207 lines
6.8 KiB
C++
Raw Normal View History

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "VideoBackends/Software/CPMemLoader.h"
#include "VideoBackends/Software/NativeVertexFormat.h"
#include "VideoBackends/Software/SetupUnit.h"
#include "VideoBackends/Software/SWStatistics.h"
#include "VideoBackends/Software/SWVertexLoader.h"
#include "VideoBackends/Software/TransformUnit.h"
#include "VideoBackends/Software/XFMemLoader.h"
#include "VideoCommon/VertexLoaderBase.h"
#include "VideoCommon/VertexLoaderUtils.h"
SWVertexLoader::SWVertexLoader() :
m_VertexSize(0)
{
m_SetupUnit = new SetupUnit;
}
SWVertexLoader::~SWVertexLoader()
{
delete m_SetupUnit;
m_SetupUnit = nullptr;
}
void SWVertexLoader::SetFormat(u8 attributeIndex, u8 primitiveType)
{
m_attributeIndex = attributeIndex;
m_primitiveType = primitiveType;
VertexLoaderUID uid(g_main_cp_state.vtx_desc, g_main_cp_state.vtx_attr[m_attributeIndex]);
m_CurrentLoader = m_VertexLoaderMap[uid].get();
if (!m_CurrentLoader)
{
m_CurrentLoader = VertexLoaderBase::CreateVertexLoader(g_main_cp_state.vtx_desc, g_main_cp_state.vtx_attr[m_attributeIndex]);
m_VertexLoaderMap[uid] = std::unique_ptr<VertexLoaderBase>(m_CurrentLoader);
}
m_VertexSize = m_CurrentLoader->m_VertexSize;
m_CurrentVat = &g_main_cp_state.vtx_attr[m_attributeIndex];
// matrix index from xf regs or cp memory?
if (xfmem.MatrixIndexA.PosNormalMtxIdx != g_main_cp_state.matrix_index_a.PosNormalMtxIdx ||
xfmem.MatrixIndexA.Tex0MtxIdx != g_main_cp_state.matrix_index_a.Tex0MtxIdx ||
xfmem.MatrixIndexA.Tex1MtxIdx != g_main_cp_state.matrix_index_a.Tex1MtxIdx ||
xfmem.MatrixIndexA.Tex2MtxIdx != g_main_cp_state.matrix_index_a.Tex2MtxIdx ||
xfmem.MatrixIndexA.Tex3MtxIdx != g_main_cp_state.matrix_index_a.Tex3MtxIdx ||
xfmem.MatrixIndexB.Tex4MtxIdx != g_main_cp_state.matrix_index_b.Tex4MtxIdx ||
xfmem.MatrixIndexB.Tex5MtxIdx != g_main_cp_state.matrix_index_b.Tex5MtxIdx ||
xfmem.MatrixIndexB.Tex6MtxIdx != g_main_cp_state.matrix_index_b.Tex6MtxIdx ||
xfmem.MatrixIndexB.Tex7MtxIdx != g_main_cp_state.matrix_index_b.Tex7MtxIdx)
{
WARN_LOG(VIDEO, "Matrix indices don't match");
// Just show the assert once
static bool showedAlert = false;
_assert_msg_(VIDEO, showedAlert, "Matrix indices don't match");
showedAlert = true;
}
m_Vertex.posMtx = xfmem.MatrixIndexA.PosNormalMtxIdx;
m_Vertex.texMtx[0] = xfmem.MatrixIndexA.Tex0MtxIdx;
m_Vertex.texMtx[1] = xfmem.MatrixIndexA.Tex1MtxIdx;
m_Vertex.texMtx[2] = xfmem.MatrixIndexA.Tex2MtxIdx;
m_Vertex.texMtx[3] = xfmem.MatrixIndexA.Tex3MtxIdx;
m_Vertex.texMtx[4] = xfmem.MatrixIndexB.Tex4MtxIdx;
m_Vertex.texMtx[5] = xfmem.MatrixIndexB.Tex5MtxIdx;
m_Vertex.texMtx[6] = xfmem.MatrixIndexB.Tex6MtxIdx;
m_Vertex.texMtx[7] = xfmem.MatrixIndexB.Tex7MtxIdx;
// special case if only pos and tex coord 0 and tex coord input is AB11
m_TexGenSpecialCase =
((g_main_cp_state.vtx_desc.Hex & 0x60600L) == g_main_cp_state.vtx_desc.Hex) && // only pos and tex coord 0
(g_main_cp_state.vtx_desc.Tex0Coord != NOT_PRESENT) &&
(xfmem.texMtxInfo[0].projection == XF_TEXPROJ_ST);
m_SetupUnit->Init(primitiveType);
}
template <typename T, typename I>
static T ReadNormalized(I value)
{
T casted = (T) value;
if (!std::numeric_limits<T>::is_integer && std::numeric_limits<I>::is_integer)
{
// normalize if non-float is converted to a float
casted *= (T) (1.0 / std::numeric_limits<I>::max());
