Lime3DS/src/core/dumping/ffmpeg_backend.cpp

833 lines
27 KiB
C++
Raw Normal View History

// Copyright 2018 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <unordered_set>
#include "common/assert.h"
#include "common/file_util.h"
#include "common/logging/log.h"
#include "common/param_package.h"
#include "common/string_util.h"
#include "core/dumping/ffmpeg_backend.h"
#include "core/settings.h"
#include "video_core/renderer_base.h"
#include "video_core/video_core.h"
extern "C" {
#include <libavutil/pixdesc.h>
}
namespace VideoDumper {
void InitializeFFmpegLibraries() {
static bool initialized = false;
if (initialized)
return;
#if LIBAVCODEC_VERSION_INT < AV_VERSION_INT(58, 9, 100)
av_register_all();
#endif
avformat_network_init();
initialized = true;
}
AVDictionary* ToAVDictionary(const std::string& serialized) {
Common::ParamPackage param_package{serialized};
AVDictionary* result = nullptr;
for (const auto& [key, value] : param_package) {
av_dict_set(&result, key.c_str(), value.c_str(), 0);
}
return result;
}
FFmpegStream::~FFmpegStream() {
Free();
}
bool FFmpegStream::Init(AVFormatContext* format_context_) {
InitializeFFmpegLibraries();
format_context = format_context_;
return true;
}
void FFmpegStream::Free() {
codec_context.reset();
}
void FFmpegStream::Flush() {
SendFrame(nullptr);
}
void FFmpegStream::WritePacket(AVPacket& packet) {
if (packet.pts != static_cast<s64>(AV_NOPTS_VALUE)) {
packet.pts = av_rescale_q(packet.pts, codec_context->time_base, stream->time_base);
}
if (packet.dts != static_cast<s64>(AV_NOPTS_VALUE)) {
packet.dts = av_rescale_q(packet.dts, codec_context->time_base, stream->time_base);
}
packet.stream_index = stream->index;
av_interleaved_write_frame(format_context, &packet);
}
void FFmpegStream::SendFrame(AVFrame* frame) {
// Initialize packet
AVPacket packet;
av_init_packet(&packet);
packet.data = nullptr;
packet.size = 0;
// Encode frame
if (avcodec_send_frame(codec_context.get(), frame) < 0) {
LOG_ERROR(Render, "Frame dropped: could not send frame");
return;
}
int error = 1;
while (error >= 0) {
error = avcodec_receive_packet(codec_context.get(), &packet);
if (error == AVERROR(EAGAIN) || error == AVERROR_EOF)
return;
if (error < 0) {
LOG_ERROR(Render, "Frame dropped: could not encode audio");
return;
} else {
// Write frame to video file
WritePacket(packet);
}
}
}
FFmpegVideoStream::~FFmpegVideoStream() {
Free();
}
bool FFmpegVideoStream::Init(AVFormatContext* format_context, AVOutputFormat* output_format,
const Layout::FramebufferLayout& layout_) {
InitializeFFmpegLibraries();
if (!FFmpegStream::Init(format_context))
return false;
layout = layout_;
frame_count = 0;
// Initialize video codec
const AVCodec* codec = avcodec_find_encoder_by_name(Settings::values.video_encoder.c_str());
codec_context.reset(avcodec_alloc_context3(codec));
if (!codec || !codec_context) {
LOG_ERROR(Render, "Could not find video encoder or allocate video codec context");
return false;
}
// Configure video codec context
codec_context->codec_type = AVMEDIA_TYPE_VIDEO;
codec_context->bit_rate = Settings::values.video_bitrate;
codec_context->width = layout.width;
codec_context->height = layout.height;
codec_context->time_base.num = 1;
codec_context->time_base.den = 60;
codec_context->gop_size = 12;
codec_context->pix_fmt = codec->pix_fmts ? codec->pix_fmts[0] : AV_PIX_FMT_YUV420P;
if (output_format->flags & AVFMT_GLOBALHEADER)
codec_context->flags |= AV_CODEC_FLAG_GLOBAL_HEADER;
AVDictionary* options = ToAVDictionary(Settings::values.video_encoder_options);
if (avcodec_open2(codec_context.get(), codec, &options) < 0) {
LOG_ERROR(Render, "Could not open video codec");
return false;
}
if (av_dict_count(options) != 0) { // Successfully set options are removed from the dict
char* buf = nullptr;
av_dict_get_string(options, &buf, ':', ';');
LOG_WARNING(Render, "Video encoder options not found: {}", buf);
