1668 lines
46 KiB
C++
Raw Normal View History

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Globals.h"
#include "Thread.h"
#include "Atomic.h"
#include <vector>
#include <cmath>
#include <cstdio>
#include "GLUtil.h"
#include "FileUtil.h"
#ifdef _WIN32
#include <mmsystem.h>
#endif
#include "CommonPaths.h"
#include "VideoConfig.h"
#include "Statistics.h"
#include "ImageWrite.h"
#include "PixelEngine.h"
#include "Render.h"
#include "OpcodeDecoding.h"
#include "BPStructs.h"
#include "TextureCache.h"
#include "RasterFont.h"
#include "VertexShaderGen.h"
#include "DLCache.h"
#include "PixelShaderCache.h"
#include "PixelShaderManager.h"
#include "ProgramShaderCache.h"
#include "VertexShaderCache.h"
#include "VertexShaderManager.h"
#include "VertexLoaderManager.h"
#include "VertexLoader.h"
#include "PostProcessing.h"
#include "TextureConverter.h"
#include "OnScreenDisplay.h"
#include "Timer.h"
#include "StringUtil.h"
#include "FramebufferManager.h"
#include "Fifo.h"
#include "Debugger.h"
#include "Core.h"
#include "Movie.h"
#include "Host.h"
#include "BPFunctions.h"
#include "main.h" // Local
#ifdef _WIN32
#include "EmuWindow.h"
#endif
#if defined _WIN32 || defined HAVE_LIBAV
#include "AVIDump.h"
#endif
#if defined(HAVE_WX) && HAVE_WX
#include <wx/image.h>
#endif
void VideoConfig::UpdateProjectionHack()
{
::UpdateProjectionHack(g_Config.iPhackvalue, g_Config.sPhackvalue);
}
#if defined(HAVE_WX) && HAVE_WX
// Screenshot thread struct
typedef struct
{
int W, H;
std::string filename;
wxImage *img;
} ScrStrct;
#endif
#if defined HAVE_CG && HAVE_CG
CGcontext g_cgcontext;
CGprofile g_cgvProf;
CGprofile g_cgfProf;
#endif
int OSDInternalW, OSDInternalH;
namespace OGL
{
// Declarations and definitions
// ----------------------------
int s_fps=0;
RasterFont* s_pfont = NULL;
// 1 for no MSAA. Use s_MSAASamples > 1 to check for MSAA.
static int s_MSAASamples = 1;
static int s_MSAACoverageSamples = 0;
static int s_LastMultisampleMode = 0;
bool s_bHaveFramebufferBlit = false; // export to FramebufferManager.cpp
static bool s_bHaveCoverageMSAA = false;
static u32 s_blendMode;
#if defined(HAVE_WX) && HAVE_WX
static std::thread scrshotThread;
#endif
// EFB cache related
const u32 EFB_CACHE_RECT_SIZE = 64; // Cache 64x64 blocks.
const u32 EFB_CACHE_WIDTH = (EFB_WIDTH + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE; // round up
const u32 EFB_CACHE_HEIGHT = (EFB_HEIGHT + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE;
static bool s_efbCacheValid[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT];
static std::vector<u32> s_efbCache[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT]; // 2 for PEEK_Z and PEEK_COLOR
static const GLenum glSrcFactors[8] =
{
GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, // NOTE: If dual-source blending is enabled, use SRC1_ALPHA
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA
};
static const GLenum glDestFactors[8] = {
GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, // NOTE: If dual-source blending is enabled, use SRC1_ALPHA
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA
};
static const GLenum glCmpFuncs[8] = {
GL_NEVER,
GL_LESS,
GL_EQUAL,
GL_LEQUAL,
GL_GREATER,
GL_NOTEQUAL,
GL_GEQUAL,
GL_ALWAYS
};
static const GLenum glLogicOpCodes[16] = {
GL_CLEAR,
GL_AND,
GL_AND_REVERSE,
GL_COPY,
GL_AND_INVERTED,
GL_NOOP,
GL_XOR,
GL_OR,
GL_NOR,
GL_EQUIV,
GL_INVERT,
GL_OR_REVERSE,
GL_COPY_INVERTED,
GL_OR_INVERTED,
GL_NAND,
GL_SET
};
#if defined HAVE_CG && HAVE_CG
void HandleCgError(CGcontext ctx, CGerror err, void* appdata)
{
DEBUG_LOG(VIDEO, "Cg error: %s", cgGetErrorString(err));
const char* listing = cgGetLastListing(g_cgcontext);
if (listing != NULL)
DEBUG_LOG(VIDEO, " last listing: %s", listing);
}
#endif
int GetNumMSAASamples(int MSAAMode)
{
// required for MSAA
if (!s_bHaveFramebufferBlit)
return 1;
switch (MSAAMode)
{
case MULTISAMPLE_OFF:
return 1;
case MULTISAMPLE_2X:
return 2;
case MULTISAMPLE_4X:
case MULTISAMPLE_CSAA_8X:
case MULTISAMPLE_CSAA_16X:
return 4;
case MULTISAMPLE_8X:
case MULTISAMPLE_CSAA_8XQ:
case MULTISAMPLE_CSAA_16XQ:
return 8;
default:
return 1;
}
}
int GetNumMSAACoverageSamples(int MSAAMode)
{
if (!s_bHaveCoverageMSAA)
return 0;
switch (g_ActiveConfig.iMultisampleMode)
{
case MULTISAMPLE_CSAA_8X:
case MULTISAMPLE_CSAA_8XQ:
return 8;
case MULTISAMPLE_CSAA_16X:
case MULTISAMPLE_CSAA_16XQ:
return 16;
default:
return 0;
}
}
// Init functions
Renderer::Renderer()
{
OSDInternalW = 0;
OSDInternalH = 0;
s_fps=0;
s_blendMode = 0;
#if defined HAVE_CG && HAVE_CG
g_cgcontext = cgCreateContext();
cgGetError();
cgSetErrorHandler(HandleCgError, NULL);
#endif
// Look for required extensions.
const char *ptoken = (const char*)glGetString(GL_EXTENSIONS);
if (!ptoken)
{
PanicAlert("Your OpenGL Driver seems to be not working.\n"
"Please make sure your drivers are up-to-date and\n"
"that your video hardware is OpenGL 2.x compatible.");
return; // TODO: fail
}
INFO_LOG(VIDEO, "Supported OpenGL Extensions:");
INFO_LOG(VIDEO, "%s", ptoken); // write to the log file
INFO_LOG(VIDEO, "\n");
OSD::AddMessage(StringFromFormat("Video Info: %s, %s, %s",
glGetString(GL_VENDOR),
glGetString(GL_RENDERER),
glGetString(GL_VERSION)).c_str(), 5000);
bool bSuccess = true;
GLint numvertexattribs = 0;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &numvertexattribs);
if (numvertexattribs < 11)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Number of attributes %d not enough.\n"
"GPU: Does your video card support OpenGL 2.x?",
numvertexattribs);
bSuccess = false;
}
// Init extension support.
