Genesis-Plus-GX/source/vdp.c
2007-08-11 18:03:15 +00:00

597 lines
16 KiB
C

#include "shared.h"
#include "hvc.h"
/* Pack and unpack CRAM data */
#define PACK_CRAM(d) ((((d)&0xE00)>>9)|(((d)&0x0E0)>>2)|(((d)&0x00E)<<5))
#define UNPACK_CRAM(d) ((((d)&0x1C0)>>5)|((d)&0x038)<<2|(((d)&0x007)<<9))
/* Mark a pattern as dirty */
#define MARK_BG_DIRTY(addr) \
{ \
int name = (addr >> 5) & 0x7FF; \
if(bg_name_dirty[name] == 0) bg_name_list[bg_list_index++] = name; \
bg_name_dirty[name] |= (1 << ((addr >> 2) & 0x07)); \
}
/* Tables that define the playfield layout */
uint8 shift_table[] = { 6, 7, 0, 8 };
uint8 col_mask_table[] = { 0x0F, 0x1F, 0x0F, 0x3F };
uint16 row_mask_table[] = { 0x0FF, 0x1FF, 0x2FF, 0x3FF };
uint32 y_mask_table[] = { 0x1FC0, 0x1F80, 0x1FC0, 0x1F00 };
/* DMA Timings Table
DMA Mode Width Display Transfer Count
-----------------------------------------------------
68K > VDP 32-cell Active 16
Blanking 167
40-cell Active 18
Blanking 205
VRAM Fill 32-cell Active 15
Blanking 166
40-cell Active 17
Blanking 204
VRAM Copy 32-cell Active 8
Blanking 83
40-cell Active 9
Blanking 102
*/
uint8 dmarate_table[16] = {
83 , 102, 8, 9, // M68k to VRAM
167, 205, 16, 18, // M68k to VSRAM or CRAM
166, 204, 15, 17, // DMA fill
83 , 102, 8, 9 // DMA Copy
};
uint8 sat[0x400]; /* Internal copy of sprite attribute table */
uint8 vram[0x10000]; /* Video RAM (64Kx8) */
uint8 cram[0x80]; /* On-chip color RAM (64x9) */
uint8 vsram[0x80]; /* On-chip vertical scroll RAM (40x11) */
uint8 reg[0x20]; /* Internal VDP registers (23x8) */
uint16 addr; /* Address register */
uint16 addr_latch; /* Latched A15, A14 of address */
uint8 code; /* Code register */
uint8 pending; /* Pending write flag */
uint16 status; /* VDP status flags */
uint16 ntab; /* Name table A base address */
uint16 ntbb; /* Name table B base address */
uint16 ntwb; /* Name table W base address */
uint16 satb; /* Sprite attribute table base address */
uint16 hscb; /* Horizontal scroll table base address */
uint16 sat_base_mask; /* Base bits of SAT */
uint16 sat_addr_mask; /* Index bits of SAT */
uint8 border; /* Border color index */
uint8 bg_name_dirty[0x800]; /* 1= This pattern is dirty */
uint16 bg_name_list[0x800]; /* List of modified pattern indices */
uint16 bg_list_index; /* # of modified patterns in list */
uint8 bg_pattern_cache[0x80000]; /* Cached and flipped patterns */
uint8 playfield_shift; /* Width of planes A, B (in bits) */
uint8 playfield_col_mask; /* Vertical scroll mask */
uint16 playfield_row_mask; /* Horizontal scroll mask */
uint32 y_mask; /* Name table Y-index bits mask */
uint8 hint_pending; /* 0= Line interrupt is pending */
uint8 vint_pending; /* 1= Frame interrupt is pending */
int16 h_counter; /* Raster counter */
int16 hc_latch; /* latched HCounter (INT2) */
uint16 v_counter; /* VDP scan line counter */
uint8 im2_flag; /* 1= Interlace mode 2 is being used */
uint16 frame_end; /* End-of-frame (IRQ line) */
uint8 dmafill; /* 1= DMA fill has been requested */
uint32 dma_endCycles; /* DMA ending cycles count */
uint8 vdp_pal = 0 ; /* CPU mode (NTSC by default) */
uint8 vdp_rate = 60; /* CPU speed (60Hz by default)*/
void (*color_update) (int index, uint16 data);
uint8 dmatiming = 1;
uint8 vdptiming = 1;
/*--------------------------------------------------------------------------*/
/* Init, reset, shutdown functions */
/*--------------------------------------------------------------------------*/
void vdp_init (void)
{}
void vdp_reset (void)
{
memset ((char *) sat, 0, sizeof (sat));
memset ((char *) vram, 0, sizeof (vram));
memset ((char *) cram, 0, sizeof (cram));
memset ((char *) vsram, 0, sizeof (vsram));
memset ((char *) reg, 0, sizeof (reg));
