More WIP linux work, upgraded libultra to include changes from BT recomp

This commit is contained in:
Mr-Wiseguy 2023-10-23 15:32:30 -04:00
parent 2865ef758e
commit f361fddd3e
21 changed files with 1108 additions and 326 deletions

View File

@ -46,8 +46,8 @@ typedef uint64_t gpr;
//(*(uint8_t*)(rdram + ((((reg) + (offset)) ^ 3) & 0x3FFFFFF))) //(*(uint8_t*)(rdram + ((((reg) + (offset)) ^ 3) & 0x3FFFFFF)))
#define SD(val, offset, reg) { \ #define SD(val, offset, reg) { \
*(uint32_t*)(rdram + ((((reg) + (offset) + 4)) - 0xFFFFFFFF80000000)) = (uint32_t)((val) >> 0); \ *(uint32_t*)(rdram + ((((reg) + (offset) + 4)) - 0xFFFFFFFF80000000)) = (uint32_t)((gpr)(val) >> 0); \
*(uint32_t*)(rdram + ((((reg) + (offset) + 0)) - 0xFFFFFFFF80000000)) = (uint32_t)((val) >> 32); \ *(uint32_t*)(rdram + ((((reg) + (offset) + 0)) - 0xFFFFFFFF80000000)) = (uint32_t)((gpr)(val) >> 32); \
} }
//#define SD(val, offset, reg) { \ //#define SD(val, offset, reg) { \
@ -239,15 +239,26 @@ typedef struct {
r8, r9, r10, r11, r12, r13, r14, r15, r8, r9, r10, r11, r12, r13, r14, r15,
r16, r17, r18, r19, r20, r21, r22, r23, r16, r17, r18, r19, r20, r21, r22, r23,
r24, r25, r26, r27, r28, r29, r30, r31; r24, r25, r26, r27, r28, r29, r30, r31;
fpr f0, f2, f4, f6, f8, f10, f12, f14, fpr f0, f1, f2, f3, f4, f5, f6, f7,
f16, f18, f20, f22, f24, f26, f28, f30; f8, f9, f10, f11, f12, f13, f14, f15,
f16, f17, f18, f19, f20, f21, f22, f23,
f24, f25, f26, f27, f28, f29, f30, f31;
uint64_t hi, lo; uint64_t hi, lo;
uint32_t* f_odd;
uint32_t status_reg;
uint8_t mips3_float_mode;
} recomp_context; } recomp_context;
// Checks if the target is an even float register or that mips3 float mode is enabled
#define CHECK_FR(ctx, idx) \
assert(((idx) & 1) == 0 || (ctx)->mips3_float_mode)
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
void cop0_status_write(recomp_context* ctx, gpr value);
gpr cop0_status_read(recomp_context* ctx);
void switch_error(const char* func, uint32_t vram, uint32_t jtbl); void switch_error(const char* func, uint32_t vram, uint32_t jtbl);
void do_break(uint32_t vram); void do_break(uint32_t vram);
@ -272,6 +283,9 @@ extern int32_t section_addresses[];
#define RELOC_LO16(section_index, offset) \ #define RELOC_LO16(section_index, offset) \
LO16(section_addresses[section_index] + (offset)) LO16(section_addresses[section_index] + (offset))
// For Banjo-Tooie
void recomp_syscall_handler(uint8_t* rdram, recomp_context* ctx, int32_t instruction_vram);
// For the Mario Party games (not working) // For the Mario Party games (not working)
//// This has to be in this file so it can be inlined //// This has to be in this file so it can be inlined
//struct jmp_buf_storage { //struct jmp_buf_storage {

View File

@ -8,7 +8,8 @@ enum class RspExitReason {
Invalid, Invalid,
Broke, Broke,
ImemOverrun, ImemOverrun,
UnhandledJumpTarget UnhandledJumpTarget,
Unsupported
}; };
extern uint8_t dmem[]; extern uint8_t dmem[];
@ -16,19 +17,19 @@ extern uint16_t rspReciprocals[512];
extern uint16_t rspInverseSquareRoots[512]; extern uint16_t rspInverseSquareRoots[512];
#define RSP_MEM_W(offset, addr) \ #define RSP_MEM_W(offset, addr) \
(*reinterpret_cast<uint32_t*>(dmem + (offset) + (addr))) (*reinterpret_cast<uint32_t*>(dmem + (0xFFF & ((offset) + (addr)))))
#define RSP_MEM_H(offset, addr) \ #define RSP_MEM_H(offset, addr) \
(*reinterpret_cast<int16_t*>(dmem + (((offset) + (addr)) ^ 2))) (*reinterpret_cast<int16_t*>(dmem + (0xFFF & (((offset) + (addr)) ^ 2))))
#define RSP_MEM_HU(offset, addr) \ #define RSP_MEM_HU(offset, addr) \
(*reinterpret_cast<uint16_t*>(dmem + (((offset) + (addr)) ^ 2))) (*reinterpret_cast<uint16_t*>(dmem + (0xFFF & (((offset) + (addr)) ^ 2))))
#define RSP_MEM_B(offset, addr) \ #define RSP_MEM_B(offset, addr) \
(*reinterpret_cast<int8_t*>(dmem + (((offset) + (addr)) ^ 3))) (*reinterpret_cast<int8_t*>(dmem + (0xFFF & (((offset) + (addr)) ^ 3))))
#define RSP_MEM_BU(offset, addr) \ #define RSP_MEM_BU(offset, addr) \
(*reinterpret_cast<uint8_t*>(dmem + (((offset) + (addr)) ^ 3))) (*reinterpret_cast<uint8_t*>(dmem + (0xFFF & (((offset) + (addr)) ^ 3))))
#define RSP_ADD32(a, b) \ #define RSP_ADD32(a, b) \
((int32_t)((a) + (b))) ((int32_t)((a) + (b)))

View File

@ -1,11 +1,13 @@
#ifndef __RT64_LAYER_H__ #ifndef __RT64_LAYER_H__
#define __RT64_LAYER_H__ #define __RT64_LAYER_H__
typedef struct { #include "../portultra/multilibultra.hpp"
void* hWnd;
void* hStatusBar;
int Reserved; typedef struct {
// void* hWnd;
// void* hStatusBar;
// int Reserved;
unsigned char* HEADER; /* This is the rom header (first 40h bytes of the rom) */ unsigned char* HEADER; /* This is the rom header (first 40h bytes of the rom) */
unsigned char* RDRAM; unsigned char* RDRAM;
@ -40,9 +42,9 @@ typedef struct {
void (*CheckInterrupts)(void); void (*CheckInterrupts)(void);
// unsigned int version; unsigned int version;
// unsigned int* SP_STATUS_REG; unsigned int* SP_STATUS_REG;
// const unsigned int* RDRAM_SIZE; const unsigned int* RDRAM_SIZE;
} GFX_INFO; } GFX_INFO;
#ifdef _WIN32 #ifdef _WIN32
@ -61,7 +63,7 @@ typedef struct {
//DLLEXPORT void (CALL *UpdateScreen)(void) = nullptr; //DLLEXPORT void (CALL *UpdateScreen)(void) = nullptr;
//DLLEXPORT void (CALL *PumpEvents)(void) = nullptr; //DLLEXPORT void (CALL *PumpEvents)(void) = nullptr;
DLLIMPORT int InitiateGFX(GFX_INFO Gfx_Info); extern "C" int InitiateGFXLinux(GFX_INFO Gfx_Info, Window window, Display *display);
DLLIMPORT void ProcessRDPList(void); DLLIMPORT void ProcessRDPList(void);
DLLIMPORT void ProcessDList(void); DLLIMPORT void ProcessDList(void);
DLLIMPORT void UpdateScreen(void); DLLIMPORT void UpdateScreen(void);

View File

@ -64,8 +64,8 @@ float buffer_offset_frames = 0.5f;
uint32_t Multilibultra::get_remaining_audio_bytes() { uint32_t Multilibultra::get_remaining_audio_bytes() {
// Get the number of remaining buffered audio bytes. // Get the number of remaining buffered audio bytes.
uint32_t buffered_byte_count; uint32_t buffered_byte_count;
if (audio_callbacks.get_samples_remaining()) { if (audio_callbacks.get_frames_remaining != nullptr) {
buffered_byte_count = audio_callbacks.get_samples_remaining() * sizeof(int16_t); buffered_byte_count = audio_callbacks.get_frames_remaining() * 2 * sizeof(int16_t);
} }
else { else {
buffered_byte_count = 100; buffered_byte_count = 100;

View File

@ -93,6 +93,8 @@ extern "C" void osViSetEvent(RDRAM_ARG PTR(OSMesgQueue) mq_, OSMesg msg, u32 ret
events_context.vi.retrace_count = retrace_count; events_context.vi.retrace_count = retrace_count;
} }
uint64_t total_vis = 0;
void vi_thread_func() { void vi_thread_func() {
Multilibultra::set_native_thread_name("VI Thread"); Multilibultra::set_native_thread_name("VI Thread");
// This thread should be prioritized over every other thread in the application, as it's what allows // This thread should be prioritized over every other thread in the application, as it's what allows
@ -100,7 +102,6 @@ void vi_thread_func() {
Multilibultra::set_native_thread_priority(Multilibultra::ThreadPriority::Critical); Multilibultra::set_native_thread_priority(Multilibultra::ThreadPriority::Critical);
using namespace std::chrono_literals; using namespace std::chrono_literals;
uint64_t total_vis = 0;
int remaining_retraces = events_context.vi.retrace_count; int remaining_retraces = events_context.vi.retrace_count;
while (true) { while (true) {
@ -157,7 +158,7 @@ void dp_complete() {
osSendMesg(PASS_RDRAM events_context.dp.mq, events_context.dp.msg, OS_MESG_NOBLOCK); osSendMesg(PASS_RDRAM events_context.dp.mq, events_context.dp.msg, OS_MESG_NOBLOCK);
} }
void RT64Init(uint8_t* rom, uint8_t* rdram, void* window_handle); void RT64Init(uint8_t* rom, uint8_t* rdram, Multilibultra::WindowHandle window_handle);
void RT64SendDL(uint8_t* rdram, const OSTask* task); void RT64SendDL(uint8_t* rdram, const OSTask* task);
void RT64UpdateScreen(uint32_t vi_origin); void RT64UpdateScreen(uint32_t vi_origin);
void RT64ChangeWindow(); void RT64ChangeWindow();
@ -235,12 +236,29 @@ void task_thread_func(uint8_t* rdram, uint8_t* rom, std::atomic_flag* thread_rea
} }
} }
void gfx_thread_func(uint8_t* rdram, uint8_t* rom, std::atomic_flag* thread_ready, void* window_handle) { static Multilibultra::gfx_callbacks_t gfx_callbacks;
void Multilibultra::set_gfx_callbacks(const gfx_callbacks_t* callbacks) {
if (callbacks != nullptr) {
gfx_callbacks = *callbacks;
}
}
void gfx_thread_func(uint8_t* rdram, uint8_t* rom, std::atomic_flag* thread_ready, Multilibultra::WindowHandle window_handle) {
using namespace std::chrono_literals; using namespace std::chrono_literals;
Multilibultra::gfx_callbacks_t::gfx_data_t gfx_data{};
Multilibultra::set_native_thread_name("Gfx Thread"); Multilibultra::set_native_thread_name("Gfx Thread");
Multilibultra::set_native_thread_priority(Multilibultra::ThreadPriority::Normal); Multilibultra::set_native_thread_priority(Multilibultra::ThreadPriority::Normal);
if (gfx_callbacks.create_gfx != nullptr) {
gfx_data = gfx_callbacks.create_gfx();
}
if (gfx_callbacks.create_window != nullptr) {
window_handle = gfx_callbacks.create_window(gfx_data);
}
RT64Init(rom, rdram, window_handle); RT64Init(rom, rdram, window_handle);
rsp_constants_init(); rsp_constants_init();
@ -263,15 +281,13 @@ void gfx_thread_func(uint8_t* rdram, uint8_t* rom, std::atomic_flag* thread_read
RT64SendDL(rdram, &task_action->task); RT64SendDL(rdram, &task_action->task);
dp_complete(); dp_complete();
} else if (const auto* swap_action = std::get_if<SwapBuffersAction>(&action)) { } else if (const auto* swap_action = std::get_if<SwapBuffersAction>(&action)) {
static volatile int i = 0;
if (i >= 100) {
i = 0;
}
i++;
events_context.vi.current_buffer = events_context.vi.next_buffer; events_context.vi.current_buffer = events_context.vi.next_buffer;
RT64UpdateScreen(swap_action->origin); RT64UpdateScreen(swap_action->origin);
} }
} }
if (gfx_callbacks.update_gfx != nullptr) {
gfx_callbacks.update_gfx(nullptr);
}
} }
} }
@ -428,7 +444,7 @@ void Multilibultra::send_si_message() {
osSendMesg(PASS_RDRAM events_context.si.mq, events_context.si.msg, OS_MESG_NOBLOCK); osSendMesg(PASS_RDRAM events_context.si.mq, events_context.si.msg, OS_MESG_NOBLOCK);
} }
void Multilibultra::init_events(uint8_t* rdram, uint8_t* rom, void* window_handle) { void Multilibultra::init_events(uint8_t* rdram, uint8_t* rom, Multilibultra::WindowHandle window_handle) {
std::atomic_flag gfx_thread_ready; std::atomic_flag gfx_thread_ready;
std::atomic_flag task_thread_ready; std::atomic_flag task_thread_ready;
events_context.rdram = rdram; events_context.rdram = rdram;

