= 1;
if ( !--remain )
{
skip = skip_bits;
remain = res;
}
output_count += 2;
}
return output_count;
}
*/
int Fir_Resampler_avail()
{
long count = 0;
sample_t* in = buffer;
sample_t* end_pos = write_pos;
unsigned long skip = skip_bits >> imp_phase;
int remain = res - imp_phase;
if ( end_pos - in >= WIDTH * STEREO )
{
end_pos -= WIDTH * STEREO;
do
{
count++;
remain--;
in += (skip * STEREO) & STEREO;
skip >>= 1;
in += step;
if ( !remain )
{
skip = skip_bits;
remain = res;
}
}
while ( in <= end_pos );
}
return count;
}
int Fir_Resampler_initialize( int new_size )
{
res = 1;
skip_bits = 0;
imp_phase = 0;
step = STEREO;
ratio = 1.0;
buffer = (sample_t *) realloc( buffer, (new_size + WRITE_OFFSET) * sizeof (sample_t) );
write_pos = 0;
if ( !buffer ) return 0;
buffer_size = new_size + WRITE_OFFSET;
Fir_Resampler_clear();
return 1;
}
void Fir_Resampler_shutdown( void )
{
if (buffer) free(buffer);
buffer = 0;
buffer_size = 0;
write_pos = 0;
}
void Fir_Resampler_clear()
{
imp_phase = 0;
if ( buffer_size )
{
write_pos = &buffer [WRITE_OFFSET];
memset( buffer, 0, buffer_size * sizeof (sample_t) );
}
}
double Fir_Resampler_time_ratio( double new_factor, double rolloff )
{
int i, r;
double nearest, error, filter;
double fstep = 0.0;
double least_error = 2;
double pos = 0.0;
res = -1;
for ( r = 1; r <= MAX_RES; r++ )
{
pos += new_factor;
nearest = floor( pos + 0.5 );
error = fabs( pos - nearest );
if ( error < least_error )
{
res = r;
fstep = nearest / res;
least_error = error;
}
}
skip_bits = 0;
step = STEREO * (int) floor( fstep );
ratio = fstep;
fstep = fmod( fstep, 1.0 );
filter = (ratio < 1.0) ? 1.0 : 1.0 / ratio;
pos = 0.0;
input_per_cycle = 0;
memset(impulses, 0, MAX_RES*WIDTH*sizeof(sample_t));
for ( i = 0; i < res; i++ )
{
gen_sinc( rolloff, (int) (WIDTH * filter + 1) & ~1, pos, filter,
(double) (0x7FFF * GAIN * filter),
(int) WIDTH, impulses[i] );
pos += fstep;
input_per_cycle += step;
if ( pos >= 0.9999999 )
{
pos -= 1.0;
skip_bits |= 1 << i;
input_per_cycle++;
}
}
Fir_Resampler_clear();
return ratio;
}
/* Current ratio */
double Fir_Resampler_ratio( void )
{
return ratio;
}
/* Number of input samples that can be written */
int Fir_Resampler_max_write( void )
{
return buffer + buffer_size - write_pos;
}
/* Pointer to place to write input samples */
sample_t* Fir_Resampler_buffer( void )
{
return write_pos;
}
/* Number of input samples in buffer */
int Fir_Resampler_written( void )
{
return write_pos - &buffer [WRITE_OFFSET];
}
/* Number of output samples available */
/*int Fir_Resampler_avail( void )
{
return available( write_pos - &buffer [WIDTH * STEREO] );
}*/
void Fir_Resampler_write( long count )
{
write_pos += count;
}
int Fir_Resampler_read( sample_t* out, long count )
{
sample_t* out_ = out;
sample_t* in = buffer;
sample_t* end_pos = write_pos;
unsigned long skip = skip_bits >> imp_phase;
sample_t const* imp = impulses [imp_phase];
int remain = res - imp_phase;
int n;
int pt0,pt1;
sample_t* i;
long l,r;
if ( end_pos - in >= WIDTH * STEREO )
{
end_pos -= WIDTH * STEREO;
do
{
count--;
if ( count < 0 )
break;
/* accumulate in extended precision */
l = 0;
r = 0;
i = in;
for ( n = WIDTH / 2; n; --n )
{
pt0 = imp [0];
l += pt0 * i [0];
r += pt0 * i [1];
pt1 = imp [1];
imp += 2;
l += pt1 * i [2];
r += pt1 * i [3];
i += 4;
}
remain--;
l >>= 15;
r >>= 15;
in += (skip * STEREO) & STEREO;
skip >>= 1;
in += step;
if ( !remain )
{
imp = impulses [0];
skip = skip_bits;
remain = res;
}
*out++ = (sample_t) l;
*out++ = (sample_t) r;
}
while ( in <= end_pos );
}
imp_phase = res - remain;
n = write_pos - in;
write_pos = &buffer [n];
memmove( buffer, in, n * sizeof *in );
return out - out_;
}
/* fixed (Eke_Eke) */
int Fir_Resampler_input_needed( long output_count )
{
long input_count = 0;
unsigned long skip = skip_bits >> imp_phase;
int remain = res - imp_phase;
while ( (output_count) > 0 )
{
input_count += step + (skip & 1) * STEREO;
skip >>= 1;
if ( !--remain )
{
skip = skip_bits;
remain = res;
}
output_count --;
}
input_count -= (write_pos - &buffer [WRITE_OFFSET]);
if ( input_count < 0 )
input_count = 0;
return (input_count >> 1);
}
int Fir_Resampler_skip_input( long count )
{
int remain = write_pos - buffer;
int max_count = remain - WIDTH * STEREO;
if ( count > max_count )
count = max_count;
remain -= count;
write_pos = &buffer [remain];
memmove( buffer, &buffer [count], remain * sizeof buffer [0] );
return count;
}