if (glewInit() != GLEW_OK)
{
ERROR_LOG(VIDEO, "glewInit() failed! Does your video card support OpenGL 2.x?");
return; // TODO: fail
}
if (!GLEW_EXT_framebuffer_object)
{
ERROR_LOG(VIDEO, "GPU: ERROR: Need GL_EXT_framebufer_object for multiple render targets.\n"
"GPU: Does your video card support OpenGL 2.x?");
bSuccess = false;
}
if (!GLEW_EXT_secondary_color)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Need GL_EXT_secondary_color.\n"
"GPU: Does your video card support OpenGL 2.x?");
bSuccess = false;
}
s_bHaveFramebufferBlit = strstr(ptoken, "GL_EXT_framebuffer_blit") != NULL;
s_bHaveCoverageMSAA = strstr(ptoken, "GL_NV_framebuffer_multisample_coverage") != NULL;
// TODO: Switch over to using glew once 1.6/1.7 becomes more mainstream, seems most people are stuck in 1.5
if (strstr((const char*)glGetString(GL_EXTENSIONS), "GL_ARB_shading_language_420pack") != NULL)
g_Config.backend_info.bSupportsGLSLBinding = true;
if (strstr((const char*)glGetString(GL_EXTENSIONS), "GL_ARB_uniform_buffer_object") != NULL)
g_Config.backend_info.bSupportsGLSLUBO = true;
if ((g_Config.backend_info.bSupportsGLSLBinding || g_Config.backend_info.bSupportsGLSLUBO) && strstr((const char*)glGetString(GL_EXTENSIONS), "GL_ARB_explicit_attrib_location") != NULL)
g_Config.backend_info.bSupportsGLSLATTRBind = true;
if (strstr((const char*)glGetString(GL_EXTENSIONS), "GL_ARB_get_program_binary") != NULL)
g_Config.backend_info.bSupportsGLSLCache = true;
UpdateActiveConfig();
OSD::AddMessage(StringFromFormat("Using GLSL. Supports Binding: %s UBOs: %s Cache: %s",
g_ActiveConfig.backend_info.bSupportsGLSLBinding ? "True" : "False",
g_ActiveConfig.backend_info.bSupportsGLSLUBO ? "True" : "False",
g_ActiveConfig.backend_info.bSupportsGLSLCache ? "True" : "False").c_str(), 5000);
s_LastMultisampleMode = g_ActiveConfig.iMultisampleMode;
s_MSAASamples = GetNumMSAASamples(s_LastMultisampleMode);
s_MSAACoverageSamples = GetNumMSAACoverageSamples(s_LastMultisampleMode);
if (!bSuccess)
return; // TODO: fail
// Decide frambuffer size
s_backbuffer_width = (int)OpenGL_GetBackbufferWidth();
s_backbuffer_height = (int)OpenGL_GetBackbufferHeight();
// Handle VSync on/off
#ifdef __APPLE__
int swapInterval = g_ActiveConfig.bVSync ? 1 : 0;
#if defined USE_WX && USE_WX
NSOpenGLContext *ctx = GLWin.glCtxt->GetWXGLContext();
#else
NSOpenGLContext *ctx = GLWin.cocoaCtx;
#endif
[ctx setValues: &swapInterval forParameter: NSOpenGLCPSwapInterval];
#elif defined _WIN32
if (WGLEW_EXT_swap_control)
wglSwapIntervalEXT(g_ActiveConfig.bVSync ? 1 : 0);
else
ERROR_LOG(VIDEO, "No support for SwapInterval (framerate clamped to monitor refresh rate).");
#elif defined(HAVE_X11) && HAVE_X11
if (glXSwapIntervalSGI)
glXSwapIntervalSGI(g_ActiveConfig.bVSync ? 1 : 0);
else
ERROR_LOG(VIDEO, "No support for SwapInterval (framerate clamped to monitor refresh rate).");
#endif
// check the max texture width and height
GLint max_texture_size;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, (GLint *)&max_texture_size);
if (max_texture_size < 1024)
ERROR_LOG(VIDEO, "GL_MAX_TEXTURE_SIZE too small at %i - must be at least 1024.",
max_texture_size);
if (GL_REPORT_ERROR() != GL_NO_ERROR)
bSuccess = false;
if (glDrawBuffers == NULL && !GLEW_ARB_draw_buffers)
glDrawBuffers = glDrawBuffersARB;
if (!GLEW_ARB_texture_non_power_of_two)
WARN_LOG(VIDEO, "ARB_texture_non_power_of_two not supported.");
s_XFB_width = MAX_XFB_WIDTH;
s_XFB_height = MAX_XFB_HEIGHT;
TargetRectangle dst_rect;
ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, false, &dst_rect);
CalculateXYScale(dst_rect);
s_LastEFBScale = g_ActiveConfig.iEFBScale;
CalculateTargetSize();
// Because of the fixed framebuffer size we need to disable the resolution
// options while running
g_Config.bRunning = true;
if (GL_REPORT_ERROR() != GL_NO_ERROR)
bSuccess = false;
// Initialize the FramebufferManager
g_framebuffer_manager = new FramebufferManager(s_target_width, s_target_height,
s_MSAASamples, s_MSAACoverageSamples);
glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
if (GL_REPORT_ERROR() != GL_NO_ERROR)
bSuccess = false;
s_pfont = new RasterFont();
#if defined HAVE_CG && HAVE_CG
// load the effect, find the best profiles (if any)
if (cgGLIsProfileSupported(CG_PROFILE_ARBVP1) != CG_TRUE)
{
ERROR_LOG(VIDEO, "arbvp1 not supported");
return; // TODO: fail
}
if (cgGLIsProfileSupported(CG_PROFILE_ARBFP1) != CG_TRUE)
{
ERROR_LOG(VIDEO, "arbfp1 not supported");
return; // TODO: fail
}
g_cgvProf = cgGLGetLatestProfile(CG_GL_VERTEX);
g_cgfProf = cgGLGetLatestProfile(CG_GL_FRAGMENT);
if (strstr((const char*)glGetString(GL_VENDOR), "Humper") == NULL)
{
#if CG_VERSION_NUM == 2100
// A bug was introduced in Cg2.1's handling of very large profile option values
// so this will not work on ATI. ATI returns MAXINT = 2147483647 (0x7fffffff)
// which is correct in OpenGL but Cg fails to handle it properly. As a result
// -1 is used by Cg resulting (signedness incorrect) and compilation fails.