View File

@ -5,6 +5,58 @@
#include "multilibultra.hpp" #include "multilibultra.hpp"
#include "recomp.h" #include "recomp.h"
#if defined(_M_X64)
static inline void spinlock_pause() {
_mm_pause();
}
#elif defined(__x86_64__)
static inline void spinlock_pause() {
__builtin_ia32_pause();
}
#else
#error "No spinlock_pause implementation for current architecture"
#endif
template <typename T>
class atomic_spinlock {
static_assert(sizeof(std::atomic<T>) == sizeof(T), "atomic_spinlock must be used with a type that is the same size as its atomic counterpart");
static_assert(std::atomic<T>::is_always_lock_free, "atomic_spinlock must be used with an always lock-free atomic type");
std::atomic_ref<T> locked_;
public:
atomic_spinlock(T& flag) : locked_{ flag } {}
void lock() {
// Loop until the lock is acquired.
while (true) {
// Try to acquire the lock.
if (!locked_.exchange(true, std::memory_order_acquire)) {
// If it was acquired then exit the loop.
break;
}
// Otherwise, wait until the lock is no longer acquired.
// Doing this instead of constantly trying to acquire the lock reduces cache coherency traffic.
while (locked_.load(std::memory_order_relaxed)) {
// Add a platform-specific pause instruction to reduce load unit traffic.
spinlock_pause();
}
}
}
void unlock() {
// Release the lock by setting it to false.
locked_.store(false, std::memory_order_release);
}
};
class mesg_queue_lock {
OSMesgQueue* queue_;
atomic_spinlock<uint8_t> spinlock_;
public:
mesg_queue_lock(OSMesgQueue* mq) : queue_{ mq }, spinlock_{ mq->lock } {}
void lock() { spinlock_.lock(); }
void unlock() { spinlock_.unlock(); }
};
extern "C" void osCreateMesgQueue(RDRAM_ARG PTR(OSMesgQueue) mq_, PTR(OSMesg) msg, s32 count) { extern "C" void osCreateMesgQueue(RDRAM_ARG PTR(OSMesgQueue) mq_, PTR(OSMesg) msg, s32 count) {
OSMesgQueue *mq = TO_PTR(OSMesgQueue, mq_); OSMesgQueue *mq = TO_PTR(OSMesgQueue, mq_);
mq->blocked_on_recv = NULLPTR; mq->blocked_on_recv = NULLPTR;
@ -13,6 +65,7 @@ extern "C" void osCreateMesgQueue(RDRAM_ARG PTR(OSMesgQueue) mq_, PTR(OSMesg) ms
mq->msg = msg; mq->msg = msg;
mq->validCount = 0; mq->validCount = 0;
mq->first = 0; mq->first = 0;
mq->lock = false;
} }
s32 MQ_GET_COUNT(OSMesgQueue *mq) { s32 MQ_GET_COUNT(OSMesgQueue *mq) {
@ -47,148 +100,159 @@ bool thread_queue_empty(RDRAM_ARG PTR(OSThread)* queue) {
return *queue == NULLPTR; return *queue == NULLPTR;
} }
extern "C" s32 osSendMesg(RDRAM_ARG PTR(OSMesgQueue) mq_, OSMesg msg, s32 flags) { std::mutex test_mutex{};
OSMesgQueue *mq = TO_PTR(OSMesgQueue, mq_);
// Prevent accidentally blocking anything that isn't a game thread
if (!Multilibultra::is_game_thread()) {
flags = OS_MESG_NOBLOCK;
}
Multilibultra::disable_preemption(); // Attempts to put a message into a queue.
// If the queue is not full, returns true and pops a thread from the blocked on receive list.
// If the queue is full and this is a blocking send, places the current thread into the blocked on send list
// for the message queue, marks the current thread as being blocked on a queue and returns false.
bool mesg_queue_try_insert(RDRAM_ARG OSMesgQueue* mq, OSMesg msg, OSThread*& to_run, bool jam, bool blocking) {
//mesg_queue_lock lock{ mq };
std::lock_guard guard{ test_mutex };
if (flags == OS_MESG_NOBLOCK) { // If the queue is full, insert this thread into the blocked on send queue and return false.
// If non-blocking, fail if the queue is full if (MQ_IS_FULL(mq)) {
if (MQ_IS_FULL(mq)) { if (blocking) {
Multilibultra::enable_preemption();
return -1;
}
} else {
// Otherwise, yield this thread until the queue has room
while (MQ_IS_FULL(mq)) {
debug_printf("[Message Queue] Thread %d is blocked on send\n", TO_PTR(OSThread, Multilibultra::this_thread())->id);
thread_queue_insert(PASS_RDRAM &mq->blocked_on_send, Multilibultra::this_thread()); thread_queue_insert(PASS_RDRAM &mq->blocked_on_send, Multilibultra::this_thread());
Multilibultra::enable_preemption(); // TODO is it safe to use the schedule queue here while in the message queue lock?
Multilibultra::pause_self(PASS_RDRAM1); Multilibultra::block_self(PASS_RDRAM1);
Multilibultra::disable_preemption();
} }
to_run = nullptr;
return false;
} }
s32 last = (mq->first + mq->validCount) % mq->msgCount;
TO_PTR(OSMesg, mq->msg)[last] = msg;
mq->validCount++;
OSThread* to_run = nullptr;
// The queue wasn't full, so place the message into it.
if (jam) {
// Insert this message at the start of the queue.
mq->first = (mq->first + mq->msgCount - 1) % mq->msgCount;
TO_PTR(OSMesg, mq->msg)[mq->first] = msg;
mq->validCount++;
}
else {
// Insert this message at the end of the queue.
s32 last = (mq->first + mq->validCount) % mq->msgCount;
TO_PTR(OSMesg, mq->msg)[last] = msg;
mq->validCount++;
}
// Pop a thread from the blocked on recv queue to wake afterwards.
if (!thread_queue_empty(PASS_RDRAM &mq->blocked_on_recv)) { if (!thread_queue_empty(PASS_RDRAM &mq->blocked_on_recv)) {
to_run = thread_queue_pop(PASS_RDRAM &mq->blocked_on_recv); to_run = thread_queue_pop(PASS_RDRAM &mq->blocked_on_recv);
} }
Multilibultra::enable_preemption(); return true;
if (to_run) {
debug_printf("[Message Queue] Thread %d is unblocked\n", to_run->id);
if (Multilibultra::is_game_thread()) {
OSThread* self = TO_PTR(OSThread, Multilibultra::this_thread());
if (to_run->priority > self->priority) {
Multilibultra::swap_to_thread(PASS_RDRAM to_run);
} else {
Multilibultra::schedule_running_thread(to_run);
}
} else {
Multilibultra::schedule_running_thread(to_run);
}
}
return 0;
} }
extern "C" s32 osJamMesg(RDRAM_ARG PTR(OSMesgQueue) mq_, OSMesg msg, s32 flags) { // Attempts to remove a message from a queue.
OSMesgQueue *mq = TO_PTR(OSMesgQueue, mq_); // If the queue is not empty, returns true and pops a thread from the blocked on send list.
Multilibultra::disable_preemption(); // If the queue is empty and this is a blocking receive, places the current thread into the blocked on receive list
// for the message queue, marks the current thread as being blocked on a queue and returns false.
bool mesg_queue_try_remove(RDRAM_ARG OSMesgQueue* mq, PTR(OSMesg) msg_out, OSThread*& to_run, bool blocking) {
//mesg_queue_lock lock{ mq };
std::lock_guard guard{ test_mutex };
if (flags == OS_MESG_NOBLOCK) { // If the queue is full, insert this thread into the blocked on receive queue and return false.
// If non-blocking, fail if the queue is full if (MQ_IS_EMPTY(mq)) {
if (MQ_IS_FULL(mq)) { if (blocking) {
Multilibultra::enable_preemption();
return -1;
}
} else {
// Otherwise, yield this thread in a loop until the queue is no longer full
while (MQ_IS_FULL(mq)) {
debug_printf("[Message Queue] Thread %d is blocked on jam\n", TO_PTR(OSThread, Multilibultra::this_thread())->id);
thread_queue_insert(PASS_RDRAM &mq->blocked_on_send, Multilibultra::this_thread());
Multilibultra::enable_preemption();
Multilibultra::pause_self(PASS_RDRAM1);
Multilibultra::disable_preemption();
}
}
mq->first = (mq->first + mq->msgCount - 1) % mq->msgCount;
TO_PTR(OSMesg, mq->msg)[mq->first] = msg;
mq->validCount++;
OSThread *to_run = nullptr;
if (!thread_queue_empty(PASS_RDRAM &mq->blocked_on_recv)) {
to_run = thread_queue_pop(PASS_RDRAM &mq->blocked_on_recv);
}
Multilibultra::enable_preemption();
if (to_run) {
debug_printf("[Message Queue] Thread %d is unblocked\n", to_run->id);
OSThread *self = TO_PTR(OSThread, Multilibultra::this_thread());
if (to_run->priority > self->priority) {
Multilibultra::swap_to_thread(PASS_RDRAM to_run);
} else {
Multilibultra::schedule_running_thread(to_run);
}
}
return 0;
}
extern "C" s32 osRecvMesg(RDRAM_ARG PTR(OSMesgQueue) mq_, PTR(OSMesg) msg_, s32 flags) {
OSMesgQueue *mq = TO_PTR(OSMesgQueue, mq_);
OSMesg *msg = TO_PTR(OSMesg, msg_);
Multilibultra::disable_preemption();
if (flags == OS_MESG_NOBLOCK) {
// If non-blocking, fail if the queue is empty
if (MQ_IS_EMPTY(mq)) {
Multilibultra::enable_preemption();
return -1;
}
} else {
// Otherwise, yield this thread in a loop until the queue is no longer full
while (MQ_IS_EMPTY(mq)) {
debug_printf("[Message Queue] Thread %d is blocked on receive\n", TO_PTR(OSThread, Multilibultra::this_thread())->id);
thread_queue_insert(PASS_RDRAM &mq->blocked_on_recv, Multilibultra::this_thread()); thread_queue_insert(PASS_RDRAM &mq->blocked_on_recv, Multilibultra::this_thread());
Multilibultra::enable_preemption(); // TODO is it safe to use the schedule queue here while in the message queue lock?
Multilibultra::pause_self(PASS_RDRAM1); Multilibultra::block_self(PASS_RDRAM1);
Multilibultra::disable_preemption();
} }
to_run = nullptr;
return false;
} }
if (msg_ != NULLPTR) { // The queue wasn't empty, so remove the first message from it.
*msg = TO_PTR(OSMesg, mq->msg)[mq->first]; if (msg_out != NULLPTR) {
*TO_PTR(OSMesg, msg_out) = TO_PTR(OSMesg, mq->msg)[mq->first];
} }
mq->first = (mq->first + 1) % mq->msgCount; mq->first = (mq->first + 1) % mq->msgCount;
mq->validCount--; mq->validCount--;
OSThread *to_run = nullptr; // Pop a thread from the blocked on send queue to wake afterwards.
if (!thread_queue_empty(PASS_RDRAM &mq->blocked_on_send)) { if (!thread_queue_empty(PASS_RDRAM &mq->blocked_on_send)) {
to_run = thread_queue_pop(PASS_RDRAM &mq->blocked_on_send); to_run = thread_queue_pop(PASS_RDRAM &mq->blocked_on_send);
} }
Multilibultra::enable_preemption(); return true;
}
enum class MesgQueueActionType {
Send,
Jam,
Receive
};
s32 mesg_queue_action(RDRAM_ARG PTR(OSMesgQueue) mq_, OSMesg msg, PTR(OSMesg) msg_out, s32 flags, MesgQueueActionType action) {
OSMesgQueue* mq = TO_PTR(OSMesgQueue, mq_);
OSThread* this_thread = TO_PTR(OSThread, Multilibultra::this_thread());
bool is_blocking = flags != OS_MESG_NOBLOCK;
// Prevent accidentally blocking anything that isn't a game thread
if (!Multilibultra::is_game_thread()) {
is_blocking = false;
}
OSThread* to_run = nullptr;
// Repeatedly attempt to send the message until it's successful.
while (true) {
// Try to insert/remove the message into the queue depending on the action.
bool success = false;
switch (action) {
case MesgQueueActionType::Send:
success = mesg_queue_try_insert(PASS_RDRAM mq, msg, to_run, false, is_blocking);
break;
case MesgQueueActionType::Jam:
success = mesg_queue_try_insert(PASS_RDRAM mq, msg, to_run, true, is_blocking);
break;
case MesgQueueActionType::Receive:
success = mesg_queue_try_remove(PASS_RDRAM mq, msg_out, to_run, is_blocking);
break;
}
// If successful, don't block.
if (success) {
//goto after;
break;
}
// Otherwise if the action was unsuccessful but wasn't blocking, return -1 to indicate a failure.
if (!is_blocking) {
return -1;
}
// The action failed, so pause this thread until unblocked by the queue.
debug_printf("[Message Queue] Thread %d is blocked on %s\n", this_thread->id, action == MesgQueueActionType::Receive ? "receive" : "send");
// Wait for it this thread be resumed.
Multilibultra::wait_for_resumed(PASS_RDRAM1);
}
//after:
// If any thread was blocked on receiving from this queue, wake it.
if (to_run) { if (to_run) {
debug_printf("[Message Queue] Thread %d is unblocked\n", to_run->id); debug_printf("[Message Queue] Thread %d is unblocked\n", to_run->id);
OSThread *self = TO_PTR(OSThread, Multilibultra::this_thread()); Multilibultra::unblock_thread(to_run);
if (to_run->priority > self->priority) {
Multilibultra::swap_to_thread(PASS_RDRAM to_run); // If the unblocked thread is higher priority than this one, pause this thread so it can take over.
} else { if (Multilibultra::is_game_thread() && to_run->priority > this_thread->priority) {
Multilibultra::schedule_running_thread(to_run); Multilibultra::yield_self(PASS_RDRAM1);
Multilibultra::wait_for_resumed(PASS_RDRAM1);
} }
} }
return 0; return 0;
} }
extern "C" s32 osSendMesg(RDRAM_ARG PTR(OSMesgQueue) mq_, OSMesg msg, s32 flags) {
return mesg_queue_action(PASS_RDRAM mq_, msg, NULLPTR, flags, MesgQueueActionType::Send);
}
extern "C" s32 osJamMesg(RDRAM_ARG PTR(OSMesgQueue) mq_, OSMesg msg, s32 flags) {
return mesg_queue_action(PASS_RDRAM mq_, msg, NULLPTR, flags, MesgQueueActionType::Jam);
}
extern "C" s32 osRecvMesg(RDRAM_ARG PTR(OSMesgQueue) mq_, PTR(OSMesg) msg_out_, s32 flags) {
return mesg_queue_action(PASS_RDRAM mq_, NULLPTR, msg_out_, flags, MesgQueueActionType::Receive);
}