}
// Create video stream
stream = avformat_new_stream(format_context, codec);
if (!stream || avcodec_parameters_from_context(stream->codecpar, codec_context.get()) < 0) {
LOG_ERROR(Render, "Could not create video stream");
return false;
}
// Allocate frames
current_frame.reset(av_frame_alloc());
scaled_frame.reset(av_frame_alloc());
scaled_frame->format = codec_context->pix_fmt;
scaled_frame->width = layout.width;
scaled_frame->height = layout.height;
if (av_frame_get_buffer(scaled_frame.get(), 1) < 0) {
LOG_ERROR(Render, "Could not allocate frame buffer");
return false;
}
// Create SWS Context
auto* context = sws_getCachedContext(
sws_context.get(), layout.width, layout.height, pixel_format, layout.width, layout.height,
codec_context->pix_fmt, SWS_BICUBIC, nullptr, nullptr, nullptr);
if (context != sws_context.get())
sws_context.reset(context);
return true;
}
void FFmpegVideoStream::Free() {
FFmpegStream::Free();
current_frame.reset();
scaled_frame.reset();
sws_context.reset();
}
void FFmpegVideoStream::ProcessFrame(VideoFrame& frame) {
if (frame.width != layout.width || frame.height != layout.height) {
LOG_ERROR(Render, "Frame dropped: resolution does not match");
return;
}
// Prepare frame
current_frame->data[0] = frame.data.data();
current_frame->linesize[0] = frame.stride;
current_frame->format = pixel_format;
current_frame->width = layout.width;
current_frame->height = layout.height;
// Scale the frame
if (sws_context) {
sws_scale(sws_context.get(), current_frame->data, current_frame->linesize, 0, layout.height,
scaled_frame->data, scaled_frame->linesize);
}
scaled_frame->pts = frame_count++;
// Encode frame
SendFrame(scaled_frame.get());
}
FFmpegAudioStream::~FFmpegAudioStream() {
Free();
}
bool FFmpegAudioStream::Init(AVFormatContext* format_context) {
InitializeFFmpegLibraries();
if (!FFmpegStream::Init(format_context))
return false;
frame_count = 0;
// Initialize audio codec
const AVCodec* codec = avcodec_find_encoder_by_name(Settings::values.audio_encoder.c_str());
codec_context.reset(avcodec_alloc_context3(codec));
if (!codec || !codec_context) {
LOG_ERROR(Render, "Could not find audio encoder or allocate audio codec context");
return false;
}
// Configure audio codec context
codec_context->codec_type = AVMEDIA_TYPE_AUDIO;
codec_context->bit_rate = Settings::values.audio_bitrate;
if (codec->sample_fmts) {
codec_context->sample_fmt = codec->sample_fmts[0];
} else {
codec_context->sample_fmt = AV_SAMPLE_FMT_S16P;
}
if (codec->supported_samplerates) {
codec_context->sample_rate = codec->supported_samplerates[0];
// Prefer native sample rate if supported
const int* ptr = codec->supported_samplerates;
while ((*ptr)) {
if ((*ptr) == AudioCore::native_sample_rate) {
codec_context->sample_rate = AudioCore::native_sample_rate;
break;
}
ptr++;
}
} else {
codec_context->sample_rate = AudioCore::native_sample_rate;
}
codec_context->channel_layout = AV_CH_LAYOUT_STEREO;
codec_context->channels = 2;
AVDictionary* options = ToAVDictionary(Settings::values.audio_encoder_options);
if (avcodec_open2(codec_context.get(), codec, &options) < 0) {
LOG_ERROR(Render, "Could not open audio codec");
return false;
}
if (av_dict_count(options) != 0) { // Successfully set options are removed from the dict
char* buf = nullptr;
av_dict_get_string(options, &buf, ':', ';');
LOG_WARNING(Render, "Audio encoder options not found: {}", buf);
}
if (codec_context->frame_size) {
frame_size = static_cast<u64>(codec_context->frame_size);
} else { // variable frame size support
frame_size = std::tuple_size<AudioCore::StereoFrame16>::value;
}
// Create audio stream
stream = avformat_new_stream(format_context, codec);
if (!stream || avcodec_parameters_from_context(stream->codecpar, codec_context.get()) < 0) {
LOG_ERROR(Render, "Could not create audio stream");
return false;
