cemu_graphic_packs/Resolutions/XenobladeX_Resolution/9bc5e526132c9534_0000000000000000_vs.txt
Crementif 306da0b802
Update every graphic pack to V4
Since it's not possible to update 300+ shaders manually and automation was possible, I thought that I'd take the honor and create a script that's able to automatically convert all of the shaders to be cross-compatible with Vulkan. And change the graphic pack versions to version 4 of course.

Also, the script has some nifty testing code which compiled every shader as OpenGL and Vulkan, but for that see the details that I've written below.

**Here's the script that I've made to do all of this. No manual edits were needed:**
https://gist.github.com/Crementif/8d98a855b95f219d95298fb3db99deae
2019-11-29 04:36:05 +01:00

165 lines
6.5 KiB
Plaintext

#version 420
#extension GL_ARB_texture_gather : enable
#extension GL_ARB_shading_language_packing : enable
#ifdef VULKAN
#define ATTR_LAYOUT(__vkSet, __location) layout(set = __vkSet, location = __location)
#define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation, std140)
#define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(set = __vkSet, binding = __vkLocation)
#define SET_POSITION(_v) gl_Position = _v; gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0
#define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale.xy,gl_FragCoord.zw)
#define gl_VertexID gl_VertexIndex
#define gl_InstanceID gl_InstanceIndex
#else
#define ATTR_LAYOUT(__vkSet, __location) layout(location = __location)
#define UNIFORM_BUFFER_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation, std140)
#define TEXTURE_LAYOUT(__glLocation, __vkSet, __vkLocation) layout(binding = __glLocation)
#define SET_POSITION(_v) gl_Position = _v
#define GET_FRAGCOORD() vec4(gl_FragCoord.xy*uf_fragCoordScale,gl_FragCoord.zw)
#endif
// This shaders was auto-converted from OpenGL to Cemu so expect weird code and possible errors.
// shader 9bc5e526132c9534
// selection fill *dumped*
#ifdef VULKAN
layout(set = 0, binding = 0) uniform ufBlock
{
uniform ivec4 uf_remappedVS[11];
uniform vec2 uf_windowSpaceToClipSpaceTransform;
uniform float uf_alphaTestRef;
};
#else
uniform ivec4 uf_remappedVS[11];
uniform vec2 uf_windowSpaceToClipSpaceTransform;
uniform float uf_alphaTestRef;
#endif
ATTR_LAYOUT(0, 0) in uvec4 attrDataSem0;
ATTR_LAYOUT(0, 1) in uvec4 attrDataSem1;
out gl_PerVertex
{
vec4 gl_Position;
float gl_PointSize;
};
layout(location = 0) out vec4 passParameterSem0;
int clampFI32(int v)
{
if( v == 0x7FFFFFFF )
return floatBitsToInt(1.0);
else if( v == 0xFFFFFFFF )
return floatBitsToInt(0.0);
return floatBitsToInt(clamp(intBitsToFloat(v), 0.0, 1.0));
}
float mul_nonIEEE(float a, float b){ return min(a*b,min(abs(a)*3.40282347E+38F,abs(b)*3.40282347E+38F)); }
void main()
{
vec4 R0f = vec4(0.0);
vec4 R1f = vec4(0.0);
vec4 R2f = vec4(0.0);
vec4 R123f = vec4(0.0);
vec4 R127f = vec4(0.0);
uvec4 attrDecoder;
float backupReg0f, backupReg1f, backupReg2f, backupReg3f, backupReg4f;
vec4 PV0f = vec4(0.0), PV1f = vec4(0.0);
float PS0f = 0.0, PS1f = 0.0;
vec4 tempf = vec4(0.0);
float tempResultf;
int tempResulti;
ivec4 ARi = ivec4(0);
bool predResult = true;
vec3 cubeMapSTM;
int cubeMapFaceId;
R0f = floatBitsToInt(ivec4(gl_VertexID, 0, 0, gl_InstanceID));
attrDecoder.xyz = attrDataSem1.xyz;
attrDecoder.xyz = (attrDecoder.xyz>>24)|((attrDecoder.xyz>>8)&0xFF00)|((attrDecoder.xyz<<8)&0xFF0000)|((attrDecoder.xyz<<24));
attrDecoder.w = 0;
R2f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(floatBitsToInt(1.0)));
attrDecoder = attrDataSem0;
attrDecoder = (attrDecoder>>24)|((attrDecoder>>8)&0xFF00)|((attrDecoder<<8)&0xFF0000)|((attrDecoder<<24));