View File

@ -8,31 +8,57 @@
#include "ultra64.h" #include "ultra64.h"
#if defined(_WIN32)
# include <Windows.h>
#elif defined(__ANDROID__)
# include "android/native_window.h"
#elif defined(__linux__)
# include "X11/Xlib.h"
# undef None
# undef Status
# undef LockMask
#endif
struct UltraThreadContext { struct UltraThreadContext {
std::thread host_thread; std::thread host_thread;
std::atomic_bool running; std::atomic_bool scheduled;
std::atomic_bool descheduled;
std::atomic_bool initialized; std::atomic_bool initialized;
}; };
namespace Multilibultra { namespace Multilibultra {
#if defined(_WIN32)
// Native HWND handle to the target window.
using WindowHandle = HWND;
#elif defined(__ANDROID__)
using WindowHandle = ANativeWindow*;
#elif defined(__linux__)
struct WindowHandle {
Display* display;
Window window;
};
#endif
// We need a place in rdram to hold the PI handles, so pick an address in extended rdram // We need a place in rdram to hold the PI handles, so pick an address in extended rdram
constexpr int32_t cart_handle = 0x80800000; constexpr int32_t cart_handle = 0x80800000;
constexpr int32_t flash_handle = (int32_t)(cart_handle + sizeof(OSPiHandle)); constexpr int32_t flash_handle = (int32_t)(cart_handle + sizeof(OSPiHandle));
constexpr uint32_t save_size = 1024 * 1024 / 8; // Maximum save size, 1Mbit for flash constexpr uint32_t save_size = 1024 * 1024 / 8; // Maximum save size, 1Mbit for flash
void preinit(uint8_t* rdram, uint8_t* rom, void* window_handle); void preinit(uint8_t* rdram, uint8_t* rom, WindowHandle window_handle);
void save_init(); void save_init();
void init_scheduler(); void init_scheduler();
void init_events(uint8_t* rdram, uint8_t* rom, void* window_handle); void init_events(uint8_t* rdram, uint8_t* rom, WindowHandle window_handle);
void init_timers(RDRAM_ARG1); void init_timers(RDRAM_ARG1);
void set_self_paused(RDRAM_ARG1); void yield_self(RDRAM_ARG1);
void block_self(RDRAM_ARG1);
void unblock_thread(OSThread* t);
void wait_for_resumed(RDRAM_ARG1); void wait_for_resumed(RDRAM_ARG1);
void swap_to_thread(RDRAM_ARG OSThread *to); void swap_to_thread(RDRAM_ARG OSThread *to);
void pause_thread_impl(OSThread *t); void resume_thread_impl(OSThread* t);
void resume_thread_impl(OSThread *t);
void schedule_running_thread(OSThread *t); void schedule_running_thread(OSThread *t);
void pause_self(RDRAM_ARG1); void halt_self(RDRAM_ARG1);
void stop_thread(OSThread *t);
void cleanup_thread(OSThread *t); void cleanup_thread(OSThread *t);
enum class ThreadPriority { enum class ThreadPriority {
@ -46,8 +72,6 @@ enum class ThreadPriority {
void set_native_thread_name(const std::string& name); void set_native_thread_name(const std::string& name);
void set_native_thread_priority(ThreadPriority pri); void set_native_thread_priority(ThreadPriority pri);
PTR(OSThread) this_thread(); PTR(OSThread) this_thread();
void disable_preemption();
void enable_preemption();
void notify_scheduler(); void notify_scheduler();
void reprioritize_thread(OSThread *t, OSPri pri); void reprioritize_thread(OSThread *t, OSPri pri);
void set_main_thread(); void set_main_thread();
@ -69,7 +93,7 @@ struct audio_callbacks_t {
using get_samples_remaining_t = size_t(); using get_samples_remaining_t = size_t();
using set_frequency_t = void(uint32_t); using set_frequency_t = void(uint32_t);
queue_samples_t* queue_samples; queue_samples_t* queue_samples;
get_samples_remaining_t* get_samples_remaining; get_samples_remaining_t* get_frames_remaining;
set_frequency_t* set_frequency; set_frequency_t* set_frequency;
}; };
void set_audio_callbacks(const audio_callbacks_t* callbacks); void set_audio_callbacks(const audio_callbacks_t* callbacks);
@ -81,19 +105,22 @@ struct input_callbacks_t {
}; };
void set_input_callbacks(const input_callbacks_t* callback); void set_input_callbacks(const input_callbacks_t* callback);
class preemption_guard { struct gfx_callbacks_t {
public: using gfx_data_t = void*;
preemption_guard(); using create_gfx_t = gfx_data_t();
~preemption_guard(); using create_window_t = WindowHandle(gfx_data_t);
private: using update_gfx_t = void(gfx_data_t);
std::lock_guard<std::mutex> lock; create_gfx_t* create_gfx;
create_window_t* create_window;
update_gfx_t* update_gfx;
}; };
void set_gfx_callbacks(const gfx_callbacks_t* callbacks);
} // namespace Multilibultra } // namespace Multilibultra
#define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MIN(a, b) ((a) < (b) ? (a) : (b))
#define debug_printf(...) //#define debug_printf(...)
//#define debug_printf(...) printf(__VA_ARGS__); #define debug_printf(...) printf(__VA_ARGS__);
#endif #endif