}
// Allocate frame
audio_frame.reset(av_frame_alloc());
audio_frame->format = codec_context->sample_fmt;
audio_frame->channel_layout = codec_context->channel_layout;
audio_frame->channels = codec_context->channels;
// Allocate SWR context
auto* context =
swr_alloc_set_opts(nullptr, codec_context->channel_layout, codec_context->sample_fmt,
codec_context->sample_rate, codec_context->channel_layout,
AV_SAMPLE_FMT_S16P, AudioCore::native_sample_rate, 0, nullptr);
if (!context) {
LOG_ERROR(Render, "Could not create SWR context");
return false;
}
swr_context.reset(context);
if (swr_init(swr_context.get()) < 0) {
LOG_ERROR(Render, "Could not init SWR context");
return false;
}
// Allocate resampled data
int error =
av_samples_alloc_array_and_samples(&resampled_data, nullptr, codec_context->channels,
frame_size, codec_context->sample_fmt, 0);
if (error < 0) {
LOG_ERROR(Render, "Could not allocate samples storage");
return false;
}
return true;
}
void FFmpegAudioStream::Free() {
FFmpegStream::Free();
audio_frame.reset();
swr_context.reset();
// Free resampled data
if (resampled_data) {
av_freep(&resampled_data[0]);
}
av_freep(&resampled_data);
}
void FFmpegAudioStream::ProcessFrame(const VariableAudioFrame& channel0,
const VariableAudioFrame& channel1) {
ASSERT_MSG(channel0.size() == channel1.size(),
"Frames of the two channels must have the same number of samples");
const auto sample_size = av_get_bytes_per_sample(codec_context->sample_fmt);
std::array<const u8*, 2> src_data = {reinterpret_cast<const u8*>(channel0.data()),
reinterpret_cast<const u8*>(channel1.data())};
std::array<u8*, 2> dst_data;
if (av_sample_fmt_is_planar(codec_context->sample_fmt)) {
dst_data = {resampled_data[0] + sample_size * offset,
resampled_data[1] + sample_size * offset};
} else {
dst_data = {resampled_data[0] + sample_size * offset * 2}; // 2 channels
}
auto resampled_count = swr_convert(swr_context.get(), dst_data.data(), frame_size - offset,
src_data.data(), channel0.size());
if (resampled_count < 0) {
LOG_ERROR(Render, "Audio frame dropped: Could not resample data");
return;
}
offset += resampled_count;
if (offset < frame_size) { // Still not enough to form a frame
return;
}
while (true) {
// Prepare frame
audio_frame->nb_samples = frame_size;
audio_frame->data[0] = resampled_data[0];
if (av_sample_fmt_is_planar(codec_context->sample_fmt)) {
audio_frame->data[1] = resampled_data[1];
}
audio_frame->pts = frame_count * frame_size;
frame_count++;
SendFrame(audio_frame.get());
// swr_convert buffers input internally. Try to get more resampled data
resampled_count = swr_convert(swr_context.get(), resampled_data, frame_size, nullptr, 0);
if (resampled_count < 0) {
LOG_ERROR(Render, "Audio frame dropped: Could not resample data");
return;
}
if (static_cast<u64>(resampled_count) < frame_size) {
offset = resampled_count;
break;
}
}
}
void FFmpegAudioStream::Flush() {
// Send the last samples
audio_frame->nb_samples = offset;
audio_frame->data[0] = resampled_data[0];
if (av_sample_fmt_is_planar(codec_context->sample_fmt)) {
audio_frame->data[1] = resampled_data[1];
}
audio_frame->pts = frame_count * frame_size;
SendFrame(audio_frame.get());
FFmpegStream::Flush();
}
FFmpegMuxer::~FFmpegMuxer() {
Free();
}
bool FFmpegMuxer::Init(const std::string& path, const Layout::FramebufferLayout& layout) {
InitializeFFmpegLibraries();
if (!FileUtil::CreateFullPath(path)) {
return false;
}
// Get output format
const auto format = Settings::values.output_format;
auto* output_format = av_guess_format(format.c_str(), path.c_str(), nullptr);
if (!output_format) {
LOG_ERROR(Render, "Could not get format {}", format);
return false;
}
// Initialize format context
auto* format_context_raw = format_context.get();
if (avformat_alloc_output_context2(&format_context_raw, output_format, nullptr, path.c_str()) <
0) {
