SummerCart64/sw/deployer/src/main.rs

906 lines
27 KiB
Rust
Raw Normal View History

mod debug;
mod disk;
mod n64;
mod sc64;
use chrono::Local;
use clap::{Args, Parser, Subcommand, ValueEnum};
use clap_num::maybe_hex_range;
use colored::Colorize;
use panic_message::panic_message;
use std::{
fs::File,
io::{stdin, stdout, Read, Write},
path::PathBuf,
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
{panic, process},
};
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Cli {
#[command(subcommand)]
command: Commands,
/// Connect to SC64 device on provided serial port
#[arg(short, long)]
port: Option<String>,
/// Connect to SC64 device on provided remote address
#[arg(short, long, conflicts_with = "port")]
remote: Option<String>,
}
#[derive(Subcommand)]
enum Commands {
/// List connected SC64 devices
List,
/// Upload ROM (and save) to the SC64
Upload(UploadArgs),
/// Download specific memory region and write it to file
Download {
#[command(subcommand)]
command: DownloadCommands,
},
/// Upload ROM (and save), 64DD IPL then run disk/debug server
_64DD(_64DDArgs),
/// Enter debug mode
Debug(DebugArgs),
/// Dump data from arbitrary location in SC64 memory space
Dump(DumpArgs),
/// Print information about connected SC64 device
Info,
/// Update persistent settings on SC64 device
Set {
#[command(subcommand)]
command: SetCommands,
},
/// Print firmware metadata / update or backup SC64 firmware
Firmware {
#[command(subcommand)]
command: FirmwareCommands,
},
/// Expose SC64 device over network
Server(ServerArgs),
}
#[derive(Args)]
struct UploadArgs {
/// Path to the ROM file
rom: PathBuf,
/// Path to the save file
#[arg(short, long)]
save: Option<PathBuf>,
/// Override autodetected save type
#[arg(short = 't', long)]
save_type: Option<SaveType>,
/// Use direct boot mode (skip bootloader)
#[arg(short, long)]
direct: bool,
/// Do not put last 128 kiB of ROM inside flash memory (can corrupt non EEPROM saves)
#[arg(short, long)]
no_shadow: bool,
/// Force TV type
#[arg(long, conflicts_with = "direct")]
tv: Option<TvType>,
}
#[derive(Subcommand)]
enum DownloadCommands {
/// Download save and write it to file
Save(DownloadArgs),
}
#[derive(Args)]
struct DownloadArgs {
/// Path to the file
path: PathBuf,
}
#[derive(Args)]
struct _64DDArgs {
/// Path to the 64DD IPL file
ddipl: PathBuf,
/// Path to the 64DD disk file (.ndd format, can be specified multiple times)
#[arg(required = true)]
disk: Vec<PathBuf>,
/// Path to the ROM file
#[arg(short, long)]
rom: Option<PathBuf>,
/// Path to the save file (also used by save writeback mechanism)
#[arg(short, long, requires = "rom")]
save: Option<PathBuf>,
/// Override autodetected save type
#[arg(short = 't', long, requires = "rom")]
save_type: Option<SaveType>,
/// Use direct boot mode (skip bootloader)
#[arg(short, long)]
direct: bool,
/// Force TV type
#[arg(long, conflicts_with = "direct")]
tv: Option<TvType>,
}
#[derive(Args)]
struct DebugArgs {
/// Path to the save file to use by the save writeback mechanism
#[arg(short, long)]
save: Option<PathBuf>,
/// Enable IS-Viewer64 and set listening address at ROM offset (in most cases it's fixed at 0x03FF0000)
#[arg(long, value_name = "offset", value_parser = |s: &str| maybe_hex_range::<u32>(s, 0x00000004, 0x03FF0000))]
isv: Option<u32>,
/// Use EUC-JP encoding for text printing
#[arg(long)]
euc_jp: bool,
/// Do not enable save writeback via USB
#[arg(long)]
no_writeback: bool
}
#[derive(Args)]
struct DumpArgs {
/// Starting memory address
#[arg(value_parser = |s: &str| maybe_hex_range::<u32>(s, 0, sc64::MEMORY_LENGTH as u32))]
address: u32,
/// Dump length
#[arg(value_parser = |s: &str| maybe_hex_range::<usize>(s, 1, sc64::MEMORY_LENGTH))]