View File

@ -3,6 +3,7 @@
#include <atomic> #include <atomic>
#include <vector> #include <vector>
#include <variant> #include <variant>
#include <algorithm>
#include "blockingconcurrentqueue.h" #include "blockingconcurrentqueue.h"
#include "multilibultra.hpp" #include "multilibultra.hpp"
@ -24,17 +25,27 @@ public:
return false; return false;
} }
if (it == this->c.begin()) { // remove element and re-heap
// deque the top element this->c.erase(it);
this->pop(); std::make_heap(this->c.begin(), this->c.end(), this->comp);
} else {
// remove element and re-heap
this->c.erase(it);
std::make_heap(this->c.begin(), this->c.end(), this->comp);
}
return true; return true;
} }
void print() {
std::vector<OSThread*> backup = this->c;
debug_printf("[Scheduler] Scheduled Threads:\n");
while (!empty()) {
OSThread* t = top();
pop();
debug_printf(" %d: pri %d state %d\n", t->id, t->priority, t->state);
}
this->c = backup;
}
bool contains(OSThread* t) {
return std::find(this->c.begin(), this->c.end(), t) != this->c.end();
}
}; };
struct NotifySchedulerAction { struct NotifySchedulerAction {
@ -58,26 +69,54 @@ struct ReprioritizeThreadAction {
OSPri pri; OSPri pri;
}; };
using ThreadAction = std::variant<NotifySchedulerAction, ScheduleThreadAction, StopThreadAction, CleanupThreadAction, ReprioritizeThreadAction>; struct YieldedThreadAction {
OSThread* t;
};
struct BlockedThreadAction {
OSThread* t;
};
struct UnblockThreadAction {
OSThread* t;
};
using ThreadAction = std::variant<std::monostate, NotifySchedulerAction, ScheduleThreadAction, StopThreadAction, CleanupThreadAction, ReprioritizeThreadAction, YieldedThreadAction, BlockedThreadAction, UnblockThreadAction>;
static struct { static struct {
moodycamel::BlockingConcurrentQueue<ThreadAction> action_queue{}; moodycamel::BlockingConcurrentQueue<ThreadAction> action_queue{};
OSThread* running_thread; OSThread* running_thread;
bool can_preempt;
std::mutex premption_mutex;
} scheduler_context{}; } scheduler_context{};
void handle_thread_queueing(thread_queue_t& running_thread_queue, const ScheduleThreadAction& action) { void handle_thread_queueing(thread_queue_t& running_thread_queue, const ScheduleThreadAction& action) {
OSThread* to_schedule = action.t; OSThread* to_schedule = action.t;
debug_printf("[Scheduler] Scheduling thread %d\n", to_schedule->id); debug_printf("[Scheduler] Scheduling thread %d\n", to_schedule->id);
running_thread_queue.push(to_schedule);
// Do not schedule the thread if it's waiting on a message queue
if (to_schedule->state == OSThreadState::BLOCKED_STOPPED) {
to_schedule->state = OSThreadState::BLOCKED_PAUSED;
}
else {
to_schedule->state = OSThreadState::PAUSED;
running_thread_queue.push(to_schedule);
}
} }
void handle_thread_stopping(thread_queue_t& running_thread_queue, const StopThreadAction& action) { void handle_thread_stopping(thread_queue_t& running_thread_queue, const StopThreadAction& action) {
OSThread* to_stop = action.t; OSThread* to_stop = action.t;
debug_printf("[Scheduler] Stopping thread %d\n", to_stop->id); debug_printf("[Scheduler] Stopping thread %d\n", to_stop->id);
running_thread_queue.remove(to_stop); running_thread_queue.remove(to_stop);
if (running_thread_queue.contains(to_stop)) {
assert(false);
}
if (to_stop->state == OSThreadState::BLOCKED_PAUSED) {
to_stop->state = OSThreadState::BLOCKED_STOPPED;
}
else {
to_stop->state = OSThreadState::STOPPED;
}
} }
void handle_thread_cleanup(thread_queue_t& running_thread_queue, OSThread*& cur_running_thread, const CleanupThreadAction& action) { void handle_thread_cleanup(thread_queue_t& running_thread_queue, OSThread*& cur_running_thread, const CleanupThreadAction& action) {
@ -111,17 +150,76 @@ void handle_thread_reprioritization(thread_queue_t& running_thread_queue, const
running_thread_queue.push(to_reprioritize); running_thread_queue.push(to_reprioritize);
} }
void handle_thread_yielded(thread_queue_t& running_thread_queue, const YieldedThreadAction& action) {
OSThread* yielded = action.t;
debug_printf("[Scheduler] Thread %d has yielded\n", yielded->id);
// Remove the yielded thread from the thread queue. If it was in the queue then re-add it so that it's placed after any other threads with the same priority.
if (running_thread_queue.remove(yielded)) {
running_thread_queue.push(yielded);
}
yielded->state = OSThreadState::PAUSED;
debug_printf("[Scheduler] Set thread %d to PAUSED\n", yielded->id);
}
void handle_thread_blocked(thread_queue_t& running_thread_queue, const BlockedThreadAction& action) {
OSThread* blocked = action.t;
debug_printf("[Scheduler] Thread %d has been blocked\n", blocked->id);
// Remove the thread from the running queue.
running_thread_queue.remove(blocked);
// Update the thread's state accordingly.
if (blocked->state == OSThreadState::STOPPED) {
blocked->state = OSThreadState::BLOCKED_STOPPED;
}
else if (blocked->state == OSThreadState::RUNNING) {
blocked->state = OSThreadState::BLOCKED_PAUSED;
}
else {
assert(false);
}
running_thread_queue.remove(blocked);
}
void handle_thread_unblocking(thread_queue_t& running_thread_queue, const UnblockThreadAction& action) {
OSThread* unblocked = action.t;
// Do nothing if this thread has already been unblocked.
if (unblocked->state != OSThreadState::BLOCKED_STOPPED && unblocked->state != OSThreadState::BLOCKED_PAUSED) {
return;
}
debug_printf("[Scheduler] Thread %d has been unblocked\n", unblocked->id);
// Update the thread's state accordingly.
if (unblocked->state == OSThreadState::BLOCKED_STOPPED) {
unblocked->state = OSThreadState::STOPPED;
}
else if (unblocked->state == OSThreadState::BLOCKED_PAUSED) {
// The thread wasn't stopped, so put it back in the running queue now that it's been unblocked.
unblocked->state = OSThreadState::PAUSED;
running_thread_queue.push(unblocked);
}
else {
assert(false);
}
}
void swap_running_thread(thread_queue_t& running_thread_queue, OSThread*& cur_running_thread) { void swap_running_thread(thread_queue_t& running_thread_queue, OSThread*& cur_running_thread) {
if (running_thread_queue.size() > 0) { if (running_thread_queue.size() > 0) {
OSThread* new_running_thread = running_thread_queue.top(); OSThread* new_running_thread = running_thread_queue.top();
if (cur_running_thread != new_running_thread) { // If the running thread has changed or the running thread is paused, run the running thread
if (cur_running_thread != new_running_thread || (cur_running_thread && cur_running_thread->state != OSThreadState::RUNNING)) {
if (cur_running_thread && cur_running_thread->state == OSThreadState::RUNNING) { if (cur_running_thread && cur_running_thread->state == OSThreadState::RUNNING) {
debug_printf("[Scheduler] Need to wait for thread %d to pause itself\n", cur_running_thread->id); debug_printf("[Scheduler] Need to wait for thread %d to pause itself\n", cur_running_thread->id);
return; return;
} else {
debug_printf("[Scheduler] Switching execution to thread %d (%d)\n", new_running_thread->id, new_running_thread->priority);
} }
debug_printf("[Scheduler] Switching execution to thread %d (%d)\n", new_running_thread->id, new_running_thread->priority);
Multilibultra::resume_thread_impl(new_running_thread); Multilibultra::resume_thread_impl(new_running_thread);
if (cur_running_thread) {
cur_running_thread->context->descheduled.store(true);
cur_running_thread->context->descheduled.notify_all();
}
cur_running_thread = new_running_thread; cur_running_thread = new_running_thread;
} else if (cur_running_thread && cur_running_thread->state != OSThreadState::RUNNING) { } else if (cur_running_thread && cur_running_thread->state != OSThreadState::RUNNING) {
Multilibultra::resume_thread_impl(cur_running_thread); Multilibultra::resume_thread_impl(cur_running_thread);
@ -139,28 +237,41 @@ void scheduler_func() {
Multilibultra::set_native_thread_priority(Multilibultra::ThreadPriority::VeryHigh); Multilibultra::set_native_thread_priority(Multilibultra::ThreadPriority::VeryHigh);
while (true) { while (true) {
ThreadAction action; using namespace std::chrono_literals;
ThreadAction action{};
OSThread* old_running_thread = cur_running_thread; OSThread* old_running_thread = cur_running_thread;
//scheduler_context.action_queue.wait_dequeue_timed(action, 1ms);
scheduler_context.action_queue.wait_dequeue(action); scheduler_context.action_queue.wait_dequeue(action);
std::lock_guard lock{scheduler_context.premption_mutex}; if (std::get_if<std::monostate>(&action) == nullptr) {
// Determine the action type and act on it
if (const auto* notify_action = std::get_if<NotifySchedulerAction>(&action)) {
// Nothing to do
}
else if (const auto* stop_action = std::get_if<StopThreadAction>(&action)) {
handle_thread_stopping(running_thread_queue, *stop_action);
}
else if (const auto* cleanup_action = std::get_if<CleanupThreadAction>(&action)) {
handle_thread_cleanup(running_thread_queue, cur_running_thread, *cleanup_action);
}
else if (const auto* schedule_action = std::get_if<ScheduleThreadAction>(&action)) {
handle_thread_queueing(running_thread_queue, *schedule_action);
}
else if (const auto* reprioritize_action = std::get_if<ReprioritizeThreadAction>(&action)) {
handle_thread_reprioritization(running_thread_queue, *reprioritize_action);
}
else if (const auto* yielded_action = std::get_if<YieldedThreadAction>(&action)) {
handle_thread_yielded(running_thread_queue, *yielded_action);
}
else if (const auto* blocked_action = std::get_if<BlockedThreadAction>(&action)) {
handle_thread_blocked(running_thread_queue, *blocked_action);
}
else if (const auto* unblock_action = std::get_if<UnblockThreadAction>(&action)) {
handle_thread_unblocking(running_thread_queue, *unblock_action);
}
}
// Determine the action type and act on it running_thread_queue.print();
if (const auto* cleanup_action = std::get_if<NotifySchedulerAction>(&action)) {
// Nothing to do
}
else if (const auto* stop_action = std::get_if<StopThreadAction>(&action)) {
handle_thread_stopping(running_thread_queue, *stop_action);
}
else if (const auto* cleanup_action = std::get_if<CleanupThreadAction>(&action)) {
handle_thread_cleanup(running_thread_queue, cur_running_thread, *cleanup_action);
}
else if (const auto* schedule_action = std::get_if<ScheduleThreadAction>(&action)) {
handle_thread_queueing(running_thread_queue, *schedule_action);
}
else if (const auto* reprioritize_action = std::get_if<ReprioritizeThreadAction>(&action)) {
handle_thread_reprioritization(running_thread_queue, *reprioritize_action);
}
// Determine which thread to run, stopping the current running thread if necessary // Determine which thread to run, stopping the current running thread if necessary
swap_running_thread(running_thread_queue, cur_running_thread); swap_running_thread(running_thread_queue, cur_running_thread);
@ -180,78 +291,90 @@ extern "C" void do_yield() {
namespace Multilibultra { namespace Multilibultra {
void init_scheduler() { void init_scheduler() {
scheduler_context.can_preempt = true;
std::thread scheduler_thread{scheduler_func}; std::thread scheduler_thread{scheduler_func};
scheduler_thread.detach(); scheduler_thread.detach();
} }
void schedule_running_thread(OSThread *t) { void schedule_running_thread(OSThread *t) {
debug_printf("[Scheduler] Queuing Thread %d to be scheduled\n", t->id); debug_printf("[Thread] Queuing Thread %d to be scheduled\n", t->id);
scheduler_context.action_queue.enqueue(ScheduleThreadAction{t}); scheduler_context.action_queue.enqueue(ScheduleThreadAction{t});
} }
void swap_to_thread(RDRAM_ARG OSThread *to) { void swap_to_thread(RDRAM_ARG OSThread *to) {
OSThread *self = TO_PTR(OSThread, Multilibultra::this_thread()); OSThread *self = TO_PTR(OSThread, Multilibultra::this_thread());
debug_printf("[Scheduler] Scheduling swap from thread %d to %d\n", self->id, to->id); debug_printf("[Thread] Scheduling swap from thread %d to %d\n", self->id, to->id);
Multilibultra::set_self_paused(PASS_RDRAM1); // Tell the scheduler that the swapped-to thread is ready to run and that this thread is yielding.
scheduler_context.action_queue.enqueue(ScheduleThreadAction{to}); schedule_running_thread(to);
Multilibultra::wait_for_resumed(PASS_RDRAM1); yield_self(PASS_RDRAM1);
// Wait for the scheduler to resume this thread.
wait_for_resumed(PASS_RDRAM1);
} }
void reprioritize_thread(OSThread *t, OSPri pri) { void reprioritize_thread(OSThread *t, OSPri pri) {
debug_printf("[Scheduler] Adjusting Thread %d priority to %d\n", t->id, pri); debug_printf("[Thread] Adjusting Thread %d priority to %d\n", t->id, pri);
scheduler_context.action_queue.enqueue(ReprioritizeThreadAction{t, pri}); scheduler_context.action_queue.enqueue(ReprioritizeThreadAction{t, pri});
} }
void pause_self(RDRAM_ARG1) { void stop_thread(OSThread *t) {
OSThread *self = TO_PTR(OSThread, Multilibultra::this_thread()); debug_printf("[Thread] Queueing stopping of thread %d\n", t->id);
debug_printf("[Scheduler] Thread %d pausing itself\n", self->id);
Multilibultra::set_self_paused(PASS_RDRAM1); scheduler_context.action_queue.enqueue(StopThreadAction{t});
scheduler_context.action_queue.enqueue(StopThreadAction{self}); }
Multilibultra::wait_for_resumed(PASS_RDRAM1);
void Multilibultra::yield_self(RDRAM_ARG1) {
OSThread* self = TO_PTR(OSThread, Multilibultra::this_thread());
debug_printf("[Thread] Thread %d yielding itself\n", self->id);
scheduler_context.action_queue.enqueue(YieldedThreadAction{ self });
}
void Multilibultra::block_self(RDRAM_ARG1) {
OSThread* self = TO_PTR(OSThread, Multilibultra::this_thread());
debug_printf("[Thread] Thread %d has been blocked\n", self->id);
scheduler_context.action_queue.enqueue(BlockedThreadAction{ self });
}
void Multilibultra::unblock_thread(OSThread *t) {
debug_printf("[Thread] Unblocking thread %d\n", t->id);
scheduler_context.action_queue.enqueue(UnblockThreadAction{ t });
}
void halt_self(RDRAM_ARG1) {
OSThread* self = TO_PTR(OSThread, Multilibultra::this_thread());
debug_printf("[Thread] Thread %d pausing itself\n", self->id);
stop_thread(self);
yield_self(PASS_RDRAM1);
wait_for_resumed(PASS_RDRAM1);
} }
void cleanup_thread(OSThread *t) { void cleanup_thread(OSThread *t) {
scheduler_context.action_queue.enqueue(CleanupThreadAction{t}); scheduler_context.action_queue.enqueue(CleanupThreadAction{t});
} }
void disable_preemption() {
scheduler_context.premption_mutex.lock();
if (Multilibultra::is_game_thread()) {
scheduler_context.can_preempt = false;
}
}
void enable_preemption() {
if (Multilibultra::is_game_thread()) {
scheduler_context.can_preempt = true;
}
#pragma warning(push)
#pragma warning( disable : 26110)
scheduler_context.premption_mutex.unlock();
#pragma warning( pop )
}
// lock's constructor is called first, so can_preempt is set after locking
preemption_guard::preemption_guard() : lock{scheduler_context.premption_mutex} {
scheduler_context.can_preempt = false;
}
// lock's destructor is called last, so can_preempt is set before unlocking
preemption_guard::~preemption_guard() {
scheduler_context.can_preempt = true;
}
void notify_scheduler() { void notify_scheduler() {
scheduler_context.action_queue.enqueue(NotifySchedulerAction{}); scheduler_context.action_queue.enqueue(NotifySchedulerAction{});
} }
void resume_thread_impl(OSThread* t) {
if (t->state == OSThreadState::PREEMPTED) {
// Nothing to do here
}
t->state = OSThreadState::RUNNING;
debug_printf("[Scheduler] Set thread %d to RUNNING\n", t->id);
t->context->scheduled.store(true);
t->context->scheduled.notify_all();
}
} }
extern "C" void pause_self(uint8_t* rdram) { extern "C" void pause_self(uint8_t* rdram) {
Multilibultra::pause_self(rdram); Multilibultra::halt_self(rdram);
} }

