WiiFlow_Lite/source/memory/mem2.cpp
fix94.1 71064e3f77 -forgot to clear gecko sd file buffer on exit, could make problems
-moved this stupid now hide wait message debug print to less annoying
place
-wiiflow wants the dsp shutdown back, so I'll leave it in
-we shouldnt try to alloc mem1 after running apploader, just some
good advice before booting a game, should prevent codedumps
-sd file buffer can be mem1 too, we have enough left
-set mem2 usage to 49mb, thats everything we get anyways
-banner sounds should load faster now, also banner sound
in emulator coverflow when switching game should work again
-forcing check wait thread now on boot, not that the thread
is still working without noticing ;)
2012-05-19 12:29:24 +00:00

237 lines
3.9 KiB
C++

#include <malloc.h>
#include <string.h>
#include <ogc/system.h>
#include "mem2.hpp"
#include "mem2alloc.hpp"
#include "gecko.h"
#include "utils.h"
// Forbid the use of MEM2 through malloc
u32 MALLOC_MEM2 = 0;
static CMEM2Alloc g_mem1gp;
static CMEM2Alloc g_mem2gp;
bool WrapMEM1 = true;
extern "C"
{
extern __typeof(malloc) __real_malloc;
extern __typeof(calloc) __real_calloc;
extern __typeof(realloc) __real_realloc;
extern __typeof(memalign) __real_memalign;
extern __typeof(free) __real_free;
extern __typeof(malloc_usable_size) __real_malloc_usable_size;
void MEM1_init(void *addr, void *end)
{
g_mem1gp.init(addr, end);
g_mem1gp.clear();
}
void MEM1_cleanup(void)
{
g_mem1gp.cleanup();
}
void MEM1_clear(void)
{
g_mem1gp.clear();
}
void *MEM1_alloc(unsigned int s)
{
return g_mem1gp.allocate(s);
}
void *MEM1_memalign(unsigned int a, unsigned int s)
{
return g_mem1gp.allocate(ALIGN(a, s));
}
void *MEM1_realloc(void *p, unsigned int s)
{
return g_mem1gp.reallocate(p, s);
}
void MEM1_free(void *p)
{
g_mem1gp.release(p);
}
void MEM1_wrap(unsigned int enable)
{
WrapMEM1 = enable;
}
unsigned int MEM1_usableSize(void *p)
{
return g_mem1gp.usableSize(p);
}
unsigned int MEM1_freesize()
{
return g_mem1gp.FreeSize();
}
void MEM2_init(unsigned int mem2Size)
{
g_mem2gp.init(mem2Size);
g_mem2gp.clear();
}
void MEM2_cleanup(void)
{
g_mem2gp.cleanup();
}
void MEM2_clear(void)
{
g_mem2gp.clear();
}
void MEM2_free(void *p)
{
g_mem2gp.release(p);
}
void *MEM2_alloc(unsigned int s)
{
return g_mem2gp.allocate(s);
}
void *MEM2_memalign(unsigned int a, unsigned int s)
{
return g_mem2gp.allocate(ALIGN(a, s));
}
void *MEM2_realloc(void *p, unsigned int s)
{
return g_mem2gp.reallocate(p, s);
}
unsigned int MEM2_usableSize(void *p)
{
return g_mem2gp.usableSize(p);
}
unsigned int MEM2_freesize()
{
return g_mem2gp.FreeSize();
}
void *__wrap_malloc(size_t size)
{
void *p;
if(SYS_GetArena1Lo() >= MAX_MEM1_ARENA_LO || size >= MEM2_PRIORITY_SIZE || !WrapMEM1)
{
p = g_mem2gp.allocate(size);
if(p != 0)
return p;
return __real_malloc(size);
}
p = __real_malloc(size);
if(p != 0)
return p;
return g_mem2gp.allocate(size);
}
void *__wrap_calloc(size_t n, size_t size)
{
void *p;
if(SYS_GetArena1Lo() >= MAX_MEM1_ARENA_LO || (n * size) >= MEM2_PRIORITY_SIZE || !WrapMEM1)
{
p = g_mem2gp.allocate(n * size);
if (p != 0)
{
memset(p, 0, n * size);
return p;
}
return __real_calloc(n, size);
}
p = __real_calloc(n, size);
if (p != 0) return p;
p = g_mem2gp.allocate(n * size);
if (p != 0)
memset(p, 0, n * size);
return p;
}
void *__wrap_memalign(size_t a, size_t size)
{
void *p;
if(SYS_GetArena1Lo() >= MAX_MEM1_ARENA_LO || size >= MEM2_PRIORITY_SIZE || !WrapMEM1)
{
p = MEM2_memalign(a, size);
if (p != 0)
return p;
return __real_memalign(a, size);
}
p = __real_memalign(a, size);
if(p != 0)
return p;
return MEM2_memalign(a, size);
}
void __wrap_free(void *p)
{
if(!p)
return;
if(((u32)p & 0x10000000) != 0)
g_mem2gp.release(p);
else if((u32)p < (u32)0x80b00000 && (u32)p >= (u32)0x80003f00)
g_mem1gp.release(p);
else
__real_free(p);
}
void *__wrap_realloc(void *p, size_t size)
{
void *n;
// ptr from mem2
if (((u32)p & 0x10000000) != 0 || (p == 0 && size > MEM2_PRIORITY_SIZE))
{
n = g_mem2gp.reallocate(p, size);
if (n != 0)
return n;
n = __real_malloc(size);
if (n == 0)
return 0;
if (p != 0)
{
memcpy(n, p, MEM2_usableSize(p) < size ? MEM2_usableSize(p) : size);
g_mem2gp.release(p);
}
return n;
}
// ptr from malloc
n = __real_realloc(p, size);
if (n != 0)
return n;
n = g_mem2gp.allocate(size);
if (n == 0)
return 0;
if (p != 0)
{
memcpy(n, p, __real_malloc_usable_size(p) < size ? __real_malloc_usable_size(p) : size);
__real_free(p);
}
return n;
}
size_t __wrap_malloc_usable_size(void *p)
{
if(((u32)p & 0x10000000) != 0)
return CMEM2Alloc::usableSize(p);
return __real_malloc_usable_size(p);
}
} ///extern "C"