length: usize,
/// Path to the dump file
path: PathBuf,
}
#[derive(Subcommand)]
enum SetCommands {
/// Synchronize real time clock (RTC) on the SC64 with local system time
Rtc,
/// Enable LED I/O activity blinking
BlinkOn,
/// Disable LED I/O activity blinking
BlinkOff,
}
#[derive(Subcommand)]
enum FirmwareCommands {
/// Print metadata included inside SC64 firmware file
Info(FirmwareArgs),
/// Download current SC64 firmware and save it to provided file
Backup(FirmwareArgs),
/// Update SC64 firmware from provided file
Update(FirmwareArgs),
}
#[derive(Args)]
struct FirmwareArgs {
/// Path to the firmware file
firmware: PathBuf,
}
#[derive(Args)]
struct ServerArgs {
/// Listen on provided address:port
#[arg(default_value = "127.0.0.1:9064")]
address: String,
}
#[derive(Clone, ValueEnum)]
enum SaveType {
None,
Eeprom4k,
Eeprom16k,
Sram,
SramBanked,
Sram1m,
Flashram,
}
impl From<n64::SaveType> for SaveType {
fn from(value: n64::SaveType) -> Self {
match value {
n64::SaveType::None => Self::None,
n64::SaveType::Eeprom4k => Self::Eeprom4k,
n64::SaveType::Eeprom16k => Self::Eeprom16k,
n64::SaveType::Sram => Self::Sram,
n64::SaveType::SramBanked => Self::SramBanked,
n64::SaveType::Sram1m => Self::Sram1m,
n64::SaveType::Flashram => Self::Flashram,
}
}
}
impl From<SaveType> for sc64::SaveType {
fn from(value: SaveType) -> Self {
match value {
SaveType::None => Self::None,
SaveType::Eeprom4k => Self::Eeprom4k,
SaveType::Eeprom16k => Self::Eeprom16k,
SaveType::Sram => Self::Sram,
SaveType::SramBanked => Self::SramBanked,
SaveType::Sram1m => Self::Sram1m,
SaveType::Flashram => Self::Flashram,
}
}
}
#[derive(Clone, ValueEnum)]
enum TvType {
PAL,
NTSC,
MPAL,
}
impl From<TvType> for sc64::TvType {
fn from(value: TvType) -> Self {
match value {
TvType::PAL => Self::PAL,
TvType::NTSC => Self::NTSC,
TvType::MPAL => Self::MPAL,
}
}
}
enum Connection {
Local(Option<String>),
Remote(String),
}
fn main() {
let cli = Cli::parse();
#[cfg(not(debug_assertions))]
{
panic::set_hook(Box::new(|_| {}));
}
match panic::catch_unwind(|| handle_command(&cli.command, cli.port, cli.remote)) {
Ok(_) => {}
Err(payload) => {
eprintln!("{}", panic_message(&payload).red());
process::exit(1);
}
}
}
fn handle_command(command: &Commands, port: Option<String>, remote: Option<String>) {
let connection = if let Some(remote) = remote {
Connection::Remote(remote)
} else {
Connection::Local(port)
};
let result = match command {
Commands::List => handle_list_command(),
Commands::Upload(args) => handle_upload_command(connection, args),
Commands::Download { command } => handle_download_command(connection, command),
Commands::_64DD(args) => handle_64dd_command(connection, args),
Commands::Debug(args) => handle_debug_command(connection, args),
Commands::Dump(args) => handle_dump_command(connection, args),
Commands::Info => handle_info_command(connection),
Commands::Set { command } => handle_set_command(connection, command),
Commands::Firmware { command } => handle_firmware_command(connection, command),
Commands::Server(args) => handle_server_command(connection, args),
};
match result {
Ok(()) => {}
Err(error) => panic!("{error}"),
};
}
fn handle_list_command() -> Result<(), sc64::Error> {
let devices = sc64::list_local_devices()?;
println!("{}", "Found devices:".bold());
for (i, d) in devices.iter().enumerate() {
println!(" {i}: [{}] at port [{}]", d.serial_number, d.port);
}
Ok(())
}
fn handle_upload_command(connection: Connection, args: &UploadArgs) -> Result<(), sc64::Error> {
let mut sc64 = init_sc64(connection, true)?;
sc64.reset_state()?;
let (mut rom_file, rom_name, rom_length) = open_file(&args.rom)?;