if (strstr((const char*)glGetString(GL_VENDOR), "ATI") == NULL)
#endif
{
cgGLSetOptimalOptions(g_cgvProf);
cgGLSetOptimalOptions(g_cgfProf);
}
}
#else
// If we don't have Nvidia CG, we HAVE to use GLSL
g_Config.bUseGLSL = true;
UpdateActiveConfig();
#endif // HAVE_CG
int nenvvertparams, nenvfragparams, naddrregisters[2];
glGetProgramivARB(GL_VERTEX_PROGRAM_ARB,
GL_MAX_PROGRAM_ENV_PARAMETERS_ARB,
(GLint *)&nenvvertparams);
glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB,
GL_MAX_PROGRAM_ENV_PARAMETERS_ARB,
(GLint *)&nenvfragparams);
glGetProgramivARB(GL_VERTEX_PROGRAM_ARB,
GL_MAX_PROGRAM_ADDRESS_REGISTERS_ARB,
(GLint *)&naddrregisters[0]);
glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB,
GL_MAX_PROGRAM_ADDRESS_REGISTERS_ARB,
(GLint *)&naddrregisters[1]);
DEBUG_LOG(VIDEO, "Max program env parameters: vert=%d, frag=%d",
nenvvertparams, nenvfragparams);
DEBUG_LOG(VIDEO, "Max program address register parameters: vert=%d, frag=%d",
naddrregisters[0], naddrregisters[1]);
if (nenvvertparams < 238)
ERROR_LOG(VIDEO, "Not enough vertex shader environment constants!!");
#if defined HAVE_CG && HAVE_CG
INFO_LOG(VIDEO, "Max buffer sizes: %d %d",
cgGetProgramBufferMaxSize(g_cgvProf),
cgGetProgramBufferMaxSize(g_cgfProf));
#ifndef _DEBUG
cgGLSetDebugMode(GL_FALSE);
#endif
#endif
glStencilFunc(GL_ALWAYS, 0, 0);
glBlendFunc(GL_ONE, GL_ONE);
glViewport(0, 0, GetTargetWidth(), GetTargetHeight()); // Reset The Current Viewport
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glShadeModel(GL_SMOOTH);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClearDepth(1.0f);
glEnable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glDepthFunc(GL_LEQUAL);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4); // 4-byte pixel alignment
glDisable(GL_STENCIL_TEST);
glEnable(GL_SCISSOR_TEST);
glScissor(0, 0, GetTargetWidth(), GetTargetHeight());
glBlendColorEXT(0, 0, 0, 0.5f);
glClearDepth(1.0f);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// legacy multitexturing: select texture channel only.
glActiveTexture(GL_TEXTURE0);
glClientActiveTexture(GL_TEXTURE0);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
UpdateActiveConfig();
//return GL_REPORT_ERROR() == GL_NO_ERROR && bSuccess;
return;
}
Renderer::~Renderer()
{
g_Config.bRunning = false;
UpdateActiveConfig();
delete s_pfont;
s_pfont = 0;
#if defined HAVE_CG && HAVE_CG
if (g_cgcontext)
{
cgDestroyContext(g_cgcontext);
g_cgcontext = 0;
}
#endif
#if defined(HAVE_WX) && HAVE_WX
if (scrshotThread.joinable())
scrshotThread.join();
#endif
delete g_framebuffer_manager;
}
// Create On-Screen-Messages
void Renderer::DrawDebugInfo()
{
// Reset viewport for drawing text
glViewport(0, 0, OpenGL_GetBackbufferWidth(), OpenGL_GetBackbufferHeight());
// Draw various messages on the screen, like FPS, statistics, etc.
char debugtext_buffer[8192];
char *p = debugtext_buffer;
p[0] = 0;
if (g_ActiveConfig.bShowFPS)
p+=sprintf(p, "FPS: %d\n", s_fps);
if (g_ActiveConfig.bShowInputDisplay)
p+=sprintf(p, "%s", Movie::GetInputDisplay().c_str());
if (g_ActiveConfig.bShowEFBCopyRegions)
{
// Store Line Size
GLfloat lSize;
glGetFloatv(GL_LINE_WIDTH, &lSize);
// Set Line Size
glLineWidth(3.0f);
glBegin(GL_LINES);
// Draw EFB copy regions rectangles
for (std::vector<EFBRectangle>::const_iterator it = stats.efb_regions.begin();
it != stats.efb_regions.end(); ++it)
{
GLfloat halfWidth = EFB_WIDTH / 2.0f;
GLfloat halfHeight = EFB_HEIGHT / 2.0f;
GLfloat x = (GLfloat) -1.0f + ((GLfloat)it->left / halfWidth);
GLfloat y = (GLfloat) 1.0f - ((GLfloat)it->top / halfHeight);
GLfloat x2 = (GLfloat) -1.0f + ((GLfloat)it->right / halfWidth);
GLfloat y2 = (GLfloat) 1.0f - ((GLfloat)it->bottom / halfHeight);
// Draw shadow of rect
glColor3f(0.0f, 0.0f, 0.0f);
glVertex2f(x, y - 0.01); glVertex2f(x2, y - 0.01);
glVertex2f(x, y2 - 0.01); glVertex2f(x2, y2 - 0.01);
glVertex2f(x + 0.005, y); glVertex2f(x + 0.005, y2);
glVertex2f(x2 + 0.005, y); glVertex2f(x2 + 0.005, y2);
// Draw rect
glColor3f(0.0f, 1.0f, 1.0f);
glVertex2f(x, y); glVertex2f(x2, y);
glVertex2f(x, y2); glVertex2f(x2, y2);
glVertex2f(x, y); glVertex2f(x, y2);
glVertex2f(x2, y); glVertex2f(x2, y2);
}
glEnd();
// Restore Line Size
glLineWidth(lSize);
// Clear stored regions
stats.efb_regions.clear();
}
if (g_ActiveConfig.bOverlayStats)
p = Statistics::ToString(p);
if (g_ActiveConfig.bOverlayProjStats)
p = Statistics::ToStringProj(p);
// Render a shadow, and then the text.