View File

@ -7,10 +7,8 @@
#include "multilibultra.hpp" #include "multilibultra.hpp"
// Native APIs only used to set thread names for easier debugging // Native APIs only used to set thread names for easier debugging
#if defined(_WIN32) #ifdef _WIN32
#include <Windows.h> #include <Windows.h>
#elif defined(__linux__)
#include <pthread.h>
#endif #endif
extern "C" void bootproc(); extern "C" void bootproc();
@ -127,7 +125,6 @@ static void _thread_func(RDRAM_ARG PTR(OSThread) self_, PTR(thread_func_t) entry
Multilibultra::set_native_thread_priority(Multilibultra::ThreadPriority::High); Multilibultra::set_native_thread_priority(Multilibultra::ThreadPriority::High);
// Set initialized to false to indicate that this thread can be started. // Set initialized to false to indicate that this thread can be started.
Multilibultra::set_self_paused(PASS_RDRAM1);
self->context->initialized.store(true); self->context->initialized.store(true);
self->context->initialized.notify_all(); self->context->initialized.notify_all();
@ -153,7 +150,7 @@ extern "C" void osStartThread(RDRAM_ARG PTR(OSThread) t_) {
OSThread* t = TO_PTR(OSThread, t_); OSThread* t = TO_PTR(OSThread, t_);
debug_printf("[os] Start Thread %d\n", t->id); debug_printf("[os] Start Thread %d\n", t->id);
// Wait until the thread is initialized to indicate that it's action_queued to be started. // Wait until the thread is initialized to indicate that it's queued to be started.
t->context->initialized.wait(false); t->context->initialized.wait(false);
debug_printf("[os] Thread %d is ready to be started\n", t->id); debug_printf("[os] Thread %d is ready to be started\n", t->id);
@ -178,20 +175,33 @@ extern "C" void osCreateThread(RDRAM_ARG PTR(OSThread) t_, OSId id, PTR(thread_f
t->next = NULLPTR; t->next = NULLPTR;
t->priority = pri; t->priority = pri;
t->id = id; t->id = id;
t->state = OSThreadState::PAUSED; t->state = OSThreadState::STOPPED;
t->sp = sp - 0x10; // Set up the first stack frame t->sp = sp - 0x10; // Set up the first stack frame
t->destroyed = false; t->destroyed = false;
// Spawn a new thread, which will immediately pause itself and wait until it's been started. // Spawn a new thread, which will immediately pause itself and wait until it's been started.
t->context = new UltraThreadContext{}; t->context = new UltraThreadContext{};
t->context->initialized.store(false); t->context->initialized.store(false);
t->context->running.store(false); t->context->scheduled.store(false);
t->context->descheduled.store(true);
t->context->host_thread = std::thread{_thread_func, PASS_RDRAM t_, entrypoint, arg}; t->context->host_thread = std::thread{_thread_func, PASS_RDRAM t_, entrypoint, arg};
} }
extern "C" void osStopThread(RDRAM_ARG PTR(OSThread) t_) { extern "C" void osStopThread(RDRAM_ARG PTR(OSThread) t_) {
assert(false); // If null is passed in as the thread then the calling thread is stopping itself.
if (t_ == NULLPTR) {
t_ = Multilibultra::this_thread();
}
// Remove the thread in question from the scheduler so it doesn't get scheduled again.
OSThread* t = TO_PTR(OSThread, t_);
Multilibultra::stop_thread(t);
// If a thread is stopping itself, tell the scheduler that it has yielded.
if (t_ == Multilibultra::this_thread()) {
Multilibultra::yield_self(PASS_RDRAM1);
}
} }
extern "C" void osDestroyThread(RDRAM_ARG PTR(OSThread) t_) { extern "C" void osDestroyThread(RDRAM_ARG PTR(OSThread) t_) {
@ -207,6 +217,12 @@ extern "C" void osDestroyThread(RDRAM_ARG PTR(OSThread) t_) {
} }
} }
// TODO make the thread queue stable to ensure correct yielding behavior
extern "C" void osYieldThread(RDRAM_ARG1) {
Multilibultra::yield_self(PASS_RDRAM1);
Multilibultra::wait_for_resumed(PASS_RDRAM1);
}
extern "C" void osSetThreadPri(RDRAM_ARG PTR(OSThread) t, OSPri pri) { extern "C" void osSetThreadPri(RDRAM_ARG PTR(OSThread) t, OSPri pri) {
if (t == NULLPTR) { if (t == NULLPTR) {
t = thread_self; t = thread_self;
@ -214,13 +230,12 @@ extern "C" void osSetThreadPri(RDRAM_ARG PTR(OSThread) t, OSPri pri) {
bool pause_self = false; bool pause_self = false;
if (pri > TO_PTR(OSThread, thread_self)->priority) { if (pri > TO_PTR(OSThread, thread_self)->priority) {
pause_self = true; pause_self = true;
Multilibultra::set_self_paused(PASS_RDRAM1);
} else if (t == thread_self && pri < TO_PTR(OSThread, thread_self)->priority) { } else if (t == thread_self && pri < TO_PTR(OSThread, thread_self)->priority) {
pause_self = true; pause_self = true;
Multilibultra::set_self_paused(PASS_RDRAM1);
} }
Multilibultra::reprioritize_thread(TO_PTR(OSThread, t), pri); Multilibultra::reprioritize_thread(TO_PTR(OSThread, t), pri);
if (pause_self) { if (pause_self) {
Multilibultra::yield_self(PASS_RDRAM1);
Multilibultra::wait_for_resumed(PASS_RDRAM1); Multilibultra::wait_for_resumed(PASS_RDRAM1);
} }
} }
@ -239,15 +254,6 @@ extern "C" OSId osGetThreadId(RDRAM_ARG PTR(OSThread) t) {
return TO_PTR(OSThread, t)->id; return TO_PTR(OSThread, t)->id;
} }
// TODO yield thread, need a stable priority queue in the scheduler
void Multilibultra::set_self_paused(RDRAM_ARG1) {
debug_printf("[Thread] Thread pausing itself: %d\n", TO_PTR(OSThread, thread_self)->id);
TO_PTR(OSThread, thread_self)->state = OSThreadState::PAUSED;
TO_PTR(OSThread, thread_self)->context->running.store(false);
TO_PTR(OSThread, thread_self)->context->running.notify_all();
}
void check_destroyed(OSThread* t) { void check_destroyed(OSThread* t) {
if (t->destroyed) { if (t->destroyed) {
throw thread_terminated{}; throw thread_terminated{};
@ -256,25 +262,13 @@ void check_destroyed(OSThread* t) {
void Multilibultra::wait_for_resumed(RDRAM_ARG1) { void Multilibultra::wait_for_resumed(RDRAM_ARG1) {
check_destroyed(TO_PTR(OSThread, thread_self)); check_destroyed(TO_PTR(OSThread, thread_self));
TO_PTR(OSThread, thread_self)->context->running.wait(false); //TO_PTR(OSThread, thread_self)->context->descheduled.wait(false);
//TO_PTR(OSThread, thread_self)->context->descheduled.store(false);
TO_PTR(OSThread, thread_self)->context->scheduled.wait(false);
TO_PTR(OSThread, thread_self)->context->scheduled.store(false);
check_destroyed(TO_PTR(OSThread, thread_self)); check_destroyed(TO_PTR(OSThread, thread_self));
} }
void Multilibultra::pause_thread_impl(OSThread* t) {
t->state = OSThreadState::PREEMPTED;
t->context->running.store(false);
t->context->running.notify_all();
}
void Multilibultra::resume_thread_impl(OSThread *t) {
if (t->state == OSThreadState::PREEMPTED) {
// Nothing to do here
}
t->state = OSThreadState::RUNNING;
t->context->running.store(true);
t->context->running.notify_all();
}
PTR(OSThread) Multilibultra::this_thread() { PTR(OSThread) Multilibultra::this_thread() {
return thread_self; return thread_self;
} }

View File

@ -5,7 +5,6 @@
#include "ultra64.h" #include "ultra64.h"
#include "multilibultra.hpp" #include "multilibultra.hpp"
#include "recomp.h"
// Start time for the program // Start time for the program
static std::chrono::system_clock::time_point start = std::chrono::system_clock::now(); static std::chrono::system_clock::time_point start = std::chrono::system_clock::now();
@ -24,7 +23,7 @@ struct OSTimer {
}; };
struct AddTimerAction { struct AddTimerAction {
PTR(OSTask) timer; PTR(OSTimer) timer;
}; };
struct RemoveTimerAction { struct RemoveTimerAction {

View File

@ -78,6 +78,9 @@ typedef struct UltraThreadContext UltraThreadContext;
typedef enum { typedef enum {
RUNNING, RUNNING,
PAUSED, PAUSED,
STOPPED,
BLOCKED_PAUSED,
BLOCKED_STOPPED,
PREEMPTED PREEMPTED
} OSThreadState; } OSThreadState;
@ -101,9 +104,11 @@ typedef PTR(void) OSMesg;
typedef struct OSMesgQueue { typedef struct OSMesgQueue {
PTR(OSThread) blocked_on_recv; /* Linked list of threads blocked on receiving from this queue */ PTR(OSThread) blocked_on_recv; /* Linked list of threads blocked on receiving from this queue */
PTR(OSThread) blocked_on_send; /* Linked list of threads blocked on sending to this queue */ PTR(OSThread) blocked_on_send; /* Linked list of threads blocked on sending to this queue */
s32 validCount; /* Number of messages in the queue */ s32 validCount; /* Number of messages in the queue */
s32 first; /* Index of the first message in the ring buffer */ s32 first; /* Index of the first message in the ring buffer */
s32 msgCount; /* Size of message buffer */ uint8_t lock; /* Lock flag used to implement a spinlock */
uint8_t pad; /* Explicit padding (would be compiler-inserted otherwise) */
s16 msgCount; /* Size of message buffer (s32 in the original libultra, but s16 here to make room for the lock flag) */
PTR(OSMesg) msg; /* Pointer to circular buffer to store messages */ PTR(OSMesg) msg; /* Pointer to circular buffer to store messages */
} OSMesgQueue; } OSMesgQueue;
@ -218,6 +223,7 @@ void osCreateThread(RDRAM_ARG PTR(OSThread) t, OSId id, PTR(thread_func_t) entry
void osStartThread(RDRAM_ARG PTR(OSThread) t); void osStartThread(RDRAM_ARG PTR(OSThread) t);
void osStopThread(RDRAM_ARG PTR(OSThread) t); void osStopThread(RDRAM_ARG PTR(OSThread) t);
void osDestroyThread(RDRAM_ARG PTR(OSThread) t); void osDestroyThread(RDRAM_ARG PTR(OSThread) t);
void osYieldThread(RDRAM_ARG1);
void osSetThreadPri(RDRAM_ARG PTR(OSThread) t, OSPri pri); void osSetThreadPri(RDRAM_ARG PTR(OSThread) t, OSPri pri);
OSPri osGetThreadPri(RDRAM_ARG PTR(OSThread) thread); OSPri osGetThreadPri(RDRAM_ARG PTR(OSThread) thread);
OSId osGetThreadId(RDRAM_ARG PTR(OSThread) t); OSId osGetThreadId(RDRAM_ARG PTR(OSThread) t);