log_wait(format!("Uploading ROM [{rom_name}]"), || {
sc64.upload_rom(&mut rom_file, rom_length, args.no_shadow)
})?;
let save: SaveType = if let Some(save_type) = args.save_type.clone() {
save_type
} else {
let (save_type, title) = n64::guess_save_type(&mut rom_file)?;
if let Some(title) = title {
println!("ROM title: {title}");
};
save_type.into()
};
let save_type: sc64::SaveType = save.into();
println!("Save type set to [{save_type}]");
sc64.set_save_type(save_type)?;
if args.save.is_some() {
let (mut save_file, save_name, save_length) = open_file(&args.save.as_ref().unwrap())?;
log_wait(format!("Uploading save [{save_name}]"), || {
sc64.upload_save(&mut save_file, save_length)
})?;
}
let boot_mode = if args.direct {
sc64::BootMode::DirectRom
} else {
sc64::BootMode::Rom
};
println!("Boot mode set to [{boot_mode}]");
sc64.set_boot_mode(boot_mode)?;
if let Some(tv) = args.tv.clone() {
let tv_type: sc64::TvType = tv.into();
println!("TV type set to [{tv_type}]");
sc64.set_tv_type(tv_type)?;
}
sc64.calculate_cic_parameters()?;
Ok(())
}
fn handle_download_command(
connection: Connection,
command: &DownloadCommands,
) -> Result<(), sc64::Error> {
let mut sc64 = init_sc64(connection, true)?;
match command {
DownloadCommands::Save(args) => {
let (mut file, name) = create_file(&args.path)?;
log_wait(format!("Downloading save [{name}]"), || {
sc64.download_save(&mut file)
})?;
}
}
Ok(())
}
fn handle_64dd_command(connection: Connection, args: &_64DDArgs) -> Result<(), sc64::Error> {
const MAX_ROM_LENGTH: usize = 32 * 1024 * 1024;
let mut sc64 = init_sc64(connection, true)?;
let mut debug_handler = debug::new();
println!(
"{}\n{}\n{}",
"========== [WARNING] ==========".bold().bright_yellow(),
"Do not use this mode when real 64DD accessory is connected to the N64".bright_yellow(),
"Doing so might permanently damage either N64, 64DD or SC64".bright_yellow()
);
sc64.reset_state()?;
if let Some(rom) = &args.rom {
let (mut rom_file, rom_name, rom_length) = open_file(rom)?;
if rom_length > MAX_ROM_LENGTH {
return Err(sc64::Error::new("ROM file size too big for 64DD mode"));
}
log_wait(format!("Uploading ROM [{rom_name}]"), || {
sc64.upload_rom(&mut rom_file, rom_length, false)
})?;
let save: SaveType = if let Some(save_type) = args.save_type.clone() {
save_type
} else {
let (save_type, title) = n64::guess_save_type(&mut rom_file)?;
if let Some(title) = title {
println!("ROM title: {title}");
};
save_type.into()
};
let save_type: sc64::SaveType = save.into();
println!("Save type set to [{save_type}]");
sc64.set_save_type(save_type)?;
if args.save.is_some() {
let (mut save_file, save_name, save_length) = open_file(&args.save.as_ref().unwrap())?;
log_wait(format!("Uploading save [{save_name}]"), || {
sc64.upload_save(&mut save_file, save_length)
})?;
}
}
let (mut ddipl_file, ddipl_name, ddipl_length) = open_file(&args.ddipl)?;
log_wait(format!("Uploading DDIPL [{ddipl_name}]"), || {
sc64.upload_ddipl(&mut ddipl_file, ddipl_length)
})?;
let boot_mode = if args.rom.is_some() {
if args.direct {
sc64::BootMode::DirectRom
} else {
sc64::BootMode::Rom
}
} else {
if args.direct {
sc64::BootMode::DirectDdIpl
} else {
sc64::BootMode::DdIpl
}
};
println!("Boot mode set to [{boot_mode}]");
sc64.set_boot_mode(boot_mode)?;
if let Some(tv) = args.tv.clone() {
let tv_type: sc64::TvType = tv.into();
println!("TV type set to [{tv_type}]");
sc64.set_tv_type(tv_type)?;
}
sc64.calculate_cic_parameters()?;
let disk_paths: Vec<String> = args
.disk
.iter()
.map(|path| path.to_string_lossy().to_string())
.collect();
let disk_names: Vec<String> = args
.disk
.iter()
.map(|path| path.file_name().unwrap().to_string_lossy().to_string())