if (p != debugtext_buffer)
{
Renderer::RenderText(debugtext_buffer, 21, 21, 0xDD000000);
Renderer::RenderText(debugtext_buffer, 20, 20, 0xFF00FFFF);
}
}
void Renderer::RenderText(const char *text, int left, int top, u32 color)
{
const int nBackbufferWidth = (int)OpenGL_GetBackbufferWidth();
const int nBackbufferHeight = (int)OpenGL_GetBackbufferHeight();
glColor4f(((color>>16) & 0xff)/255.0f, ((color>> 8) & 0xff)/255.0f,
((color>> 0) & 0xff)/255.0f, ((color>>24) & 0xFF)/255.0f);
s_pfont->printMultilineText(text,
left * 2.0f / (float)nBackbufferWidth - 1,
1 - top * 2.0f / (float)nBackbufferHeight,
0, nBackbufferWidth, nBackbufferHeight);
GL_REPORT_ERRORD();
}
TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
{
TargetRectangle result;
result.left = EFBToScaledX(rc.left);
result.top = EFBToScaledY(EFB_HEIGHT - rc.top);
result.right = EFBToScaledX(rc.right);
result.bottom = EFBToScaledY(EFB_HEIGHT - rc.bottom);
return result;
}
// Function: This function handles the OpenGL glScissor() function
// ----------------------------
// Call browser: OpcodeDecoding.cpp ExecuteDisplayList > Decode() > LoadBPReg()
// case 0x52 > SetScissorRect()
// ----------------------------
// bpmem.scissorTL.x, y = 342x342
// bpmem.scissorBR.x, y = 981x821
// Renderer::GetTargetHeight() = the fixed ini file setting
// donkopunchstania - it appears scissorBR is the bottom right pixel inside the scissor box
// therefore the width and height are (scissorBR + 1) - scissorTL
void Renderer::SetScissorRect(const TargetRectangle& rc)
{
glScissor(rc.left, rc.bottom, rc.GetWidth(), rc.GetHeight());
}
void Renderer::SetColorMask()
{
// Only enable alpha channel if it's supported by the current EFB format
GLenum ColorMask = GL_FALSE, AlphaMask = GL_FALSE;
if (bpmem.blendmode.colorupdate)
ColorMask = GL_TRUE;
if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24))
AlphaMask = GL_TRUE;
glColorMask(ColorMask, ColorMask, ColorMask, AlphaMask);
}
void ClearEFBCache()
{
for (u32 i = 0; i < EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT; ++i)
s_efbCacheValid[0][i] = false;
for (u32 i = 0; i < EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT; ++i)
s_efbCacheValid[1][i] = false;
}
void Renderer::UpdateEFBCache(EFBAccessType type, u32 cacheRectIdx, const EFBRectangle& efbPixelRc, const TargetRectangle& targetPixelRc, const u32* data)
{
u32 cacheType = (type == PEEK_Z ? 0 : 1);
if (!s_efbCache[cacheType][cacheRectIdx].size())
s_efbCache[cacheType][cacheRectIdx].resize(EFB_CACHE_RECT_SIZE * EFB_CACHE_RECT_SIZE);
u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left;
for (u32 yCache = 0; yCache < EFB_CACHE_RECT_SIZE; ++yCache)
{
u32 yEFB = efbPixelRc.top + yCache;
u32 yPixel = (EFBToScaledY(EFB_HEIGHT - yEFB) + EFBToScaledY(EFB_HEIGHT - yEFB - 1)) / 2;
u32 yData = yPixel - targetPixelRc.bottom;
for (u32 xCache = 0; xCache < EFB_CACHE_RECT_SIZE; ++xCache)
{
u32 xEFB = efbPixelRc.left + xCache;
u32 xPixel = (EFBToScaledX(xEFB) + EFBToScaledX(xEFB + 1)) / 2;
u32 xData = xPixel - targetPixelRc.left;
s_efbCache[cacheType][cacheRectIdx][yCache * EFB_CACHE_RECT_SIZE + xCache] = data[yData * targetPixelRcWidth + xData];
}
}
s_efbCacheValid[cacheType][cacheRectIdx] = true;
}
// This function allows the CPU to directly access the EFB.
// There are EFB peeks (which will read the color or depth of a pixel)
// and EFB pokes (which will change the color or depth of a pixel).
//
// The behavior of EFB peeks can only be modified by:
// - GX_PokeAlphaRead
// The behavior of EFB pokes can be modified by:
// - GX_PokeAlphaMode (TODO)
// - GX_PokeAlphaUpdate (TODO)
// - GX_PokeBlendMode (TODO)
// - GX_PokeColorUpdate (TODO)
// - GX_PokeDither (TODO)
// - GX_PokeDstAlpha (TODO)
// - GX_PokeZMode (TODO)
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
if (!g_ActiveConfig.bEFBAccessEnable)
return 0;
u32 cacheRectIdx = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_WIDTH
+ (x / EFB_CACHE_RECT_SIZE);
// Get the rectangular target region containing the EFB pixel
EFBRectangle efbPixelRc;
efbPixelRc.left = (x / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE;
efbPixelRc.top = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE;
efbPixelRc.right = efbPixelRc.left + EFB_CACHE_RECT_SIZE;
efbPixelRc.bottom = efbPixelRc.top + EFB_CACHE_RECT_SIZE;
TargetRectangle targetPixelRc = ConvertEFBRectangle(efbPixelRc);
u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left;
u32 targetPixelRcHeight = targetPixelRc.top - targetPixelRc.bottom;
// TODO (FIX) : currently, AA path is broken/offset and doesn't return the correct pixel
switch (type)
{
case PEEK_Z:
{
u32 z;
if (!s_efbCacheValid[0][cacheRectIdx])
{
if (s_MSAASamples > 1)
{
// Resolve our rectangle.
FramebufferManager::GetEFBDepthTexture(efbPixelRc);
glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, FramebufferManager::GetResolvedFramebuffer());
}
u32* depthMap = new u32[targetPixelRcWidth * targetPixelRcHeight];
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight,
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, depthMap);
GL_REPORT_ERRORD();
UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, depthMap);
delete[] depthMap;
}
u32 xRect = x % EFB_CACHE_RECT_SIZE;
u32 yRect = y % EFB_CACHE_RECT_SIZE;
z = s_efbCache[0][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect];
// Scale the 32-bit value returned by glReadPixels to a 24-bit
// value (GC uses a 24-bit Z-buffer).
// TODO: in RE0 this value is often off by one, which causes lighting to disappear
if(bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
// if Z is in 16 bit format you must return a 16 bit integer
z = z >> 16;
}
else
{
z = z >> 8;
}
return z;
}
case PEEK_COLOR: // GXPeekARGB
{
// Although it may sound strange, this really is A8R8G8B8 and not RGBA or 24-bit...
// Tested in Killer 7, the first 8bits represent the alpha value which is used to
// determine if we're aiming at an enemy (0x80 / 0x88) or not (0x70)
// Wind Waker is also using it for the pictograph to determine the color of each pixel
u32 color;
if (!s_efbCacheValid[1][cacheRectIdx])
{
if (s_MSAASamples > 1)
{
// Resolve our rectangle.