LOG_ERROR(Render, "Could not allocate output context");
return false;
}
format_context.reset(format_context_raw);
if (!video_stream.Init(format_context.get(), output_format, layout))
return false;
if (!audio_stream.Init(format_context.get()))
return false;
AVDictionary* options = ToAVDictionary(Settings::values.format_options);
// Open video file
if (avio_open(&format_context->pb, path.c_str(), AVIO_FLAG_WRITE) < 0 ||
avformat_write_header(format_context.get(), &options)) {
LOG_ERROR(Render, "Could not open {}", path);
return false;
}
if (av_dict_count(options) != 0) { // Successfully set options are removed from the dict
char* buf = nullptr;
av_dict_get_string(options, &buf, ':', ';');
LOG_WARNING(Render, "Format options not found: {}", buf);
}
LOG_INFO(Render, "Dumping frames to {} ({}x{})", path, layout.width, layout.height);
return true;
}
void FFmpegMuxer::Free() {
video_stream.Free();
audio_stream.Free();
format_context.reset();
}
void FFmpegMuxer::ProcessVideoFrame(VideoFrame& frame) {
video_stream.ProcessFrame(frame);
}
void FFmpegMuxer::ProcessAudioFrame(const VariableAudioFrame& channel0,
const VariableAudioFrame& channel1) {
audio_stream.ProcessFrame(channel0, channel1);
}
void FFmpegMuxer::FlushVideo() {
video_stream.Flush();
}
void FFmpegMuxer::FlushAudio() {
audio_stream.Flush();
}
void FFmpegMuxer::WriteTrailer() {
av_write_trailer(format_context.get());
}
FFmpegBackend::FFmpegBackend() = default;
FFmpegBackend::~FFmpegBackend() {
ASSERT_MSG(!IsDumping(), "Dumping must be stopped first");
if (video_processing_thread.joinable())
video_processing_thread.join();
if (audio_processing_thread.joinable())
audio_processing_thread.join();
ffmpeg.Free();
}
bool FFmpegBackend::StartDumping(const std::string& path, const Layout::FramebufferLayout& layout) {
InitializeFFmpegLibraries();
if (!ffmpeg.Init(path, layout)) {
ffmpeg.Free();
return false;
}
video_layout = layout;
if (video_processing_thread.joinable())
video_processing_thread.join();
video_processing_thread = std::thread([&] {
event1.Set();
while (true) {
event2.Wait();
current_buffer = (current_buffer + 1) % 2;
next_buffer = (current_buffer + 1) % 2;
event1.Set();
// Process this frame
auto& frame = video_frame_buffers[current_buffer];
if (frame.width == 0 && frame.height == 0) {
// An empty frame marks the end of frame data
ffmpeg.FlushVideo();
break;
}
ffmpeg.ProcessVideoFrame(frame);
}
// Finish audio execution first if not done yet
if (audio_processing_thread.joinable())
audio_processing_thread.join();
EndDumping();
});
if (audio_processing_thread.joinable())
audio_processing_thread.join();
audio_processing_thread = std::thread([&] {
VariableAudioFrame channel0, channel1;
while (true) {
channel0 = audio_frame_queues[0].PopWait();
channel1 = audio_frame_queues[1].PopWait();
if (channel0.empty()) {
// An empty frame marks the end of frame data
ffmpeg.FlushAudio();
break;
}
ffmpeg.ProcessAudioFrame(channel0, channel1);
}
});
VideoCore::g_renderer->PrepareVideoDumping();
is_dumping = true;
return true;
}
2020-01-28 22:19:36 +08:00
void FFmpegBackend::AddVideoFrame(VideoFrame frame) {
event1.Wait();
video_frame_buffers[next_buffer] = std::move(frame);
event2.Set();
}
2020-01-28 22:19:36 +08:00
void FFmpegBackend::AddAudioFrame(AudioCore::StereoFrame16 frame) {
std::array<VariableAudioFrame, 2> refactored_frame;
for (auto& channel : refactored_frame) {
channel.resize(frame.size());
}
for (std::size_t i = 0; i < frame.size(); i++) {
refactored_frame[0][i] = frame[i][0];
refactored_frame[1][i] = frame[i][1];
}
ffmpeg.ProcessAudioFrame(refactored_frame[0], refactored_frame[1]);
}
void FFmpegBackend::AddAudioSample(const std::array<s16, 2>& sample) {
ffmpeg.ProcessAudioFrame({sample[0]}, {sample[1]});
}
void FFmpegBackend::StopDumping() {
is_dumping = false;
VideoCore::g_renderer->CleanupVideoDumping();
// Flush the video processing queue