.collect();
let mut disks = disk::open_multiple(&disk_paths)?;
let drive_type = match disks[0].get_format() {
disk::Format::Retail => sc64::DdDriveType::Retail,
disk::Format::Development => sc64::DdDriveType::Development,
};
let dd_mode = sc64::DdMode::Full;
println!("64DD mode set to [{dd_mode} / {drive_type}]");
sc64.configure_64dd(dd_mode, drive_type)?;
println!(
"{}: {}",
"[64DD]".bold(),
"Press button on the back of SC64 device to cycle through provided disks"
.bold()
.bright_green()
);
let mut selected_disk_index: usize = 0;
let mut selected_disk = Some(&mut disks[selected_disk_index]);
println!(
"{}: Disk inserted [{}]",
"[64DD]".bold(),
disk_names[selected_disk_index].bright_green()
);
sc64.set_64dd_disk_state(sc64::DdDiskState::Inserted)?;
sc64.set_save_writeback(true)?;
let exit = setup_exit_flag();
while !exit.load(Ordering::Relaxed) {
if let Some(data_packet) = sc64.receive_data_packet()? {
match data_packet {
sc64::DataPacket::DiskRequest(mut disk_packet) => {
let track = disk_packet.info.track;
let head = disk_packet.info.head;
let block = disk_packet.info.block;
if let Some(ref mut disk) = selected_disk {
let (reply_packet, rw) = match disk_packet.kind {
sc64::DiskPacketKind::Read => (
disk.read_block(track, head, block)?.map(|data| {
disk_packet.info.set_data(&data);
disk_packet
}),
"[R]".bright_blue(),
),
sc64::DiskPacketKind::Write => (
disk.write_block(track, head, block, &disk_packet.info.data)?
.map(|_| disk_packet),
"[W]".bright_yellow(),
),
};
let lba = if let Some(lba) = disk.get_lba(track, head, block) {
format!("{lba}")
} else {
"Invalid".to_string()
};
let message = format!("{track:4}:{head}:{block} | LBA: {lba}");
if reply_packet.is_some() {
println!("{}: {} {}", "[64DD]".bold(), rw, message.green());
} else {
println!("{}: {} {}", "[64DD]".bold(), rw, message.red());
}
sc64.reply_disk_packet(reply_packet)?;
} else {
sc64.reply_disk_packet(None)?;
}
}
sc64::DataPacket::Button => {
if selected_disk.is_some() {
sc64.set_64dd_disk_state(sc64::DdDiskState::Ejected)?;
selected_disk = None;
println!(
"{}: Disk ejected [{}]",
"[64DD]".bold(),
disk_names[selected_disk_index].green()
);
} else {
selected_disk_index += 1;
if selected_disk_index >= disks.len() {
selected_disk_index = 0;
}
selected_disk = Some(&mut disks[selected_disk_index]);
println!(
"{}: Disk inserted [{}]",
"[64DD]".bold(),
disk_names[selected_disk_index].bright_green()
);
sc64.set_64dd_disk_state(sc64::DdDiskState::Inserted)?;
}
}
sc64::DataPacket::DebugData(debug_packet) => {
debug_handler.handle_debug_packet(debug_packet);
}
sc64::DataPacket::SaveWriteback(save_writeback) => {
debug_handler.handle_save_writeback(save_writeback, &args.save);
}
sc64::DataPacket::DataFlushed => {
debug_handler.handle_data_flushed();
}
_ => {}
}
} else if let Some(debug_packet) = debug_handler.process_user_input() {
sc64.send_debug_packet(debug_packet)?;
}
}
sc64.reset_state()?;
Ok(())
}
fn handle_debug_command(connection: Connection, args: &DebugArgs) -> Result<(), sc64::Error> {
let mut sc64 = init_sc64(connection, true)?;
let mut debug_handler = debug::new();
if args.euc_jp {
debug_handler.set_text_encoding(debug::Encoding::EUCJP);
}
if args.isv.is_some() {
sc64.configure_is_viewer_64(args.isv)?;
println!(
"{}: Listening on ROM offset [{}]",
"[IS-Viewer 64]".bold(),
format!("0x{:08X}", args.isv.unwrap())
.to_string()
.bright_blue()
);
}
if !args.no_writeback {
sc64.set_save_writeback(true)?;
}
println!("{}: Started", "[Debug]".bold());
let exit = setup_exit_flag();
while !exit.load(Ordering::Relaxed) {
if let Some(data_packet) = sc64.receive_data_packet()? {
match data_packet {