FramebufferManager::GetEFBColorTexture(efbPixelRc);
glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, FramebufferManager::GetResolvedFramebuffer());
}
u32* colorMap = new u32[targetPixelRcWidth * targetPixelRcHeight];
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight,
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, colorMap);
GL_REPORT_ERRORD();
UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, colorMap);
delete[] colorMap;
}
u32 xRect = x % EFB_CACHE_RECT_SIZE;
u32 yRect = y % EFB_CACHE_RECT_SIZE;
color = s_efbCache[1][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect];
// check what to do with the alpha channel (GX_PokeAlphaRead)
PixelEngine::UPEAlphaReadReg alpha_read_mode;
PixelEngine::Read16((u16&)alpha_read_mode, PE_ALPHAREAD);
if (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24)
{
color = RGBA8ToRGBA6ToRGBA8(color);
}
else if (bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
color = RGBA8ToRGB565ToRGBA8(color);
}
if(bpmem.zcontrol.pixel_format != PIXELFMT_RGBA6_Z24)
{
color |= 0xFF000000;
}
if(alpha_read_mode.ReadMode == 2) return color; // GX_READ_NONE
else if(alpha_read_mode.ReadMode == 1) return (color | 0xFF000000); // GX_READ_FF
else /*if(alpha_read_mode.ReadMode == 0)*/ return (color & 0x00FFFFFF); // GX_READ_00
}
case POKE_COLOR:
case POKE_Z:
// TODO: Implement. One way is to draw a tiny pixel-sized rectangle at
// the exact location. Note: EFB pokes are susceptible to Z-buffering
// and perhaps blending.
//WARN_LOG(VIDEOINTERFACE, "This is probably some kind of software rendering");
break;
default:
break;
}
return 0;
}
// Called from VertexShaderManager
void Renderer::UpdateViewport(Matrix44& vpCorrection)
{
// reversed gxsetviewport(xorig, yorig, width, height, nearz, farz)
// [0] = width/2
// [1] = height/2
// [2] = 16777215 * (farz - nearz)
// [3] = xorig + width/2 + 342
// [4] = yorig + height/2 + 342
// [5] = 16777215 * farz
int scissorXOff = bpmem.scissorOffset.x * 2;
int scissorYOff = bpmem.scissorOffset.y * 2;
// TODO: ceil, floor or just cast to int?
int X = EFBToScaledX((int)ceil(xfregs.viewport.xOrig - xfregs.viewport.wd - (float)scissorXOff));
int Y = EFBToScaledY((int)ceil((float)EFB_HEIGHT - xfregs.viewport.yOrig + xfregs.viewport.ht + (float)scissorYOff));
int Width = EFBToScaledX((int)ceil(2.0f * xfregs.viewport.wd));
int Height = EFBToScaledY((int)ceil(-2.0f * xfregs.viewport.ht));
double GLNear = (xfregs.viewport.farZ - xfregs.viewport.zRange) / 16777216.0f;
double GLFar = xfregs.viewport.farZ / 16777216.0f;
if (Width < 0)
{
X += Width;
Width *= -1;
}
if (Height < 0)
{
Y += Height;
Height *= -1;
}
// OpenGL does not require any viewport correct
Matrix44::LoadIdentity(vpCorrection);
// Update the view port
glViewport(X, Y, Width, Height);
glDepthRange(GLNear, GLFar);
}
void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z)
{
ResetAPIState();
GLenum ColorMask = GL_FALSE, AlphaMask = GL_FALSE;
if (colorEnable) ColorMask = GL_TRUE;
if (alphaEnable) AlphaMask = GL_TRUE;
glColorMask(ColorMask, ColorMask, ColorMask, AlphaMask);
if (zEnable)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDepthFunc(GL_ALWAYS);
}
else
{
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
glDepthFunc(GL_NEVER);
}
// Update viewport for clearing the picture
TargetRectangle targetRc = ConvertEFBRectangle(rc);
glViewport(targetRc.left, targetRc.bottom, targetRc.GetWidth(), targetRc.GetHeight());
glDepthRange(0.0, (float)(z & 0xFFFFFF) / float(0xFFFFFF));
glColor4f((float)((color >> 16) & 0xFF) / 255.0f,
(float)((color >> 8) & 0xFF) / 255.0f,
(float)(color & 0xFF) / 255.0f,
(float)((color >> 24) & 0xFF) / 255.0f);
glBegin(GL_QUADS);
glVertex3f(-1.f, -1.f, 1.f);
glVertex3f(-1.f, 1.f, 1.f);
glVertex3f( 1.f, 1.f, 1.f);
glVertex3f( 1.f, -1.f, 1.f);
glEnd();
RestoreAPIState();
ClearEFBCache();
}
void Renderer::ReinterpretPixelData(unsigned int convtype)
{
// TODO
}
void Renderer::SetBlendMode(bool forceUpdate)
{
// blend mode bit mask
// 0 - blend enable
// 2 - reverse subtract enable (else add)
// 3-5 - srcRGB function
// 6-8 - dstRGB function
u32 newval = bpmem.blendmode.subtract << 2;
if (bpmem.blendmode.subtract)
newval |= 0x0049; // enable blending src 1 dst 1
else if (bpmem.blendmode.blendenable)
{
newval |= 1; // enable blending
newval |= bpmem.blendmode.srcfactor << 3;
newval |= bpmem.blendmode.dstfactor << 6;
}
u32 changes = forceUpdate ? 0xFFFFFFFF : newval ^ s_blendMode;
bool useDstAlpha = !g_ActiveConfig.bDstAlphaPass && bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate
&& bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24 && g_ActiveConfig.bUseGLSL;
bool useDualSource = useDstAlpha;
if (changes & 1)
// blend enable change
(newval & 1) ? glEnable(GL_BLEND) : glDisable(GL_BLEND);
if (changes & 4)
{
// subtract enable change
GLenum equation = newval & 4 ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD;
GLenum equationAlpha = useDualSource ? GL_FUNC_ADD : equation;
glBlendEquationSeparate(equation, equationAlpha);
}
if (changes & 0x1F8)
{
GLenum srcFactor = glSrcFactors[(newval >> 3) & 7];
GLenum srcFactorAlpha = srcFactor;
GLenum dstFactor = glDestFactors[(newval >> 6) & 7];
GLenum dstFactorAlpha = dstFactor;
if (useDualSource)
{
srcFactorAlpha = GL_ONE;
dstFactorAlpha = GL_ZERO;
if (srcFactor == GL_SRC_ALPHA)
srcFactor = GL_SRC1_ALPHA;
else if (srcFactor == GL_ONE_MINUS_SRC_ALPHA)
srcFactor = GL_ONE_MINUS_SRC1_ALPHA;
if (dstFactor == GL_SRC_ALPHA)
dstFactor = GL_SRC1_ALPHA;
else if (dstFactor == GL_ONE_MINUS_SRC_ALPHA)
dstFactor = GL_ONE_MINUS_SRC1_ALPHA;
}
// blend RGB change
glBlendFuncSeparate(srcFactor, dstFactor, srcFactorAlpha, dstFactorAlpha);
}
s_blendMode = newval;
}
// This function has the final picture. We adjust the aspect ratio here.