AddVideoFrame(VideoFrame());
for (auto i : {0, 1}) {
// Flush the audio processing queue
audio_frame_queues[i].Push(VariableAudioFrame());
}
// Wait until processing ends
processing_ended.Wait();
}
bool FFmpegBackend::IsDumping() const {
return is_dumping.load(std::memory_order_relaxed);
}
Layout::FramebufferLayout FFmpegBackend::GetLayout() const {
return video_layout;
}
void FFmpegBackend::EndDumping() {
LOG_INFO(Render, "Ending frame dumping");
ffmpeg.WriteTrailer();
ffmpeg.Free();
processing_ended.Set();
}
// To std string, but handles nullptr
std::string ToStdString(const char* str, const std::string& fallback = "") {
return str ? std::string{str} : fallback;
}
std::string FormatDuration(s64 duration) {
// The following is implemented according to libavutil code (opt.c)
std::string out;
if (duration < 0 && duration != std::numeric_limits<s64>::min()) {
out.append("-");
duration = -duration;
}
if (duration == std::numeric_limits<s64>::max()) {
return "INT64_MAX";
} else if (duration == std::numeric_limits<s64>::min()) {
return "INT64_MIN";
} else if (duration > 3600ll * 1000000ll) {
out.append(fmt::format("{}:{:02d}:{:02d}.{:06d}", duration / 3600000000ll,
((duration / 60000000ll) % 60), ((duration / 1000000ll) % 60),
duration % 1000000));
} else if (duration > 60ll * 1000000ll) {
out.append(fmt::format("{}:{:02d}.{:06d}", duration / 60000000ll,
((duration / 1000000ll) % 60), duration % 1000000));
} else {
out.append(fmt::format("{}.{:06d}", duration / 1000000ll, duration % 1000000));
}
while (out.back() == '0') {
out.erase(out.size() - 1, 1);
}
if (out.back() == '.') {
out.erase(out.size() - 1, 1);
}
return out;
}
std::string FormatDefaultValue(const AVOption* option,
const std::vector<OptionInfo::NamedConstant>& named_constants) {
// The following is taken and modified from libavutil code (opt.c)
switch (option->type) {
case AV_OPT_TYPE_BOOL: {
const auto value = option->default_val.i64;
if (value < 0) {
return "auto";
}
return value ? "true" : "false";
}
case AV_OPT_TYPE_FLAGS: {
const auto value = option->default_val.i64;
std::string out;
for (const auto& constant : named_constants) {
if (!(value & constant.value)) {
continue;
}
if (!out.empty()) {
out.append("+");
}
out.append(constant.name);
}
return out.empty() ? fmt::format("{}", value) : out;
}
case AV_OPT_TYPE_DURATION: {
return FormatDuration(option->default_val.i64);
}
case AV_OPT_TYPE_INT:
case AV_OPT_TYPE_UINT64:
case AV_OPT_TYPE_INT64: {
const auto value = option->default_val.i64;
for (const auto& constant : named_constants) {
if (constant.value == value) {
return constant.name;
}
}
return fmt::format("{}", value);
}
case AV_OPT_TYPE_DOUBLE:
case AV_OPT_TYPE_FLOAT: {
return fmt::format("{}", option->default_val.dbl);
}
case AV_OPT_TYPE_RATIONAL: {
const auto q = av_d2q(option->default_val.dbl, std::numeric_limits<int>::max());
return fmt::format("{}/{}", q.num, q.den);
}
case AV_OPT_TYPE_PIXEL_FMT: {
const char* name = av_get_pix_fmt_name(static_cast<AVPixelFormat>(option->default_val.i64));
return ToStdString(name, "none");
}
case AV_OPT_TYPE_SAMPLE_FMT: {
const char* name =
av_get_sample_fmt_name(static_cast<AVSampleFormat>(option->default_val.i64));
return ToStdString(name, "none");
}
case AV_OPT_TYPE_COLOR:
case AV_OPT_TYPE_IMAGE_SIZE:
case AV_OPT_TYPE_STRING:
case AV_OPT_TYPE_DICT:
case AV_OPT_TYPE_VIDEO_RATE: {
return ToStdString(option->default_val.str);
}
case AV_OPT_TYPE_CHANNEL_LAYOUT: {
return fmt::format("{:#x}", option->default_val.i64);
}
default:
return "";
}
}
void GetOptionListSingle(std::vector<OptionInfo>& out, const AVClass* av_class) {
if (av_class == nullptr) {
return;
}
const AVOption* current = nullptr;
std::unordered_map<std::string, std::vector<OptionInfo::NamedConstant>> named_constants_map;
// First iteration: find and place all named constants
while ((current = av_opt_next(&av_class, current))) {