sc64::DataPacket::DebugData(debug_packet) => {
debug_handler.handle_debug_packet(debug_packet);
}
sc64::DataPacket::IsViewer64(message) => {
debug_handler.handle_is_viewer_64(&message);
}
sc64::DataPacket::SaveWriteback(save_writeback) => {
debug_handler.handle_save_writeback(save_writeback, &args.save);
}
sc64::DataPacket::DataFlushed => {
debug_handler.handle_data_flushed();
}
_ => {}
}
} else if let Some(debug_packet) = debug_handler.process_user_input() {
sc64.send_debug_packet(debug_packet)?;
}
}
if !args.no_writeback {
sc64.set_save_writeback(false)?;
}
if args.isv.is_some() {
sc64.configure_is_viewer_64(None)?;
println!("{}: Stopped listening", "[IS-Viewer 64]".bold());
}
println!("{}: Stopped", "[Debug]".bold());
Ok(())
}
fn handle_dump_command(connection: Connection, args: &DumpArgs) -> Result<(), sc64::Error> {
let mut sc64 = init_sc64(connection, true)?;
let (mut dump_file, dump_name) = create_file(&args.path)?;
log_wait(
format!(
"Dumping from [0x{:08X}] length [0x{:X}] to [{dump_name}]",
args.address, args.length
),
|| sc64.dump_memory(&mut dump_file, args.address, args.length),
)?;
Ok(())
}
fn handle_info_command(connection: Connection) -> Result<(), sc64::Error> {
let mut sc64 = init_sc64(connection, true)?;
let (major, minor, revision) = sc64.check_firmware_version()?;
let state = sc64.get_device_state()?;
let datetime = state.datetime.format("%Y-%m-%d %H:%M:%S %Z");
println!("{}", "SC64 information and current state:".bold());
println!(" Firmware version: v{}.{}.{}", major, minor, revision);
println!(" RTC datetime: {}", datetime);
println!(" Boot mode: {}", state.boot_mode);
println!(" Save type: {}", state.save_type);
println!(" CIC seed: {}", state.cic_seed);
println!(" TV type: {}", state.tv_type);
println!(" Bootloader switch: {}", state.bootloader_switch);
println!(" ROM write: {}", state.rom_write_enable);
println!(" ROM shadow: {}", state.rom_shadow_enable);
println!(" ROM extended: {}", state.rom_extended_enable);
println!(" 64DD mode: {}", state.dd_mode);
println!(" 64DD SD card mode: {}", state.dd_sd_enable);
println!(" 64DD drive type: {}", state.dd_drive_type);
println!(" 64DD disk state: {}", state.dd_disk_state);
println!(" Button mode: {}", state.button_mode);
println!(" Button state: {}", state.button_state);
println!(" LED blink: {}", state.led_enable);
println!(" IS-Viewer 64 offset: 0x{:08X}", state.isv_address);
println!(" FPGA debug data: {}", state.fpga_debug_data);
println!(" MCU stack usage: {}", state.mcu_stack_usage);
Ok(())
}
fn handle_set_command(connection: Connection, command: &SetCommands) -> Result<(), sc64::Error> {
let mut sc64 = init_sc64(connection, true)?;
match command {
SetCommands::Rtc => {
let datetime = Local::now();
sc64.set_datetime(datetime)?;
println!(
"SC64 RTC datetime synchronized to: {}",
datetime.format("%Y-%m-%d %H:%M:%S %Z").to_string().green()
);
}
SetCommands::BlinkOn => {
sc64.set_led_blink(true)?;
println!(
"SC64 LED I/O activity blinking set to {}",
"enabled".green()
);
}
SetCommands::BlinkOff => {
sc64.set_led_blink(false)?;
println!("SC64 LED I/O activity blinking set to {}", "disabled".red());
}
}
Ok(())
}
fn handle_firmware_command(
connection: Connection,
command: &FirmwareCommands,
) -> Result<(), sc64::Error> {
match command {
FirmwareCommands::Info(args) => {
let (mut firmware_file, _, firmware_length) = open_file(&args.firmware)?;
let mut firmware = vec![0u8; firmware_length as usize];
firmware_file.read_exact(&mut firmware)?;
let metadata = sc64::firmware::verify(&firmware)?;
println!("{}", "Firmware metadata:".bold());
println!("{}", format!("{}", metadata).bright_blue().to_string());
Ok(())
}
FirmwareCommands::Backup(args) => {