void Renderer::Swap(u32 xfbAddr, FieldType field, u32 fbWidth, u32 fbHeight,const EFBRectangle& rc,float Gamma)
{
static int w = 0, h = 0;
if (g_bSkipCurrentFrame || (!XFBWrited && (!g_ActiveConfig.bUseXFB || !g_ActiveConfig.bUseRealXFB)) || !fbWidth || !fbHeight)
{
if (g_ActiveConfig.bDumpFrames && frame_data)
#ifdef _WIN32
AVIDump::AddFrame(frame_data);
#elif defined HAVE_LIBAV
2011-09-08 22:24:11 -05:00
AVIDump::AddFrame((u8*)frame_data, w, h);
#endif
Core::Callback_VideoCopiedToXFB(false);
return;
}
// this function is called after the XFB field is changed, not after
// EFB is copied to XFB. In this way, flickering is reduced in games
// and seems to also give more FPS in ZTP
if (field == FIELD_LOWER) xfbAddr -= fbWidth * 2;
u32 xfbCount = 0;
const XFBSourceBase* const* xfbSourceList = FramebufferManager::GetXFBSource(xfbAddr, fbWidth, fbHeight, xfbCount);
if ((!xfbSourceList || xfbCount == 0) && g_ActiveConfig.bUseXFB && !g_ActiveConfig.bUseRealXFB)
{
if (g_ActiveConfig.bDumpFrames && frame_data)
{
#ifdef _WIN32
AVIDump::AddFrame(frame_data);
#elif defined HAVE_LIBAV
2011-09-08 22:24:11 -05:00
AVIDump::AddFrame((u8*)frame_data, w, h);
#endif
}
Core::Callback_VideoCopiedToXFB(false);
return;
}
ResetAPIState();
TargetRectangle dst_rect;
ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, true, &dst_rect);
// Textured triangles are necessary because of post-processing shaders
// Disable all other stages
for (int i = 1; i < 8; ++i)
OGL::TextureCache::DisableStage(i);
// Update GLViewPort
glViewport(dst_rect.left, dst_rect.bottom, dst_rect.GetWidth(), dst_rect.GetHeight());
GL_REPORT_ERRORD();
// Copy the framebuffer to screen.
// Texture map s_xfbTexture onto the main buffer
glActiveTexture(GL_TEXTURE0);
glEnable(GL_TEXTURE_RECTANGLE_ARB);
// Use linear filtering.
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
// We must call ApplyShader here even if no post proc is selected - it takes
// care of disabling it in that case. It returns false in case of no post processing.
bool applyShader = PostProcessing::ApplyShader();
const XFBSourceBase* xfbSource = NULL;
if(g_ActiveConfig.bUseXFB)
{
// draw each xfb source
// Render to the real buffer now.
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); // switch to the window backbuffer
for (u32 i = 0; i < xfbCount; ++i)
{
xfbSource = xfbSourceList[i];
MathUtil::Rectangle<float> drawRc;
if (!g_ActiveConfig.bUseRealXFB)
{
// use virtual xfb with offset
int xfbHeight = xfbSource->srcHeight;
int xfbWidth = xfbSource->srcWidth;
int hOffset = ((s32)xfbSource->srcAddr - (s32)xfbAddr) / ((s32)fbWidth * 2);
drawRc.top = 1.0f - (2.0f * (hOffset) / (float)fbHeight);
drawRc.bottom = 1.0f - (2.0f * (hOffset + xfbHeight) / (float)fbHeight);
drawRc.left = -(xfbWidth / (float)fbWidth);
drawRc.right = (xfbWidth / (float)fbWidth);
// The following code disables auto stretch. Kept for reference.
// scale draw area for a 1 to 1 pixel mapping with the draw target
//float vScale = (float)fbHeight / (float)dst_rect.GetHeight();
//float hScale = (float)fbWidth / (float)dst_rect.GetWidth();
//drawRc.top *= vScale;
//drawRc.bottom *= vScale;
//drawRc.left *= hScale;
//drawRc.right *= hScale;
}
else
{
drawRc.top = 1;
drawRc.bottom = -1;
drawRc.left = -1;
drawRc.right = 1;
}
// Tell the OSD Menu about the current internal resolution
OSDInternalW = xfbSource->sourceRc.GetWidth(); OSDInternalH = xfbSource->sourceRc.GetHeight();
MathUtil::Rectangle<float> sourceRc;
sourceRc.left = xfbSource->sourceRc.left;
sourceRc.right = xfbSource->sourceRc.right;
sourceRc.top = xfbSource->sourceRc.top;
sourceRc.bottom = xfbSource->sourceRc.bottom;
xfbSource->Draw(sourceRc, drawRc, 0, 0);
// We must call ApplyShader here even if no post proc is selected.
// It takes care of disabling it in that case. It returns false in
// case of no post processing.
if (applyShader)
PixelShaderCache::DisableShader();
}
}
else
{
TargetRectangle targetRc = ConvertEFBRectangle(rc);
GLuint read_texture = FramebufferManager::ResolveAndGetRenderTarget(rc);
// Render to the real buffer now.
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); // switch to the window backbuffer
glBindTexture(GL_TEXTURE_RECTANGLE_ARB, read_texture);
if (applyShader)
{
glBegin(GL_QUADS);
glTexCoord2f(targetRc.left, targetRc.bottom);
glMultiTexCoord2fARB(GL_TEXTURE1, 0, 0);
glVertex2f(-1, -1);
glTexCoord2f(targetRc.left, targetRc.top);
glMultiTexCoord2fARB(GL_TEXTURE1, 0, 1);
glVertex2f(-1, 1);
glTexCoord2f(targetRc.right, targetRc.top);
glMultiTexCoord2fARB(GL_TEXTURE1, 1, 1);
glVertex2f( 1, 1);
glTexCoord2f(targetRc.right, targetRc.bottom);
glMultiTexCoord2fARB(GL_TEXTURE1, 1, 0);
glVertex2f( 1, -1);
glEnd();
PixelShaderCache::DisableShader();
}
else
{
glBegin(GL_QUADS);
glTexCoord2f(targetRc.left, targetRc.bottom);
glVertex2f(-1, -1);
glTexCoord2f(targetRc.left, targetRc.top);
glVertex2f(-1, 1);
glTexCoord2f(targetRc.right, targetRc.top);
glVertex2f( 1, 1);
glTexCoord2f(targetRc.right, targetRc.bottom);
glVertex2f( 1, -1);
glEnd();
}
}
glBindTexture(GL_TEXTURE_RECTANGLE_ARB, 0);
OGL::TextureCache::DisableStage(0);
// Save screenshot
if (s_bScreenshot)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
SaveScreenshot(s_sScreenshotName, dst_rect);
// Reset settings
s_sScreenshotName.clear();
s_bScreenshot = false;
}
// Frame dumps are handled a little differently in Windows
#if defined _WIN32 || defined HAVE_LIBAV
if (g_ActiveConfig.bDumpFrames)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
if (!frame_data || w != dst_rect.GetWidth() ||
h != dst_rect.GetHeight())
{
if (frame_data) delete[] frame_data;