View File

@ -1,7 +1,7 @@
#include "ultra64.h" #include "ultra64.h"
#include "multilibultra.hpp" #include "multilibultra.hpp"
void Multilibultra::preinit(uint8_t* rdram, uint8_t* rom, void* window_handle) { void Multilibultra::preinit(uint8_t* rdram, uint8_t* rom, Multilibultra::WindowHandle window_handle) {
Multilibultra::set_main_thread(); Multilibultra::set_main_thread();
Multilibultra::init_events(rdram, rom, window_handle); Multilibultra::init_events(rdram, rom, window_handle);
Multilibultra::init_timers(rdram); Multilibultra::init_timers(rdram);

View File

@ -1,5 +1,44 @@
#include "recomp.h" #include "recomp.h"
extern "C" void osDpSetNextBuffer_recomp(uint8_t* rdram, recomp_context* ctx) { enum class RDPStatusBit {
; XbusDmem = 0,
Freeze = 1,
Flush = 2,
CommandBusy = 6,
BufferReady = 7,
DmaBusy = 8,
EndValid = 9,
StartValid = 10,
};
constexpr void update_bit(uint32_t& state, uint32_t flags, RDPStatusBit bit) {
int set_bit_pos = (int)bit * 2 + 0;
int reset_bit_pos = (int)bit * 2 + 1;
bool set = (flags & (1U << set_bit_pos)) != 0;
bool reset = (flags & (1U << reset_bit_pos)) != 0;
if (set ^ reset) {
if (set) {
state |= (1U << (int)bit);
}
else {
state &= ~(1U << (int)bit);
}
}
}
uint32_t rdp_state = 1 << (int)RDPStatusBit::BufferReady;
extern "C" void osDpSetNextBuffer_recomp(uint8_t* rdram, recomp_context* ctx) {
assert(false);
}
extern "C" void osDpGetStatus_recomp(uint8_t* rdram, recomp_context* ctx) {
ctx->r2 = rdp_state;
}
extern "C" void osDpSetStatus_recomp(uint8_t* rdram, recomp_context* ctx) {
update_bit(rdp_state, ctx->r4, RDPStatusBit::XbusDmem);
update_bit(rdp_state, ctx->r4, RDPStatusBit::Freeze);
update_bit(rdp_state, ctx->r4, RDPStatusBit::Flush);
} }

View File

@ -1,21 +1,49 @@
#include "recomp.h" #include "recomp.h"
#include "../portultra/ultra64.h"
void save_write(uint8_t* rdram, gpr rdram_address, uint32_t offset, uint32_t count);
void save_read(uint8_t* rdram, gpr rdram_address, uint32_t offset, uint32_t count);
constexpr int eeprom_block_size = 8;
constexpr int eep4_size = 4096;
constexpr int eep4_block_count = eep4_size / eeprom_block_size;
constexpr int eep16_size = 16384;
constexpr int eep16_block_count = eep16_size / eeprom_block_size;
extern "C" void osEepromProbe_recomp(uint8_t* rdram, recomp_context* ctx) { extern "C" void osEepromProbe_recomp(uint8_t* rdram, recomp_context* ctx) {
; ctx->r2 = 0x02; // EEP16K
} }
extern "C" void osEepromWrite_recomp(uint8_t* rdram, recomp_context* ctx) { extern "C" void osEepromWrite_recomp(uint8_t* rdram, recomp_context* ctx) {
; assert(false);// ctx->r2 = 8; // CONT_NO_RESPONSE_ERROR
} }
extern "C" void osEepromLongWrite_recomp(uint8_t* rdram, recomp_context* ctx) { extern "C" void osEepromLongWrite_recomp(uint8_t* rdram, recomp_context* ctx) {
; uint8_t eep_address = ctx->r5;
gpr buffer = ctx->r6;
int32_t nbytes = ctx->r7;
assert(!(nbytes & 7));
assert(eep_address * eeprom_block_size + nbytes <= eep16_size);
save_write(rdram, buffer, eep_address * eeprom_block_size, nbytes);
ctx->r2 = 0;
} }
extern "C" void osEepromRead_recomp(uint8_t* rdram, recomp_context* ctx) { extern "C" void osEepromRead_recomp(uint8_t* rdram, recomp_context* ctx) {
; assert(false);// ctx->r2 = 8; // CONT_NO_RESPONSE_ERROR
} }
extern "C" void osEepromLongRead_recomp(uint8_t* rdram, recomp_context* ctx) { extern "C" void osEepromLongRead_recomp(uint8_t* rdram, recomp_context* ctx) {
; uint8_t eep_address = ctx->r5;
gpr buffer = ctx->r6;
int32_t nbytes = ctx->r7;
assert(!(nbytes & 7));
assert(eep_address * eeprom_block_size + nbytes <= eep16_size);
save_read(rdram, buffer, eep_address * eeprom_block_size, nbytes);
ctx->r2 = 0;
} }