if (current->type != AV_OPT_TYPE_CONST || !current->unit) {
continue;
}
named_constants_map[current->unit].push_back(
{current->name, ToStdString(current->help), current->default_val.i64});
}
// Second iteration: find all options
current = nullptr;
while ((current = av_opt_next(&av_class, current))) {
// Currently we cannot handle binary options
if (current->type == AV_OPT_TYPE_CONST || current->type == AV_OPT_TYPE_BINARY) {
continue;
}
std::vector<OptionInfo::NamedConstant> named_constants;
if (current->unit && named_constants_map.count(current->unit)) {
named_constants = named_constants_map.at(current->unit);
}
const auto default_value = FormatDefaultValue(current, named_constants);
out.push_back({current->name, ToStdString(current->help), current->type, default_value,
std::move(named_constants), current->min, current->max});
}
}
void GetOptionList(std::vector<OptionInfo>& out, const AVClass* av_class) {
if (av_class == nullptr) {
return;
}
GetOptionListSingle(out, av_class);
const AVClass* child_class = nullptr;
while ((child_class = av_opt_child_class_next(av_class, child_class))) {
GetOptionListSingle(out, child_class);
}
}
std::vector<OptionInfo> GetOptionList(const AVClass* av_class) {
std::vector<OptionInfo> out;
GetOptionList(out, av_class);
// Filter out identical options (why do they exist in the first place?)
std::unordered_set<std::string> option_name_set;
std::vector<OptionInfo> final_out;
for (auto& option : out) {
if (option_name_set.count(option.name)) {
continue;
}
option_name_set.emplace(option.name);
final_out.emplace_back(std::move(option));
}
return final_out;
}
std::vector<EncoderInfo> ListEncoders(AVMediaType type) {
InitializeFFmpegLibraries();
const auto general_options = GetOptionList(avcodec_get_class());
std::vector<EncoderInfo> out;
const AVCodec* current = nullptr;
#if LIBAVCODEC_VERSION_INT < AV_VERSION_INT(58, 10, 100)
while ((current = av_codec_next(current))) {
#else
void* data = nullptr; // For libavcodec to save the iteration state
while ((current = av_codec_iterate(&data))) {
#endif
if (!av_codec_is_encoder(current) || current->type != type) {
continue;
}
auto options = GetOptionList(current->priv_class);
options.insert(options.end(), general_options.begin(), general_options.end());
out.push_back(
{current->name, ToStdString(current->long_name), current->id, std::move(options)});
}
return out;
}
std::vector<FormatInfo> ListFormats() {
InitializeFFmpegLibraries();
const auto general_options = GetOptionList(avformat_get_class());
std::vector<FormatInfo> out;
const AVOutputFormat* current = nullptr;
#if LIBAVFORMAT_VERSION_INT < AV_VERSION_INT(58, 9, 100)
while ((current = av_oformat_next(current))) {
#else
void* data = nullptr; // For libavformat to save the iteration state
while ((current = av_muxer_iterate(&data))) {
#endif
auto options = GetOptionList(current->priv_class);
options.insert(options.end(), general_options.begin(), general_options.end());
std::vector<std::string> extensions;
Common::SplitString(ToStdString(current->extensions), ',', extensions);
std::set<AVCodecID> supported_video_codecs;
std::set<AVCodecID> supported_audio_codecs;
// Go through all codecs
const AVCodecDescriptor* codec = nullptr;
while ((codec = avcodec_descriptor_next(codec))) {
if (avformat_query_codec(current, codec->id, FF_COMPLIANCE_NORMAL) == 1) {
if (codec->type == AVMEDIA_TYPE_VIDEO) {
supported_video_codecs.emplace(codec->id);
} else if (codec->type == AVMEDIA_TYPE_AUDIO) {
supported_audio_codecs.emplace(codec->id);
}
}
}
if (supported_video_codecs.empty() || supported_audio_codecs.empty()) {
continue;
}
out.push_back({current->name, ToStdString(current->long_name), std::move(extensions),
std::move(supported_video_codecs), std::move(supported_audio_codecs),
std::move(options)});
}
return out;
}
} // namespace VideoDumper