w = dst_rect.GetWidth();
h = dst_rect.GetHeight();
frame_data = new char[3 * w * h];
}
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(dst_rect.left, dst_rect.bottom, w, h, GL_BGR, GL_UNSIGNED_BYTE, frame_data);
if (GL_REPORT_ERROR() == GL_NO_ERROR && w > 0 && h > 0)
{
if (!bLastFrameDumped)
{
#ifdef _WIN32
bAVIDumping = AVIDump::Start(EmuWindow::GetParentWnd(), w, h);
#else
bAVIDumping = AVIDump::Start(w, h);
#endif
if (!bAVIDumping)
OSD::AddMessage("AVIDump Start failed", 2000);
else
{
OSD::AddMessage(StringFromFormat(
"Dumping Frames to \"%sframedump0.avi\" (%dx%d RGB24)",
File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), w, h).c_str(), 2000);
}
}
if (bAVIDumping)
{
#ifdef _WIN32
AVIDump::AddFrame(frame_data);
#else
2011-09-08 22:24:11 -05:00
FlipImageData((u8*)frame_data, w, h);
AVIDump::AddFrame((u8*)frame_data, w, h);
#endif
}
bLastFrameDumped = true;
}
else
NOTICE_LOG(VIDEO, "Error reading framebuffer");
}
else
{
if (bLastFrameDumped && bAVIDumping)
{
if (frame_data)
{
delete[] frame_data;
frame_data = NULL;
w = h = 0;
}
AVIDump::Stop();
bAVIDumping = false;
OSD::AddMessage("Stop dumping frames", 2000);
}
bLastFrameDumped = false;
}
#else
if (g_ActiveConfig.bDumpFrames)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
std::string movie_file_name;
w = dst_rect.GetWidth();
h = dst_rect.GetHeight();
2011-09-12 17:58:05 +02:00
frame_data = new char[3 * w * h];
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(dst_rect.left, dst_rect.bottom, w, h, GL_BGR, GL_UNSIGNED_BYTE, frame_data);
if (GL_REPORT_ERROR() == GL_NO_ERROR)
{
if (!bLastFrameDumped)
{
movie_file_name = File::GetUserPath(D_DUMPFRAMES_IDX) + "framedump.raw";
pFrameDump.Open(movie_file_name, "wb");
if (!pFrameDump)
OSD::AddMessage("Error opening framedump.raw for writing.", 2000);
else
{
char msg [255];
sprintf(msg, "Dumping Frames to \"%s\" (%dx%d RGB24)", movie_file_name.c_str(), w, h);
OSD::AddMessage(msg, 2000);
}
}
if (pFrameDump)
{
2011-09-12 17:58:05 +02:00
FlipImageData((u8*)frame_data, w, h);
pFrameDump.WriteBytes(frame_data, w * 3 * h);
pFrameDump.Flush();
}
bLastFrameDumped = true;
}
delete[] frame_data;
}
else
{
if (bLastFrameDumped)
pFrameDump.Close();
bLastFrameDumped = false;
}
#endif
// Finish up the current frame, print some stats
SetWindowSize(fbWidth, fbHeight);
OpenGL_Update(); // just updates the render window position and the backbuffer size
bool xfbchanged = false;
if (s_XFB_width != fbWidth || s_XFB_height != fbHeight)
{
xfbchanged = true;
s_XFB_width = fbWidth;
s_XFB_height = fbHeight;
if (s_XFB_width < 1) s_XFB_width = MAX_XFB_WIDTH;
if (s_XFB_width > MAX_XFB_WIDTH) s_XFB_width = MAX_XFB_WIDTH;
if (s_XFB_height < 1) s_XFB_height = MAX_XFB_HEIGHT;
if (s_XFB_height > MAX_XFB_HEIGHT) s_XFB_height = MAX_XFB_HEIGHT;
}
bool WindowResized = false;
int W = (int)OpenGL_GetBackbufferWidth();
int H = (int)OpenGL_GetBackbufferHeight();
if (W != s_backbuffer_width || H != s_backbuffer_height || s_LastEFBScale != g_ActiveConfig.iEFBScale)
{
WindowResized = true;
s_backbuffer_width = W;
s_backbuffer_height = H;
s_LastEFBScale = g_ActiveConfig.iEFBScale;
}
if (xfbchanged || WindowResized || (s_LastMultisampleMode != g_ActiveConfig.iMultisampleMode))
{
ComputeDrawRectangle(s_backbuffer_width, s_backbuffer_height, false, &dst_rect);
CalculateXYScale(dst_rect);
if (CalculateTargetSize() || (s_LastMultisampleMode != g_ActiveConfig.iMultisampleMode))
{
s_LastMultisampleMode = g_ActiveConfig.iMultisampleMode;
s_MSAASamples = GetNumMSAASamples(s_LastMultisampleMode);
s_MSAACoverageSamples = GetNumMSAACoverageSamples(s_LastMultisampleMode);
delete g_framebuffer_manager;
g_framebuffer_manager = new FramebufferManager(s_target_width, s_target_height,
s_MSAASamples, s_MSAACoverageSamples);
glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
}
}
// Place messages on the picture, then copy it to the screen
// ---------------------------------------------------------------------
// Count FPS.
// -------------
static int fpscount = 0;
static unsigned long lasttime = 0;
if (Common::Timer::GetTimeMs() - lasttime >= 1000)
{
lasttime = Common::Timer::GetTimeMs();
s_fps = fpscount;
fpscount = 0;
}
if (XFBWrited)
++fpscount;
// ---------------------------------------------------------------------
GL_REPORT_ERRORD();
DrawDebugText();
DrawDebugInfo();
GL_REPORT_ERRORD();
// Get the status of the Blend mode
GLboolean blend_enabled = glIsEnabled(GL_BLEND);
glDisable(GL_BLEND);
OSD::DrawMessages();
if (blend_enabled)
glEnable(GL_BLEND);
GL_REPORT_ERRORD();
// Copy the rendered frame to the real window
OpenGL_SwapBuffers();
GL_REPORT_ERRORD();
// Clear framebuffer
if(!g_ActiveConfig.bAnaglyphStereo)
{
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
}
GL_REPORT_ERRORD();
// Clean out old stuff from caches. It's not worth it to clean out the shader caches.
DLCache::ProgressiveCleanup();
TextureCache::Cleanup();
frameCount++;
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
// Begin new frame
// Set default viewport and scissor, for the clear to work correctly
// New frame
stats.ResetFrame();
// Render to the framebuffer.
FramebufferManager::SetFramebuffer(0);
GL_REPORT_ERRORD();
RestoreAPIState();
GL_REPORT_ERRORD();
g_Config.iSaveTargetId = 0;
// reload textures if these settings changed
if (g_Config.bSafeTextureCache != g_ActiveConfig.bSafeTextureCache ||
g_Config.bUseNativeMips != g_ActiveConfig.bUseNativeMips)
TextureCache::Invalidate(false);
if (g_Config.bCopyEFBToTexture != g_ActiveConfig.bCopyEFBToTexture)
TextureCache::ClearRenderTargets();
UpdateActiveConfig();
// For testing zbuffer targets.