366
src/main/main.cpp Normal file
View File

@ -0,0 +1,366 @@
#include <cstdio>
#include <cassert>
#include <unordered_map>
#include "../../portultra/ultra64.h"
#include "../../portultra/multilibultra.hpp"
#define SDL_MAIN_HANDLED
#ifdef _WIN32
#include "SDL.h"
#else
#include "SDL2/SDL.h"
#include "SDL2/SDL_syswm.h"
#endif
#ifdef _WIN32
#define NOMINMAX
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#include "SDL_syswm.h"
#endif
extern "C" void init();
/*extern "C"*/ void start(Multilibultra::WindowHandle window_handle, const Multilibultra::audio_callbacks_t* audio_callbacks, const Multilibultra::input_callbacks_t* input_callbacks);
template<typename... Ts>
void exit_error(const char* str, Ts ...args) {
// TODO pop up an error
((void)fprintf(stderr, str, args), ...);
assert(false);
std::quick_exit(EXIT_FAILURE);
}
std::vector<std::pair<SDL_Scancode, int>> keyboard_button_map{
{ SDL_Scancode::SDL_SCANCODE_LEFT, 0x0002 }, // c left
{ SDL_Scancode::SDL_SCANCODE_RIGHT, 0x0001 }, // c right
{ SDL_Scancode::SDL_SCANCODE_UP, 0x0008 }, // c up
{ SDL_Scancode::SDL_SCANCODE_DOWN, 0x0004 }, // c down
{ SDL_Scancode::SDL_SCANCODE_RETURN, 0x1000 }, // start
{ SDL_Scancode::SDL_SCANCODE_SPACE, 0x8000 }, // a
{ SDL_Scancode::SDL_SCANCODE_LSHIFT, 0x4000 }, // b
{ SDL_Scancode::SDL_SCANCODE_Q, 0x2000 }, // z
{ SDL_Scancode::SDL_SCANCODE_E, 0x0020 }, // l
{ SDL_Scancode::SDL_SCANCODE_R, 0x0010 }, // r
{ SDL_Scancode::SDL_SCANCODE_J, 0x0200 }, // dpad left
{ SDL_Scancode::SDL_SCANCODE_L, 0x0100 }, // dpad right
{ SDL_Scancode::SDL_SCANCODE_I, 0x0800 }, // dpad up
{ SDL_Scancode::SDL_SCANCODE_K, 0x0400 }, // dpad down
};
struct GameControllerAxisMapping {
SDL_GameControllerAxis axis;
int threshold; // Positive or negative to indicate direction
uint16_t output_mask;
};
constexpr int controller_default_threshold = 20000;
std::vector<GameControllerAxisMapping> controller_axis_map{
{ SDL_GameControllerAxis::SDL_CONTROLLER_AXIS_RIGHTX, -controller_default_threshold, 0x0002 }, // c left
{ SDL_GameControllerAxis::SDL_CONTROLLER_AXIS_RIGHTX, controller_default_threshold, 0x0001 }, // c right
{ SDL_GameControllerAxis::SDL_CONTROLLER_AXIS_RIGHTY, -controller_default_threshold, 0x0008 }, // c up
{ SDL_GameControllerAxis::SDL_CONTROLLER_AXIS_RIGHTY, controller_default_threshold, 0x0004 }, // c down
{ SDL_GameControllerAxis::SDL_CONTROLLER_AXIS_TRIGGERLEFT, 10000, 0x2000 }, // z
//{ SDL_Scancode::SDL_SCANCODE_RIGHT, 0x0001 }, // c right
//{ SDL_Scancode::SDL_SCANCODE_UP, 0x0008 }, // c up
//{ SDL_Scancode::SDL_SCANCODE_DOWN, 0x0004 }, // c down
//{ SDL_Scancode::SDL_SCANCODE_RETURN, 0x1000 }, // start
//{ SDL_Scancode::SDL_SCANCODE_SPACE, 0x8000 }, // a
//{ SDL_Scancode::SDL_SCANCODE_LSHIFT, 0x4000 }, // b
//{ SDL_Scancode::SDL_SCANCODE_Q, 0x2000 }, // z
//{ SDL_Scancode::SDL_SCANCODE_E, 0x0020 }, // l
//{ SDL_Scancode::SDL_SCANCODE_R, 0x0010 }, // r
//{ SDL_Scancode::SDL_SCANCODE_J, 0x0200 }, // dpad left
//{ SDL_Scancode::SDL_SCANCODE_L, 0x0100 }, // dpad right
//{ SDL_Scancode::SDL_SCANCODE_I, 0x0800 }, // dpad up
//{ SDL_Scancode::SDL_SCANCODE_K, 0x0400 }, // dpad down
};
struct GameControllerButtonMapping {
SDL_GameControllerButton button;
uint16_t output_mask;
};
std::vector<GameControllerButtonMapping> controller_button_map{
{ SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_START, 0x1000 }, // start
{ SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_A, 0x8000 }, // a
{ SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_B, 0x4000 }, // b
{ SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_X, 0x4000 }, // b
{ SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_LEFTSHOULDER, 0x0020 }, // l
{ SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_RIGHTSHOULDER, 0x0010 }, // r
{ SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_DPAD_LEFT, 0x0200 }, // dpad left
{ SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_DPAD_RIGHT, 0x0100 }, // dpad right
{ SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_DPAD_UP, 0x0800 }, // dpad up
{ SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_DPAD_DOWN, 0x0400 }, // dpad down
};
std::vector<SDL_JoystickID> controllers{};
int sdl_event_filter(void* userdata, SDL_Event* event) {
switch (event->type) {
//case SDL_EventType::SDL_KEYUP:
//case SDL_EventType::SDL_KEYDOWN:
// {
// const Uint8* key_states = SDL_GetKeyboardState(nullptr);
// int new_button = 0;
// for (const auto& mapping : keyboard_button_map) {
// if (key_states[mapping.first]) {
// new_button |= mapping.second;
// }
// }
// button = new_button;
// stick_x = (100.0f / 100.0f) * (key_states[SDL_Scancode::SDL_SCANCODE_D] - key_states[SDL_Scancode::SDL_SCANCODE_A]);
// stick_y = (100.0f / 100.0f) * (key_states[SDL_Scancode::SDL_SCANCODE_W] - key_states[SDL_Scancode::SDL_SCANCODE_S]);
// }
// break;
case SDL_EventType::SDL_CONTROLLERDEVICEADDED:
{
SDL_ControllerDeviceEvent* controller_event = (SDL_ControllerDeviceEvent*)event;
SDL_GameController* controller = SDL_GameControllerOpen(controller_event->which);
printf("Controller added: %d\n", controller_event->which);
if (controller != nullptr) {
printf(" Instance ID: %d\n", SDL_JoystickInstanceID(SDL_GameControllerGetJoystick(controller)));
controllers.push_back(SDL_JoystickInstanceID(SDL_GameControllerGetJoystick(controller)));
}
}
break;
case SDL_EventType::SDL_CONTROLLERDEVICEREMOVED:
{
SDL_ControllerDeviceEvent* controller_event = (SDL_ControllerDeviceEvent*)event;
printf("Controller removed: %d\n", controller_event->which);
std::remove(controllers.begin(), controllers.end(), controller_event->which);
}
break;
case SDL_EventType::SDL_QUIT:
std::quick_exit(EXIT_SUCCESS);
break;
}
return 1;
}
Multilibultra::gfx_callbacks_t::gfx_data_t create_gfx() {
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_GAMECONTROLLER) > 0) {
exit_error("Failed to initialize SDL2: %s\n", SDL_GetError());
}
return {};
}
Multilibultra::WindowHandle create_window(Multilibultra::gfx_callbacks_t::gfx_data_t) {
SDL_Window* window = SDL_CreateWindow("Majora's Mask", SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED, 1280, 720, SDL_WINDOW_RESIZABLE);
if (window == nullptr) {
exit_error("Failed to create window: %s\n", SDL_GetError());
}
SDL_SysWMinfo wmInfo;
SDL_VERSION(&wmInfo.version);
SDL_GetWindowWMInfo(window, &wmInfo);
#if defined(_WIN32)
return wmInfo.info.win.window;
#elif defined(__ANDROID__)
static_assert(false && "Unimplemented");
#elif defined(__linux__)
return Multilibultra::WindowHandle{ wmInfo.info.x11.display, wmInfo.info.x11.window };
#else
static_assert(false && "Unimplemented");
#endif
}
void update_gfx(void*) {
// Handle events
constexpr int max_events_per_frame = 16;
SDL_Event cur_event;
int i = 0;
while (i++ < max_events_per_frame && SDL_PollEvent(&cur_event)) {
sdl_event_filter(nullptr, &cur_event);
}
}
void get_input(uint16_t* buttons_out, float* x_out, float* y_out) {
uint16_t cur_buttons = 0;
float cur_x = 0.0f;
float cur_y = 0.0f;
const Uint8* key_states = SDL_GetKeyboardState(nullptr);
int new_button = 0;
for (const auto& mapping : keyboard_button_map) {
if (key_states[mapping.first]) {
cur_buttons |= mapping.second;
}
}
cur_x += (100.0f / 100.0f) * (key_states[SDL_Scancode::SDL_SCANCODE_D] - key_states[SDL_Scancode::SDL_SCANCODE_A]);
cur_y += (100.0f / 100.0f) * (key_states[SDL_Scancode::SDL_SCANCODE_W] - key_states[SDL_Scancode::SDL_SCANCODE_S]);
for (SDL_JoystickID controller_id : controllers) {
SDL_GameController* controller = SDL_GameControllerFromInstanceID(controller_id);
if (controller != nullptr) {
cur_x += SDL_GameControllerGetAxis(controller, SDL_GameControllerAxis::SDL_CONTROLLER_AXIS_LEFTX) * (1/32768.0f);
cur_y -= SDL_GameControllerGetAxis(controller, SDL_GameControllerAxis::SDL_CONTROLLER_AXIS_LEFTY) * (1/32768.0f);
}
for (const auto& mapping : controller_axis_map) {
int input_value = SDL_GameControllerGetAxis(controller, mapping.axis);
if (mapping.threshold > 0) {
if (input_value > mapping.threshold) {
cur_buttons |= mapping.output_mask;
}
}
else {
if (input_value < mapping.threshold) {
cur_buttons |= mapping.output_mask;
}
}
}
for (const auto& mapping : controller_button_map) {
int input_value = SDL_GameControllerGetButton(controller, mapping.button);
if (input_value) {
cur_buttons |= mapping.output_mask;
}
}
}
*buttons_out = cur_buttons;
cur_x = std::clamp(cur_x, -1.0f, 1.0f);
cur_y = std::clamp(cur_y, -1.0f, 1.0f);
*x_out = cur_x;
*y_out = cur_y;
}
static SDL_AudioDeviceID audio_device = 0;
static uint32_t sample_rate = 48000;
void queue_samples(int16_t* audio_data, size_t sample_count) {
// Buffer for holding the output of swapping the audio channels. This is reused across
// calls to reduce runtime allocations.
static std::vector<float> swap_buffer;
// Make sure the swap buffer is large enough to hold all the incoming audio data.
if (sample_count > swap_buffer.size()) {
swap_buffer.resize(sample_count);
}
// Convert the audio from 16-bit values to floats and swap the audio channels into the
// swap buffer to correct for the address xor caused by endianness handling.
for (size_t i = 0; i < sample_count; i += 2) {
swap_buffer[i + 0] = audio_data[i + 1] * (0.5f / 32768.0f);
swap_buffer[i + 1] = audio_data[i + 0] * (0.5f / 32768.0f);
}
// Queue the swapped audio data.
SDL_QueueAudio(audio_device, swap_buffer.data(), sample_count * sizeof(swap_buffer[0]));
}
constexpr int channel_count = 2;
constexpr int bytes_per_frame = channel_count * sizeof(float);
size_t get_frames_remaining() {
constexpr float buffer_offset_frames = 1.0f;
// Get the number of remaining buffered audio bytes.
uint32_t buffered_byte_count = SDL_GetQueuedAudioSize(audio_device);
// Adjust the reported count to be some number of refreshes in the future, which helps ensure that
// there are enough samples even if the audio thread experiences a small amount of lag. This prevents
// audio popping on games that use the buffered audio byte count to determine how many samples
// to generate.
uint32_t frames_per_vi = (sample_rate / 60);
if (buffered_byte_count > (buffer_offset_frames * bytes_per_frame * frames_per_vi)) {
buffered_byte_count -= (buffer_offset_frames * bytes_per_frame * frames_per_vi);
}
else {
buffered_byte_count = 0;
}
// Convert from byte count to sample count.
return buffered_byte_count / bytes_per_frame;
}
void set_frequency(uint32_t freq) {
if (audio_device != 0) {
SDL_CloseAudioDevice(audio_device);
}
SDL_AudioSpec spec_desired{
.freq = (int)freq,
.format = AUDIO_F32,
.channels = channel_count,
.silence = 0, // calculated
.samples = 0x100, // Fairly small sample count to reduce the latency of internal buffering
.padding = 0, // unused
.size = 0, // calculated
.callback = nullptr,//feed_audio, // Use a callback as QueueAudio causes popping
.userdata = nullptr
};
audio_device = SDL_OpenAudioDevice(nullptr, false, &spec_desired, nullptr, 0);
if (audio_device == 0) {
exit_error("SDL error opening audio device: %s\n", SDL_GetError());
}
SDL_PauseAudioDevice(audio_device, 0);
sample_rate = freq;
}
int main(int argc, char** argv) {
#ifdef _WIN32
// Set up console output to accept UTF-8 on windows
SetConsoleOutputCP(CP_UTF8);
// Change to a font that supports Japanese characters
CONSOLE_FONT_INFOEX cfi;
cfi.cbSize = sizeof cfi;
cfi.nFont = 0;
cfi.dwFontSize.X = 0;
cfi.dwFontSize.Y = 16;
cfi.FontFamily = FF_DONTCARE;
cfi.FontWeight = FW_NORMAL;
wcscpy_s(cfi.FaceName, L"NSimSun");
SetCurrentConsoleFontEx(GetStdHandle(STD_OUTPUT_HANDLE), FALSE, &cfi);
#else
std::setlocale(LC_ALL, "en_US.UTF-8");
#endif
// Initialize SDL audio.
SDL_InitSubSystem(SDL_INIT_AUDIO);
// Pick an initial dummy sample rate; this will be set by the game later to the true sample rate.
set_frequency(sample_rate);
init();
Multilibultra::gfx_callbacks_t gfx_callbacks{
.create_gfx = create_gfx,
.create_window = create_window,
.update_gfx = update_gfx,
};
Multilibultra::audio_callbacks_t audio_callbacks{
.queue_samples = queue_samples,
.get_frames_remaining = get_frames_remaining,
.set_frequency = set_frequency,
};
Multilibultra::input_callbacks_t input_callbacks{
.get_input = get_input,
};
//create_gfx();
//void* window_handle = create_window(nullptr);
Multilibultra::set_gfx_callbacks(&gfx_callbacks);
start(Multilibultra::WindowHandle{}, &audio_callbacks, &input_callbacks);
// Do nothing forever
while (1) {
using namespace std::chrono_literals;
std::this_thread::sleep_for(10ms);
//update_gfx(nullptr);
//std::this_thread::sleep_for(1ms);
}
return EXIT_SUCCESS;
}

View File

@ -59,6 +59,42 @@ extern "C" void load_overlays(uint32_t rom, int32_t ram_addr, uint32_t size) {
} }
} }
extern "C" void unload_overlays(int32_t ram_addr, uint32_t size);
extern "C" void unload_overlay_by_id(uint32_t id) {
uint32_t section_table_index = overlay_sections_by_index[id];
const SectionTableEntry& section = section_table[section_table_index];
auto find_it = std::find_if(loaded_sections.begin(), loaded_sections.end(), [section_table_index](const LoadedSection& s) { return s.section_table_index == section_table_index; });
if (find_it != loaded_sections.end()) {
// Determine where each function was loaded to and remove that entry from the function map
for (size_t func_index = 0; func_index < section.num_funcs; func_index++) {
const auto& func = section.funcs[func_index];
uint32_t func_address = func.offset + find_it->loaded_ram_addr;
func_map.erase(func_address);
}
// Reset the section's address in the address table
section_addresses[section.index] = section.ram_addr;
// Remove the section from the loaded section map
loaded_sections.erase(find_it);
}
}
extern "C" void load_overlay_by_id(uint32_t id, uint32_t ram_addr) {
uint32_t section_table_index = overlay_sections_by_index[id];
const SectionTableEntry& section = section_table[section_table_index];
int32_t prev_address = section_addresses[section.index];
if (/*ram_addr >= 0x80000000 && ram_addr < 0x81000000) {*/ prev_address == section.ram_addr) {
load_overlay(section_table_index, ram_addr);
}
else {
int32_t new_address = prev_address + ram_addr;
unload_overlay_by_id(id);
load_overlay(section_table_index, new_address);
}
}
extern "C" void unload_overlays(int32_t ram_addr, uint32_t size) { extern "C" void unload_overlays(int32_t ram_addr, uint32_t size) {
for (auto it = loaded_sections.begin(); it != loaded_sections.end();) { for (auto it = loaded_sections.begin(); it != loaded_sections.end();) {
const auto& section = section_table[it->section_table_index]; const auto& section = section_table[it->section_table_index];
@ -72,6 +108,7 @@ extern "C" void unload_overlays(int32_t ram_addr, uint32_t size) {
" rom: 0x%08X size: 0x%08X loaded_addr: 0x%08X\n" " rom: 0x%08X size: 0x%08X loaded_addr: 0x%08X\n"
" unloaded_ram: 0x%08X unloaded_size : 0x%08X\n", " unloaded_ram: 0x%08X unloaded_size : 0x%08X\n",
section.rom_addr, section.size, it->loaded_ram_addr, ram_addr, size); section.rom_addr, section.size, it->loaded_ram_addr, ram_addr, size);
assert(false);
std::exit(EXIT_FAILURE); std::exit(EXIT_FAILURE);
} }
// Determine where each function was loaded to and remove that entry from the function map // Determine where each function was loaded to and remove that entry from the function map
@ -81,7 +118,7 @@ extern "C" void unload_overlays(int32_t ram_addr, uint32_t size) {
func_map.erase(func_address); func_map.erase(func_address);
} }
// Reset the section's address in the address table // Reset the section's address in the address table
section_addresses[section.index] = 0; section_addresses[section.index] = section.ram_addr;
// Remove the section from the loaded section map // Remove the section from the loaded section map
it = loaded_sections.erase(it); it = loaded_sections.erase(it);
// Skip incrementing the iterator // Skip incrementing the iterator
@ -108,6 +145,7 @@ extern "C" recomp_func_t * get_function(int32_t addr) {
auto func_find = func_map.find(addr); auto func_find = func_map.find(addr);
if (func_find == func_map.end()) { if (func_find == func_map.end()) {
fprintf(stderr, "Failed to find function at 0x%08X\n", addr); fprintf(stderr, "Failed to find function at 0x%08X\n", addr);
assert(false);
std::exit(EXIT_FAILURE); std::exit(EXIT_FAILURE);
} }
return func_find->second; return func_find->second;

