This mutex is acquired in SVC::CallSVC, ie, as soon as the guest application enters the HLE kernel, and should be acquired by the aforementioned threads before modifying kernel structures.
The implementation is based on reverse engineering of the 3DS's kernel.
A mutex holder's priority will be temporarily boosted to the best priority among any threads that want to acquire any of its held mutexes.
When the holder releases the mutex, it's priority will be boosted to the best priority among the threads that want to acquire any of its remaining held mutexes.
Define a variable with the value of the sync timeout error code.
Use a boost::flat_map instead of an unordered_map to hold the equivalence of objects and wait indices in a WaitSynchN call.
Threads will now be awakened when the objects they're waiting on are signaled, instead of repeating the WaitSynchronization call every now and then.
The scheduler is now called once after every SVC call, and once after a thread is awakened from sleep by its timeout callback.
This new implementation is based off reverse-engineering of the real kernel.
See https://gist.github.com/Subv/02f29bd9f1e5deb7aceea1e8f019c8f4 for a more detailed description of how the real kernel handles rescheduling.
All handles obtained via srv::GetServiceHandle or svcConnectToPort are references to ClientSessions.
Service modules will wait on the counterpart of those ClientSessions (Called ServerSessions) using svcReplyAndReceive or svcWaitSynchronization[1|N], and will be awoken when a SyncRequest is performed.
HLE Interfaces are now ClientPorts which override the HandleSyncRequest virtual member function to perform command handling immediately.
The code now properly configures the process image to match the loaded
binary segments (code, rodata, data) instead of just blindly allocating
a large chunk of dummy memory.
Implemented svcs GetResourceLimit, GetResourceLimitCurrentValues and GetResourceLimitLimitValues.
Note that the resource limits do not currently keep track of used objects, since we have no way to distinguish between an object created by the application, and an object created by some HLE module once we're inside Kernel::T::Create.
During normal operation, a thread waiting on an WaitObject and the
object hold mutual references to each other for the duration of the
wait.
If a process is forcefully terminated (The CTR kernel has a SVC to do
this, TerminateProcess, though no equivalent exists for threads.) its
threads would also be stopped and destroyed, leaving dangling pointers
in the WaitObjects.
The solution is to simply have the Thread remove itself from WaitObjects
when it is stopped. The vector of Threads in WaitObject has also been
changed to hold SharedPtrs, just in case. (Better to have a reference
cycle than a crash.)