addr = addr_latch = code = pending = 0;
ntab = ntbb = ntwb = satb = hscb = 0;
sat_base_mask = 0xFE00;
sat_addr_mask = 0x01FF;
/* Mark all colors as dirty to force a palette update */
border = 0x00;
memset ((char *) bg_name_dirty, 0, sizeof (bg_name_dirty));
memset ((char *) bg_name_list, 0, sizeof (bg_name_list));
bg_list_index = 0;
memset ((char *) bg_pattern_cache, 0, sizeof (bg_pattern_cache));
playfield_shift = 6;
playfield_col_mask = 0x0F;
playfield_row_mask = 0x0FF;
y_mask = 0x1FC0;
hint_pending = vint_pending = 0;
h_counter = 0;
hc_latch = -1;
v_counter = 0;
dmafill = 0;
im2_flag = 0;
frame_end = 0xE0;
dma_endCycles = 0;
status = 0x200; /* fifo empty - all other flags clear */
/* Initialize viewport */
bitmap.viewport.x = 0x20;
bitmap.viewport.y = 0x20;
bitmap.viewport.w = 256;
bitmap.viewport.h = 224;
bitmap.viewport.oh = 256;
bitmap.viewport.ow = 224;
bitmap.viewport.changed = 1;
}
void vdp_shutdown (void)
{}
/*--------------------------------------------------------------------------*/
/* DMA Operations */
/*--------------------------------------------------------------------------*/
/* DMA Timings */
/* timing type = 0 (Copy to VRAM), 1 (Copy to VSRAM or CRAM), 2 (VRAM Fill), 3 (VRAM Copy) */
void dma_update(int type, int length)
{
uint32 dma_cycles;
uint8 index = 4 * type; /* DMA timing type */
if (!dmatiming) return;
/* get the appropriate tranfer rate (bytes/line) for this DMA operation */
if (!(status&8) && (reg[1]&0x40)) index += 2; /* not in VBLANK and Display ON */
index += (reg[12] & 1); /* 32 or 40 Horizontal Cells */
/* determinate associated 68kcycles number */
dma_cycles = (misc68Kcycles * length ) / dmarate_table[index];
if (type < 2)
{
/* 68K COPY to V-RAM */
/* 68K is frozen during DMA operation */
m68k_freeze(dma_cycles);
}
else
{
/* VRAM Fill or VRAM Copy */
/* we keep the number of cycles executed so far */
/* used for DMA Busy flag update on status read */
dma_endCycles = count_m68k + m68k_cycles_run() + dma_cycles;
dma_m68k = 0;
/* set DMA Busy flag */
status |= 0x0002;
}
}
/* VRAM to VRAM copy
Read byte from VRAM (source), write to VRAM (addr),
bump source and add r15 to addr.
- see how source addr is affected
(can it make high source byte inc?) */
void dma_copy (void)
{
int length = (reg[20] << 8 | reg[19]) & 0xFFFF;
int source = (reg[22] << 8 | reg[21]) & 0xFFFF;
if (!length) length = 0x10000;
dma_update(3,length);
do
{
vram[addr] = vram[source];
MARK_BG_DIRTY (addr);
source = (source + 1) & 0xFFFF;
addr += reg[15];
}
while (--length);
reg[19] = length & 0xFF;
reg[20] = (length >> 8) & 0xFF;
reg[21] = source & 0xFF; /* not sure */
reg[22] = (source >> 8) & 0xFF;
}
/* 68K Copy to VRAM, VSRAM or CRAM */
void dma_vbus (void)
{
uint32 base, source = ((reg[23] & 0x7F) << 17 | reg[22] << 9 | reg[21] << 1) & 0xFFFFFE;
uint32 length = (reg[20] << 8 | reg[19]) & 0xFFFF;
uint8 old_vdptiming = vdptiming;
if (!length) length = 0x10000;
base = source;
/* DMA timings */
if ((code & 0x0F) == 0x01) dma_update(0,length); /* VRAM */
else dma_update(1,length); /* CRAM & VSRAM */
vdptiming = 0;
do
{
uint16 temp = vdp_dma_r (source);
source += 2;
source = ((base & 0xFE0000) | (source & 0x1FFFF));
vdp_data_w (temp);
}
while (--length);
vdptiming = old_vdptiming;
reg[19] = length & 0xFF;
reg[20] = (length >> 8) & 0xFF;
reg[21] = (source >> 1) & 0xFF;
reg[22] = (source >> 9) & 0xFF;
reg[23] = (reg[23] & 0x80) | ((source >> 17) & 0x7F);
}
/* VRAM FILL */
void dma_fill(uint16 data)
{
int length = (reg[20] << 8 | reg[19]) & 0xFFFF;
if (!length) length = 0x10000;
dma_update(2, length);
WRITE_BYTE(vram, addr, data & 0xFF);
do
{
WRITE_BYTE(vram, addr^1, (data >> 8) & 0xFF);
MARK_BG_DIRTY (addr);