// Renderer::SetZBufferRender();
// SaveTexture("tex.tga", GL_TEXTURE_RECTANGLE_ARB, s_FakeZTarget,
// GetTargetWidth(), GetTargetHeight());
Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
XFBWrited = false;
// Invalidate EFB cache
ClearEFBCache();
}
// ALWAYS call RestoreAPIState for each ResetAPIState call you're doing
void Renderer::ResetAPIState()
{
// Gets us to a reasonably sane state where it's possible to do things like
// image copies with textured quads, etc.
if (g_ActiveConfig.bUseGLSL)
ProgramShaderCache::SetBothShaders(0, 0);
else
{
VertexShaderCache::DisableShader();
PixelShaderCache::DisableShader();
}
glDisable(GL_SCISSOR_TEST);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthMask(GL_FALSE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
// make sure to disable wireframe when drawing the clear quad
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
void Renderer::RestoreAPIState()
{
// Gets us back into a more game-like state.
glEnable(GL_SCISSOR_TEST);
SetGenerationMode();
BPFunctions::SetScissor();
SetColorMask();
SetDepthMode();
SetBlendMode(true);
VertexShaderManager::SetViewportChanged();
if (g_ActiveConfig.bWireFrame)
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
if (g_ActiveConfig.bUseGLSL)
ProgramShaderCache::SetBothShaders(0, 0);
else
{
VertexShaderCache::SetCurrentShader(0);
PixelShaderCache::SetCurrentShader(0);
}
}
void Renderer::SetGenerationMode()
{
// none, ccw, cw, ccw
if (bpmem.genMode.cullmode > 0)
{
glEnable(GL_CULL_FACE);
glFrontFace(bpmem.genMode.cullmode == 2 ? GL_CCW : GL_CW);
}
else
glDisable(GL_CULL_FACE);
}
void Renderer::SetDepthMode()
{
if (bpmem.zmode.testenable)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(bpmem.zmode.updateenable ? GL_TRUE : GL_FALSE);
glDepthFunc(glCmpFuncs[bpmem.zmode.func]);
}
else
{
// if the test is disabled write is disabled too
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
}
}
void Renderer::SetLogicOpMode()
{
if (bpmem.blendmode.logicopenable && bpmem.blendmode.logicmode != 3)
{
glEnable(GL_COLOR_LOGIC_OP);
glLogicOp(glLogicOpCodes[bpmem.blendmode.logicmode]);
}
else
{
glDisable(GL_COLOR_LOGIC_OP);
}
}
void Renderer::SetDitherMode()
{
if (bpmem.blendmode.dither)
glEnable(GL_DITHER);
else
glDisable(GL_DITHER);
}
void Renderer::SetLineWidth()
{
float fratio = xfregs.viewport.wd != 0 ?
((float)Renderer::GetTargetWidth() / EFB_WIDTH) : 1.0f;
if (bpmem.lineptwidth.linesize > 0)
// scale by ratio of widths
glLineWidth((float)bpmem.lineptwidth.linesize * fratio / 6.0f);
if (bpmem.lineptwidth.pointsize > 0)
glPointSize((float)bpmem.lineptwidth.pointsize * fratio / 6.0f);
}
void Renderer::SetSamplerState(int stage, int texindex)
{
// TODO
}
void Renderer::SetInterlacingMode()
{
// TODO
}
void Renderer::FlipImageData(u8 *data, int w, int h)
{
// Flip image upside down. Damn OpenGL.
for (int y = 0; y < h / 2; y++)
{
for(int x = 0; x < w; x++)
{
std::swap(data[(y * w + x) * 3], data[((h - 1 - y) * w + x) * 3]);
std::swap(data[(y * w + x) * 3 + 1], data[((h - 1 - y) * w + x) * 3 + 1]);
std::swap(data[(y * w + x) * 3 + 2], data[((h - 1 - y) * w + x) * 3 + 2]);
}
}
}
}
// TODO: remove
extern bool g_aspect_wide;
#if defined(HAVE_WX) && HAVE_WX
void TakeScreenshot(ScrStrct* threadStruct)
{
// These will contain the final image size
float FloatW = (float)threadStruct->W;
float FloatH = (float)threadStruct->H;
// Handle aspect ratio for the final ScrStrct to look exactly like what's on screen.
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
{
bool use16_9 = g_aspect_wide;
// Check for force-settings and override.
if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_16_9)
use16_9 = true;
else if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_4_3)
use16_9 = false;
float Ratio = (FloatW / FloatH) / (!use16_9 ? (4.0f / 3.0f) : (16.0f / 9.0f));
// If ratio > 1 the picture is too wide and we have to limit the width.
if (Ratio > 1)
FloatW /= Ratio;
// ratio == 1 or the image is too high, we have to limit the height.
else
FloatH *= Ratio;
// This is a bit expensive on high resolutions
threadStruct->img->Rescale((int)FloatW, (int)FloatH, wxIMAGE_QUALITY_HIGH);
}
// Save the screenshot and finally kill the wxImage object
// This is really expensive when saving to PNG, but not at all when using BMP
threadStruct->img->SaveFile(wxString::FromAscii(threadStruct->filename.c_str()),
wxBITMAP_TYPE_PNG);
threadStruct->img->Destroy();
// Show success messages
OSD::AddMessage(StringFromFormat("Saved %i x %i %s", (int)FloatW, (int)FloatH,
threadStruct->filename.c_str()).c_str(), 2000);
delete threadStruct;
}
#endif
namespace OGL
{
bool Renderer::SaveScreenshot(const std::string &filename, const TargetRectangle &back_rc)
{
u32 W = back_rc.GetWidth();
u32 H = back_rc.GetHeight();
u8 *data = (u8 *)malloc((sizeof(u8) * 3 * W * H));
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(back_rc.left, back_rc.bottom, W, H, GL_RGB, GL_UNSIGNED_BYTE, data);
// Show failure message
if (GL_REPORT_ERROR() != GL_NO_ERROR)
{
free(data);
OSD::AddMessage("Error capturing or saving screenshot.", 2000);
return false;
}
// Turn image upside down
FlipImageData(data, W, H);
#if defined(HAVE_WX) && HAVE_WX
// Create wxImage
wxImage *a = new wxImage(W, H, data);
if (scrshotThread.joinable())
scrshotThread.join();
ScrStrct *threadStruct = new ScrStrct;
threadStruct->filename = filename;
threadStruct->img = a;
threadStruct->H = H; threadStruct->W = W;
scrshotThread = std::thread(TakeScreenshot, threadStruct);
#ifdef _WIN32
SetThreadPriority(scrshotThread.native_handle(), THREAD_PRIORITY_BELOW_NORMAL);
#endif
bool result = true;
OSD::AddMessage("Saving Screenshot... ", 2000);
#else
bool result = SaveTGA(filename.c_str(), W, H, data);
free(data);
#endif
return result;
}
}