R1f = vec4(intBitsToFloat(int(attrDecoder.x)), intBitsToFloat(int(attrDecoder.y)), intBitsToFloat(int(attrDecoder.z)), intBitsToFloat(int(attrDecoder.w)));
// 0
PV0f.x = intBitsToFloat(uf_remappedVS[0].w) * 1.0;
PV0f.y = intBitsToFloat(uf_remappedVS[0].z) * 1.0;
PV0f.z = intBitsToFloat(uf_remappedVS[0].y) * 1.0;
PV0f.w = intBitsToFloat(uf_remappedVS[0].x) * 1.0;
// 1
R123f.x = (R2f.y * intBitsToFloat(uf_remappedVS[1].w) + PV0f.x);
PV1f.x = R123f.x;
R123f.y = (R2f.y * intBitsToFloat(uf_remappedVS[1].z) + PV0f.y);
PV1f.y = R123f.y;
R123f.z = (R2f.y * intBitsToFloat(uf_remappedVS[1].y) + PV0f.z);
PV1f.z = R123f.z;
R123f.w = (R2f.y * intBitsToFloat(uf_remappedVS[1].x) + PV0f.w);
PV1f.w = R123f.w;
// 2
R123f.x = (R2f.x * intBitsToFloat(uf_remappedVS[2].w) + PV1f.x);
PV0f.x = R123f.x;
R127f.y = (R2f.x * intBitsToFloat(uf_remappedVS[2].z) + PV1f.y);
R127f.z = (R2f.x * intBitsToFloat(uf_remappedVS[2].y) + PV1f.z);
R127f.w = (R2f.x * intBitsToFloat(uf_remappedVS[2].x) + PV1f.w);
// 3
PV1f.x = PV0f.x * intBitsToFloat(uf_remappedVS[3].w);
PV1f.y = PV0f.x * intBitsToFloat(uf_remappedVS[3].z);
PV1f.z = PV0f.x * intBitsToFloat(uf_remappedVS[3].y);
PV1f.w = PV0f.x * intBitsToFloat(uf_remappedVS[3].x);
// 4
R123f.x = (R127f.y * intBitsToFloat(uf_remappedVS[4].w) + PV1f.x);
PV0f.x = R123f.x;
R123f.y = (R127f.y * intBitsToFloat(uf_remappedVS[4].z) + PV1f.y);
PV0f.y = R123f.y;
R123f.z = (R127f.y * intBitsToFloat(uf_remappedVS[4].y) + PV1f.z);
PV0f.z = R123f.z;
R123f.w = (R127f.y * intBitsToFloat(uf_remappedVS[4].x) + PV1f.w);
PV0f.w = R123f.w;
// 5
R123f.x = (R127f.z * intBitsToFloat(uf_remappedVS[5].w) + PV0f.x);
PV1f.x = R123f.x;
R123f.y = (R127f.z * intBitsToFloat(uf_remappedVS[5].z) + PV0f.y);
PV1f.y = R123f.y;
R123f.z = (R127f.z * intBitsToFloat(uf_remappedVS[5].y) + PV0f.z);
PV1f.z = R123f.z;
R123f.w = (R127f.z * intBitsToFloat(uf_remappedVS[5].x) + PV0f.w);
PV1f.w = R123f.w;
// 6
backupReg0f = R127f.w;
R123f.x = (R127f.w * intBitsToFloat(uf_remappedVS[6].w) + PV1f.x);
PV0f.x = R123f.x;
R127f.y = (R127f.w * intBitsToFloat(uf_remappedVS[6].z) + PV1f.y);
R127f.z = (R127f.w * intBitsToFloat(uf_remappedVS[6].y) + PV1f.z);
R127f.w = (backupReg0f * intBitsToFloat(uf_remappedVS[6].x) + PV1f.w);
// 7
PV1f.x = PV0f.x * intBitsToFloat(uf_remappedVS[7].w);
PV1f.y = PV0f.x * intBitsToFloat(uf_remappedVS[7].z);
PV1f.z = PV0f.x * intBitsToFloat(uf_remappedVS[7].y);
PV1f.w = PV0f.x * intBitsToFloat(uf_remappedVS[7].x);
// 8
R123f.x = (R127f.y * intBitsToFloat(uf_remappedVS[8].w) + PV1f.x);
PV0f.x = R123f.x;
R123f.y = (R127f.y * intBitsToFloat(uf_remappedVS[8].z) + PV1f.y);
PV0f.y = R123f.y;
R123f.z = (R127f.y * intBitsToFloat(uf_remappedVS[8].y) + PV1f.z);
PV0f.z = R123f.z;
R123f.w = (R127f.y * intBitsToFloat(uf_remappedVS[8].x) + PV1f.w);
PV0f.w = R123f.w;
// 9
R123f.x = (R127f.z * intBitsToFloat(uf_remappedVS[9].w) + PV0f.x);
PV1f.x = R123f.x;
R123f.y = (R127f.z * intBitsToFloat(uf_remappedVS[9].z) + PV0f.y);
PV1f.y = R123f.y;
R123f.z = (R127f.z * intBitsToFloat(uf_remappedVS[9].y) + PV0f.z);
PV1f.z = R123f.z;
R123f.w = (R127f.z * intBitsToFloat(uf_remappedVS[9].x) + PV0f.w);
PV1f.w = R123f.w;
// 10
R2f.x = (R127f.w * intBitsToFloat(uf_remappedVS[10].x) + PV1f.w);
R2f.y = (R127f.w * intBitsToFloat(uf_remappedVS[10].y) + PV1f.z);
R2f.z = (R127f.w * intBitsToFloat(uf_remappedVS[10].z) + PV1f.y);
R2f.w = (R127f.w * intBitsToFloat(uf_remappedVS[10].w) + PV1f.x);
// export
float origRatio = (float(1280)/float(720));
float newRatio = (float($width)/float($height)) ;
// *(origRatio / newRatio)
SET_POSITION(vec4(R2f.x*(origRatio / newRatio), R2f.y, R2f.z, R2f.w));
// export
passParameterSem0 = vec4(R1f.x, R1f.y, R1f.z, R1f.w);
// 0
}