addr += reg[15];
}
while (--length);
reg[19] = length & 0xFF;
reg[20] = (length >> 8) & 0xFF;
dmafill = 0;
}
/*--------------------------------------------------------------------------*/
/* Memory access functions */
/*--------------------------------------------------------------------------*/
void vdp_ctrl_w (uint16 data)
{
if (pending == 0)
{
if ((data & 0xC000) == 0x8000)
{
uint8 r = (data >> 8) & 0x1F;
uint8 d = data & 0xFF;
vdp_reg_w (r, d);
}
else pending = 1;
addr = ((addr_latch & 0xC000) | (data & 0x3FFF)) & 0xFFFF;
code = ((code & 0x3C) | ((data >> 14) & 0x03)) & 0x3F;
}
else
{
/* Clear pending flag */
pending = 0;
/* Update address and code registers */
addr = ((addr & 0x3FFF) | ((data & 3) << 14)) & 0xFFFF;
code = ((code & 0x03) | ((data >> 2) & 0x3C)) & 0x3F;
/* Save address bits A15 and A14 */
addr_latch = (addr & 0xC000);
if ((code & 0x20) && (reg[1] & 0x10))
{
switch (reg[23] & 0xC0)
{
case 0x00: /* V bus to VDP DMA */
case 0x40: /* V bus to VDP DMA */
dma_vbus ();
break;
case 0x80: /* VRAM fill */
dmafill = 1;
break;
case 0xC0: /* VRAM copy */
dma_copy ();
break;
}
}
}
}
uint16 vdp_ctrl_r (void)
{
/**
* Return vdp status
*
* Bits are
* 0 0:1 ntsc:pal
* 1 DMA Busy
* 2 During HBlank
* 3 During VBlank
* 4 Frame Interlace 0:even 1:odd
* 5 Sprite collision
* 6 Too many sprites per line
* 7 v interrupt occurred
* 8 Write FIFO full
* 9 Write FIFO empty
* 10 - 15 Next word on bus
*/
uint16 temp;
int dma_lastCycles = dma_endCycles - (dma_m68k + count_m68k + m68k_cycles_run());
/* reset DMA status flag if needed */
if ((status & 0x0002) && (dma_lastCycles <= 0)) status &= 0xFFFD;
temp = status | vdp_pal;
pending = 0;
/* reset status */
status ^= 0xFF00; /* toggle FIFO status & new word on bus */
status &= 0xFF9F; /* clear sprite overflow & sprite collision */
if (!(status & 8)) status &= ~0x0080; /* not in VBLANK: clear vint flag */
if (!(reg[1] & 0x40)) temp |= 0x8; /* no display => in VBLANK*/
return (temp);
}
void vdp_data_w (uint16 data)
{
/* Clear pending flag */
pending = 0;
if (dmafill)
{
dma_fill(data);
return;
}
/* delays VDP RAM access */
/* hack for Chaos Engine / Soldiers of Fortune */
if (vdptiming && !(status&8) && (reg[1]&0x40))
{
if (reg[12] & 1) m68k_freeze(30); // 40 cell
else m68k_freeze(27); // 32 cell
}
switch (code & 0x0F)
{
case 0x01: /* VRAM */
/* Byte-swap data if A0 is set */
if (addr & 1) data = (data >> 8) | (data << 8);
/* Copy SAT data to the internal SAT */
if ((addr & sat_base_mask) == satb)
{
*(uint16 *) & sat[addr & sat_addr_mask] = data;
}
/* Only write unique data to VRAM */
if (data != *(uint16 *) & vram[addr & 0xFFFE])
{
/* Write data to VRAM */
*(uint16 *) & vram[addr & 0xFFFE] = data;
/* Update the pattern cache */
MARK_BG_DIRTY (addr);
}
break;
case 0x03: /* CRAM */
{
uint16 *p = (uint16 *) & cram[(addr & 0x7E)];
data = PACK_CRAM (data & 0x0EEE);
if (data != *p)
{
int index = (addr >> 1) & 0x3F;
*p = data;
color_update (index, *p);
color_update (0x00, *(uint16 *)&cram[border << 1]);
}
}
break;
case 0x05: /* VSRAM */
*(uint16 *) & vsram[(addr & 0x7E)] = data;
break;
}
/* Bump address register */
addr += reg[15];
}
uint16 vdp_data_r (void)
{
uint16 temp = 0;
/* Clear pending flag */
pending = 0;
switch (code & 0x0F)
{
case 0x00: /* VRAM */
temp = *(uint16 *) & vram[(addr & 0xFFFE)];
break;
case 0x08: /* CRAM */
temp = *(uint16 *) & cram[(addr & 0x7E)];
temp = UNPACK_CRAM (temp);
break;
case 0x04: /* VSRAM */
temp = *(uint16 *) & vsram[(addr & 0x7E)];
break;
}
/* Bump address register */
addr += reg[15];
/* return data */
return (temp);
}
/*
The reg[] array is updated at the *end* of this function, so the new
register data can be compared with the previous data.