View File

@ -138,7 +138,7 @@ extern "C" void osPiStartDma_recomp(uint8_t* rdram, recomp_context* ctx) {
uint32_t mb = ctx->r4; uint32_t mb = ctx->r4;
uint32_t pri = ctx->r5; uint32_t pri = ctx->r5;
uint32_t direction = ctx->r6; uint32_t direction = ctx->r6;
uint32_t devAddr = ctx->r7; uint32_t devAddr = ctx->r7 | rom_base;
gpr dramAddr = MEM_W(0x10, ctx->r29); gpr dramAddr = MEM_W(0x10, ctx->r29);
uint32_t size = MEM_W(0x14, ctx->r29); uint32_t size = MEM_W(0x14, ctx->r29);
PTR(OSMesgQueue) mq = MEM_W(0x18, ctx->r29); PTR(OSMesgQueue) mq = MEM_W(0x18, ctx->r29);

View File

@ -28,6 +28,10 @@ extern "C" void osDestroyThread_recomp(uint8_t * rdram, recomp_context * ctx) {
osDestroyThread(rdram, (int32_t)ctx->r4); osDestroyThread(rdram, (int32_t)ctx->r4);
} }
extern "C" void osYieldThread_recomp(uint8_t * rdram, recomp_context * ctx) {
osYieldThread(rdram);
}
extern "C" void osSetThreadPri_recomp(uint8_t* rdram, recomp_context* ctx) { extern "C" void osSetThreadPri_recomp(uint8_t* rdram, recomp_context* ctx) {
osSetThreadPri(rdram, (int32_t)ctx->r4, (OSPri)ctx->r5); osSetThreadPri(rdram, (int32_t)ctx->r4, (OSPri)ctx->r5);
} }
@ -85,7 +89,7 @@ extern "C" void osStopTimer_recomp(uint8_t * rdram, recomp_context * ctx) {
} }
extern "C" void osVirtualToPhysical_recomp(uint8_t * rdram, recomp_context * ctx) { extern "C" void osVirtualToPhysical_recomp(uint8_t * rdram, recomp_context * ctx) {
ctx->r2 = osVirtualToPhysical((int32_t)ctx->r2); ctx->r2 = osVirtualToPhysical((int32_t)ctx->r4);
} }
extern "C" void osInvalDCache_recomp(uint8_t * rdram, recomp_context * ctx) { extern "C" void osInvalDCache_recomp(uint8_t * rdram, recomp_context * ctx) {

View File

@ -1,4 +1,4 @@
#ifdef _WIN32 #ifdef _WIN32
#include <Windows.h> #include <Windows.h>
#endif #endif
#include <cstdio> #include <cstdio>
@ -41,13 +41,58 @@ extern "C" void osGetMemSize_recomp(uint8_t * rdram, recomp_context * ctx) {
ctx->r2 = 8 * 1024 * 1024; ctx->r2 = 8 * 1024 * 1024;
} }
enum class StatusReg {
FR = 0x04000000,
};
extern "C" void cop0_status_write(recomp_context* ctx, gpr value) {
uint32_t old_sr = ctx->status_reg;
uint32_t new_sr = (uint32_t)value;
uint32_t changed = old_sr ^ new_sr;
// Check if the FR bit changed
if (changed & (uint32_t)StatusReg::FR) {
// Check if the FR bit was set
if (new_sr & (uint32_t)StatusReg::FR) {
// FR = 1, odd single floats point to their own registers
ctx->f_odd = &ctx->f1.u32l;
ctx->mips3_float_mode = true;
}
// Otherwise, it was cleared
else {
// FR = 0, odd single floats point to the upper half of the previous register
ctx->f_odd = &ctx->f0.u32h;
ctx->mips3_float_mode = false;
}
// Remove the FR bit from the changed bits as it's been handled
changed &= ~(uint32_t)StatusReg::FR;
}
// If any other bits were changed, assert false as they're not handled currently
if (changed) {
printf("Unhandled status register bits changed: 0x%08X\n", changed);
assert(false);
exit(EXIT_FAILURE);
}
// Update the status register in the context
ctx->status_reg = new_sr;
}
extern "C" gpr cop0_status_read(recomp_context* ctx) {
return (gpr)(int32_t)ctx->status_reg;
}
extern "C" void switch_error(const char* func, uint32_t vram, uint32_t jtbl) { extern "C" void switch_error(const char* func, uint32_t vram, uint32_t jtbl) {
printf("Switch-case out of bounds in %s at 0x%08X for jump table at 0x%08X\n", func, vram, jtbl); printf("Switch-case out of bounds in %s at 0x%08X for jump table at 0x%08X\n", func, vram, jtbl);
assert(false);
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
extern "C" void do_break(uint32_t vram) { extern "C" void do_break(uint32_t vram) {
printf("Encountered break at original vram 0x%08X\n", vram); printf("Encountered break at original vram 0x%08X\n", vram);
assert(false);
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
@ -55,6 +100,8 @@ void run_thread_function(uint8_t* rdram, uint64_t addr, uint64_t sp, uint64_t ar
recomp_context ctx{}; recomp_context ctx{};
ctx.r29 = sp; ctx.r29 = sp;
ctx.r4 = arg; ctx.r4 = arg;
ctx.mips3_float_mode = 0;
ctx.f_odd = &ctx.f0.u32h;
recomp_func_t* func = get_function(addr); recomp_func_t* func = get_function(addr);
func(rdram, &ctx); func(rdram, &ctx);
} }
@ -72,10 +119,6 @@ void init_overlays();
extern "C" void load_overlays(uint32_t rom, int32_t ram_addr, uint32_t size); extern "C" void load_overlays(uint32_t rom, int32_t ram_addr, uint32_t size);
extern "C" void unload_overlays(int32_t ram_addr, uint32_t size); extern "C" void unload_overlays(int32_t ram_addr, uint32_t size);
#ifdef _WIN32
#include <Windows.h>
#endif
std::unique_ptr<uint8_t[]> rdram_buffer; std::unique_ptr<uint8_t[]> rdram_buffer;
recomp_context context{}; recomp_context context{};
@ -124,6 +167,10 @@ EXPORT extern "C" void init() {
// Set up stack pointer // Set up stack pointer
context.r29 = 0xFFFFFFFF803FFFF0u; context.r29 = 0xFFFFFFFF803FFFF0u;
// Set up context floats
context.f_odd = &context.f0.u32h;
context.mips3_float_mode = false;
// Initialize variables normally set by IPL3 // Initialize variables normally set by IPL3
constexpr int32_t osTvType = 0x80000300; constexpr int32_t osTvType = 0x80000300;
constexpr int32_t osRomType = 0x80000304; constexpr int32_t osRomType = 0x80000304;
@ -140,10 +187,37 @@ EXPORT extern "C" void init() {
MEM_W(osMemSize, 0) = 8 * 1024 * 1024; // 8MB MEM_W(osMemSize, 0) = 8 * 1024 * 1024; // 8MB
} }
EXPORT extern "C" void start(void* window_handle, const Multilibultra::audio_callbacks_t* audio_callbacks, const Multilibultra::input_callbacks_t* input_callbacks) { // LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam) {
// return DefWindowProc(hwnd, uMsg, wParam, lParam);
// }
/*EXPORT extern "C"*/ void start(Multilibultra::WindowHandle window_handle, const Multilibultra::audio_callbacks_t* audio_callbacks, const Multilibultra::input_callbacks_t* input_callbacks) {
Multilibultra::set_audio_callbacks(audio_callbacks); Multilibultra::set_audio_callbacks(audio_callbacks);
Multilibultra::set_input_callbacks(input_callbacks); Multilibultra::set_input_callbacks(input_callbacks);
std::thread game_thread{[](void* window_handle) {
//// Register window class.
//WNDCLASS wc;
//memset(&wc, 0, sizeof(WNDCLASS));
//wc.lpfnWndProc = WindowProc;
//wc.hInstance = GetModuleHandle(0);
//wc.hbrBackground = (HBRUSH)(COLOR_BACKGROUND);
//wc.lpszClassName = "RT64Sample";
//RegisterClass(&wc);
//// Create window.
//const int Width = 1280;
//const int Height = 720;
//RECT rect;
//UINT dwStyle = WS_OVERLAPPEDWINDOW | WS_VISIBLE;
//rect.left = (GetSystemMetrics(SM_CXSCREEN) - Width) / 2;
//rect.top = (GetSystemMetrics(SM_CYSCREEN) - Height) / 2;
//rect.right = rect.left + Width;
//rect.bottom = rect.top + Height;
//AdjustWindowRectEx(&rect, dwStyle, 0, 0);
//HWND hwnd = CreateWindow(wc.lpszClassName, "Recomp", dwStyle, rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top, 0, 0, wc.hInstance, NULL);
std::thread game_thread{[](Multilibultra::WindowHandle window_handle) {
debug_printf("[Recomp] Starting\n"); debug_printf("[Recomp] Starting\n");
Multilibultra::set_native_thread_name("Game Start Thread"); Multilibultra::set_native_thread_name("Game Start Thread");
@ -157,29 +231,3 @@ EXPORT extern "C" void start(void* window_handle, const Multilibultra::audio_cal
game_thread.detach(); game_thread.detach();
} }
int main(int argc, char **argv) {
#ifdef _WIN32
// Set up console output to accept UTF-8 on windows
SetConsoleOutputCP(CP_UTF8);
// Change to a font that supports Japanese characters
CONSOLE_FONT_INFOEX cfi;
cfi.cbSize = sizeof cfi;
cfi.nFont = 0;
cfi.dwFontSize.X = 0;
cfi.dwFontSize.Y = 16;
cfi.FontFamily = FF_DONTCARE;
cfi.FontWeight = FW_NORMAL;
wcscpy_s(cfi.FaceName, L"NSimSun");
SetCurrentConsoleFontEx(GetStdHandle(STD_OUTPUT_HANDLE), FALSE, &cfi);
#else
std::setlocale(LC_ALL, "en_US.UTF-8");
#endif
init();
start(nullptr, nullptr, nullptr);
return EXIT_SUCCESS;
}

View File

@ -44,7 +44,7 @@ void dummy_check_interrupts() {
} }
void RT64Init(uint8_t* rom, uint8_t* rdram, void* window_handle) { void RT64Init(uint8_t* rom, uint8_t* rdram, Multilibultra::WindowHandle window_handle) {
// Dynamic loading // Dynamic loading
//auto RT64 = LoadLibrary("RT64.dll"); //auto RT64 = LoadLibrary("RT64.dll");
//if (RT64 == 0) { //if (RT64 == 0) {
@ -57,8 +57,8 @@ void RT64Init(uint8_t* rom, uint8_t* rdram, void* window_handle) {
//GET_FUNC(RT64, UpdateScreen); //GET_FUNC(RT64, UpdateScreen);
GFX_INFO gfx_info{}; GFX_INFO gfx_info{};
gfx_info.hWnd = window_handle; // gfx_info.hWnd = window_handle;
gfx_info.hStatusBar = nullptr; // gfx_info.hStatusBar = nullptr;
gfx_info.HEADER = rom; gfx_info.HEADER = rom;
gfx_info.RDRAM = rdram; gfx_info.RDRAM = rdram;
@ -93,7 +93,11 @@ void RT64Init(uint8_t* rom, uint8_t* rdram, void* window_handle) {
gfx_info.CheckInterrupts = dummy_check_interrupts; gfx_info.CheckInterrupts = dummy_check_interrupts;
InitiateGFX(gfx_info); gfx_info.version = 2;
gfx_info.SP_STATUS_REG = &SP_STATUS_REG;
gfx_info.RDRAM_SIZE = &RDRAM_SIZE;
InitiateGFXLinux(gfx_info, window_handle.window, window_handle.display);
} }
void RT64SendDL(uint8_t* rdram, const OSTask* task) { void RT64SendDL(uint8_t* rdram, const OSTask* task) {

View File

@ -36,3 +36,12 @@ extern "C" void osViSwapBuffer_recomp(uint8_t* rdram, recomp_context* ctx) {
extern "C" void osViSetMode_recomp(uint8_t* rdram, recomp_context* ctx) { extern "C" void osViSetMode_recomp(uint8_t* rdram, recomp_context* ctx) {
osViSetMode(rdram, (int32_t)ctx->r4); osViSetMode(rdram, (int32_t)ctx->r4);
} }
extern uint64_t total_vis;
extern "C" void wait_one_frame(uint8_t* rdram, recomp_context* ctx) {
uint64_t cur_vis = total_vis;
while (cur_vis == total_vis) {
std::this_thread::yield();
}
}