let mut sc64 = init_sc64(connection, false)?;
let (mut backup_file, backup_name) = create_file(&args.firmware)?;
let firmware = log_wait(
format!("Generating firmware backup, this might take a while [{backup_name}]"),
|| sc64.backup_firmware(),
)?;
let metadata = sc64::firmware::verify(&firmware)?;
println!("{}", "Firmware metadata:".bold());
println!("{}", format!("{}", metadata).bright_blue().to_string());
backup_file.write_all(&firmware)?;
Ok(())
}
FirmwareCommands::Update(args) => {
let mut sc64 = init_sc64(connection, false)?;
let (mut update_file, update_name, update_length) = open_file(&args.firmware)?;
let mut firmware = vec![0u8; update_length as usize];
update_file.read_exact(&mut firmware)?;
let metadata = sc64::firmware::verify(&firmware)?;
println!("{}", "Firmware metadata:".bold());
println!("{}", format!("{}", metadata).bright_blue().to_string());
println!("{}", "Firmware file verification was successful".green());
let answer = prompt(format!("{}", "Continue with update process? [y/N] ".bold()));
if answer.to_ascii_lowercase() != "y" {
println!("{}", "Firmware update process aborted".red());
return Ok(());
}
println!(
"{}",
"Do not unplug SC64 from the computer, doing so might brick your device".yellow()
);
log_wait(
format!("Updating firmware, this might take a while [{update_name}]"),
|| sc64.update_firmware(&firmware),
)?;
Ok(())
}
}
}
fn handle_server_command(connection: Connection, args: &ServerArgs) -> Result<(), sc64::Error> {
let port = if let Connection::Local(port) = connection {
port
} else {
None
};
sc64::run_server(port, args.address.clone(), |event| match event {
sc64::ServerEvent::Listening(address) => {
println!(
"{}: Listening on address [{}]",
"[Server]".bold(),
address.bright_blue()
)
}
sc64::ServerEvent::Connected(peer) => {
println!(
"{}: New connection from [{}]",
"[Server]".bold(),
peer.bright_green()
);
}
sc64::ServerEvent::Disconnected(peer) => {
println!(
"{}: Client disconnected [{}]",
"[Server]".bold(),
peer.green()
);
}
sc64::ServerEvent::Err(error) => {
println!(
"{}: Client disconnected - server error: {}",
"[Server]".bold(),
error.red()
);
}
})?;
Ok(())
}
fn init_sc64(connection: Connection, check_firmware: bool) -> Result<sc64::SC64, sc64::Error> {
let mut sc64 = match connection {
Connection::Local(port) => sc64::new_local(port),
Connection::Remote(remote) => sc64::new_remote(remote),
}?;
if check_firmware {
sc64.check_firmware_version()?;
}
Ok(sc64)
}
fn log_wait<F: FnOnce() -> Result<T, E>, T, E>(message: String, operation: F) -> Result<T, E> {
print!("{}... ", message);
stdout().flush().unwrap();
let result = operation();
if result.is_ok() {
println!("{}", "done".bold().bright_green());
} else {
println!("{}", "error!".bold().bright_red());
}
result
}
fn prompt(message: String) -> String {
print!("{message}");
stdout().flush().unwrap();
let mut answer = String::new();
stdin().read_line(&mut answer).unwrap();
answer.trim_end().to_string()
}
fn open_file(path: &PathBuf) -> Result<(File, String, usize), sc64::Error> {
let name: String = path.file_name().unwrap().to_string_lossy().to_string();
let file = File::open(path)?;
let length = file.metadata()?.len() as usize;
Ok((file, name, length))
}
fn create_file(path: &PathBuf) -> Result<(File, String), sc64::Error> {
let name: String = path.file_name().unwrap().to_string_lossy().to_string();
let file = File::create(path)?;
Ok((file, name))
}
fn setup_exit_flag() -> Arc<AtomicBool> {
let exit_flag = Arc::new(AtomicBool::new(false));
let handler_exit_flag = exit_flag.clone();
ctrlc::set_handler(move || {
handler_exit_flag.store(true, Ordering::Relaxed);
})
.unwrap();
exit_flag
}