}
return casted;
}
template <typename T, bool swap = false>
static void ReadVertexAttribute(T* dst, DataReader src, const AttributeFormat& format, int base_component, int max_components, bool reverse)
{
if (format.enable)
{
src.Skip(format.offset);
src.Skip(base_component * (1<<(format.type>>1)));
for (int i = 0; i < std::min(format.components - base_component, max_components); i++)
{
int i_dst = reverse ? max_components - i - 1 : i;
switch (format.type)
{
case VAR_UNSIGNED_BYTE:
dst[i_dst] = ReadNormalized<T, u8>(src.Read<u8, swap>());
break;
case VAR_BYTE:
dst[i_dst] = ReadNormalized<T, s8>(src.Read<s8, swap>());
break;
case VAR_UNSIGNED_SHORT:
dst[i_dst] = ReadNormalized<T, u16>(src.Read<u16, swap>());
break;
case VAR_SHORT:
dst[i_dst] = ReadNormalized<T, s16>(src.Read<s16, swap>());
break;
case VAR_FLOAT:
dst[i_dst] = ReadNormalized<T, float>(src.Read<float, swap>());
break;
}
_assert_msg_(VIDEO, !format.integer || format.type != VAR_FLOAT, "only non-float values are allowed to be streamed as integer");
}
}
}
void SWVertexLoader::ParseVertex(const PortableVertexDeclaration& vdec)
{
DataReader src(m_LoadedVertices.data(), m_LoadedVertices.data() + m_LoadedVertices.size());
ReadVertexAttribute<float>(&m_Vertex.position[0], src, vdec.position, 0, 3, false);
for (int i = 0; i < 3; i++)
{
ReadVertexAttribute<float>(&m_Vertex.normal[i][0], src, vdec.normals[i], 0, 3, false);
}
for (int i = 0; i < 2; i++)
{
ReadVertexAttribute<u8>(m_Vertex.color[i], src, vdec.colors[i], 0, 4, true);
}
for (int i = 0; i < 8; i++)
{
ReadVertexAttribute<float>(m_Vertex.texCoords[i], src, vdec.texcoords[i], 0, 2, false);
// the texmtr is stored as third component of the texCoord
if (vdec.texcoords[i].components >= 3)
{
ReadVertexAttribute<u8>(&m_Vertex.texMtx[i], src, vdec.texcoords[i], 2, 1, false);
}
}
ReadVertexAttribute<u8>(&m_Vertex.posMtx, src, vdec.posmtx, 0, 1, false);
}
void SWVertexLoader::LoadVertex()
{
const PortableVertexDeclaration& vdec = m_CurrentLoader->m_native_vtx_decl;
// reserve memory for the destination of the vertex loader
m_LoadedVertices.resize(vdec.stride + 4);
// convert the vertex from the gc format to the videocommon (hardware optimized) format
u8* old = g_video_buffer_read_ptr;
m_CurrentLoader->RunVertices(
m_primitiveType, 1,
DataReader(g_video_buffer_read_ptr, nullptr), // src
DataReader(m_LoadedVertices.data(), m_LoadedVertices.data() + m_LoadedVertices.size()) // dst
);
g_video_buffer_read_ptr = old + m_CurrentLoader->m_VertexSize;
// parse the videocommon format to our own struct format (m_Vertex)
ParseVertex(vdec);
// transform this vertex so that it can be used for rasterization (outVertex)
OutputVertexData* outVertex = m_SetupUnit->GetVertex();
TransformUnit::TransformPosition(&m_Vertex, outVertex);
if (g_main_cp_state.vtx_desc.Normal != NOT_PRESENT)
{
TransformUnit::TransformNormal(&m_Vertex, m_CurrentVat->g0.NormalElements, outVertex);
}
TransformUnit::TransformColor(&m_Vertex, outVertex);
TransformUnit::TransformTexCoord(&m_Vertex, outVertex, m_TexGenSpecialCase);
// assemble and rasterize the primitive
m_SetupUnit->SetupVertex();
INCSTAT(swstats.thisFrame.numVerticesLoaded)
}
void SWVertexLoader::DoState(PointerWrap &p)
{
p.Do(m_VertexSize);
p.Do(*m_CurrentVat);
m_SetupUnit->DoState(p);
p.Do(m_TexGenSpecialCase);
}