*/
void vdp_reg_w (uint8 r, uint8 d)
{
switch (r)
{
case 0x00: /* CTRL #1 */
if (!(d & 0x02)) hc_latch = -1;
break;
case 0x01: /* CTRL #2 */
/* Change the frame timing */
frame_end = (d & 8) ? 0xF0 : 0xE0;
/* Check if the viewport height has actually been changed */
if ((reg[1] & 8) != (d & 8))
{
/* Update the height of the viewport */
bitmap.viewport.oh = bitmap.viewport.h;
bitmap.viewport.h = (d & 8) ? 240 : 224;
bitmap.viewport.changed = 1;
}
break;
case 0x02: /* NTAB */
ntab = (d << 10) & 0xE000;
break;
case 0x03: /* NTWB */
ntwb = (d << 10) & ((reg[12] & 1) ? 0xF000 : 0xF800);
break;
case 0x04: /* NTBB */
ntbb = (d << 13) & 0xE000;
break;
case 0x05: /* SATB */
sat_base_mask = (reg[12] & 1) ? 0xFC00 : 0xFE00;
sat_addr_mask = (reg[12] & 1) ? 0x03FF : 0x01FF;
satb = (d << 9) & sat_base_mask;
break;
case 0x07:
d &= 0x3F;
/* Check if the border color has actually changed */
if (border != d)
{
/* Mark the border color as modified */
border = d;
color_update (0x00, *(uint16 *) & cram[(border << 1)]);
}
break;
case 0x0C:
/* Check if the viewport width has actually been changed */
if ((reg[0x0C] & 1) != (d & 1))
{
/* Update the width of the viewport */
bitmap.viewport.ow = bitmap.viewport.w;
bitmap.viewport.w = (d & 1) ? 320 : 256;
bitmap.viewport.changed = 1;
}
/* See if the S/TE mode bit has changed */
if ((reg[0x0C] & 8) != (d & 8))
{
int i;
reg[0x0C] = d;
/* Update colors */
for (i = 0; i < 0x40; i += 1) color_update (i, *(uint16 *) & cram[i << 1]);
color_update (0x00, *(uint16 *) & cram[border << 1]);
}
/* Check interlace mode 2 setting */
im2_flag = ((d & 0x06) == 0x06) ? 1 : 0;
/* The following register updates check this value */
reg[0x0C] = d;
/* Update display-dependant registers */
vdp_reg_w (0x03, reg[0x03]);
vdp_reg_w (0x05, reg[0x05]);
break;
case 0x0D: /* HSCB */
hscb = (d << 10) & 0xFC00;
break;
case 0x10: /* Playfield size */
playfield_shift = shift_table[(d & 3)];
playfield_col_mask = col_mask_table[(d & 3)];
playfield_row_mask = row_mask_table[(d >> 4) & 3];
y_mask = y_mask_table[(d & 3)];
break;
}
/* Write new register value */
reg[r] = d;
}
uint16 vdp_hvc_r (void)
{
int cycles = (count_m68k + m68k_cycles_run ()) % misc68Kcycles;
uint8 *hctab = (reg[12] & 1) ? cycle2hc40 : cycle2hc32;
uint16 *vctab = (vdp_pal) ? vc_pal_224 : vc_ntsc_224;
if ((reg[1] & 8) && vdp_pal) vctab = vc_pal_240;
uint8 hc = (hc_latch == -1) ? hctab[cycles] : (hc_latch&0xFF);
uint16 vc = vctab[v_counter];
/* interlace mode 2 */
if (im2_flag) vc = (vc & 0xFE) | ((vc >> 8) & 0x01);
return (((vc << 8)&0xFF00) | hc);
}
void vdp_test_w (uint16 value)
{}
int vdp_int_ack_callback (int int_level)
{
if (vint_pending) vint_pending = 0;
else hint_pending = 0;
if (!hint_pending && !vint_pending) m68k_set_irq(0);
return M68K_INT_ACK_AUTOVECTOR;
}