dolphin/Source/Core/VideoCommon/TextureConversionShader.cpp

1220 lines
41 KiB
C++
Raw Normal View History

// Copyright 2009 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/TextureConversionShader.h"
#include <map>
#include <sstream>
#include <string_view>
#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"
#include "Common/MsgHandler.h"
#include "VideoCommon/ShaderGenCommon.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
namespace TextureConversionShaderTiled
{
u16 GetEncodedSampleCount(EFBCopyFormat format)
{
switch (format)
{
case EFBCopyFormat::R4:
return 8;
case EFBCopyFormat::RA4:
return 4;
case EFBCopyFormat::RA8:
return 2;
case EFBCopyFormat::RGB565:
return 2;
case EFBCopyFormat::RGB5A3:
return 2;
case EFBCopyFormat::RGBA8:
return 1;
case EFBCopyFormat::A8:
case EFBCopyFormat::R8_0x1:
case EFBCopyFormat::R8:
case EFBCopyFormat::G8:
case EFBCopyFormat::B8:
return 4;
case EFBCopyFormat::RG8:
case EFBCopyFormat::GB8:
return 2;
2017-05-29 17:02:09 -05:00
case EFBCopyFormat::XFB:
return 2;
default:
PanicAlertFmt("Invalid EFB Copy Format {}! (GetEncodedSampleCount)", format);
return 1;
}
}
static void WriteHeader(ShaderCode& code, APIType api_type)
{
// left, top, of source rectangle within source texture
// width of the destination rectangle, scale_factor (1 or 2)
code.Write("UBO_BINDING(std140, 1) uniform PSBlock {{\n"
" int4 position;\n"
" float y_scale;\n"
" float gamma_rcp;\n"
" float2 clamp_tb;\n"
" uint3 filter_coefficients;\n"
"}};\n");
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
code.Write("VARYING_LOCATION(0) in VertexData {{\n"
" float3 v_tex0;\n"
"}};\n");
}
else
{
code.Write("VARYING_LOCATION(0) in float3 v_tex0;\n");
}
code.Write("SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n"
"FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n");
// Alpha channel in the copy is set to 1 the EFB format does not have an alpha channel.
code.Write("float4 RGBA8ToRGB8(float4 src)\n"
"{{\n"
" return float4(src.xyz, 1.0);\n"
"}}\n"
"float4 RGBA8ToRGBA6(float4 src)\n"
"{{\n"
" int4 val = int4(roundEven(src * 255.0));\n"
" val = (val & 0xfc) | (val >> 6);\n"
" return float4(val) / 255.0;\n"
"}}\n"
"float4 RGBA8ToRGB565(float4 src)\n"
"{{\n"
" int4 val = int4(roundEven(src * 255.0));\n"
" val.r = (val.r & 0xf8) | (val.r >> 5);\n"
" val.g = (val.g & 0xfc) | (val.g >> 6);\n"
" val.b = (val.b & 0xf8) | (val.b >> 5);\n"
" val.a = 255;\n"
" return float4(val) / 255.0;\n"
"}}\n");
}
static void WriteSampleFunction(ShaderCode& code, const EFBCopyParams& params, APIType api_type)
{
code.Write("uint4 SampleEFB0(float2 uv, float2 pixel_size, float x_offset, float y_offset) {{\n"
" float4 tex_sample = texture(samp0, float3(uv.x + x_offset * pixel_size.x, ");
// Reverse the direction for OpenGL, since positive numbers are distance from the bottom row.
// TODO: This isn't done on TextureConverterShaderGen - maybe it handles that via pixel_size?
if (api_type == APIType::OpenGL)
code.Write("clamp(uv.y - y_offset * pixel_size.y, clamp_tb.x, clamp_tb.y)");
else
code.Write("clamp(uv.y + y_offset * pixel_size.y, clamp_tb.x, clamp_tb.y)");
code.Write(", 0.0));\n");
// TODO: Is this really needed? Doesn't the EFB only store appropriate values? Or is this for
// EFB2Ram having consistent output with force 32-bit color?
if (params.efb_format == PixelFormat::RGB8_Z24)
code.Write(" tex_sample = RGBA8ToRGB8(tex_sample);\n");
else if (params.efb_format == PixelFormat::RGBA6_Z24)
code.Write(" tex_sample = RGBA8ToRGBA6(tex_sample);\n");
else if (params.efb_format == PixelFormat::RGB565_Z16)
code.Write(" tex_sample = RGBA8ToRGB565(tex_sample);\n");
if (params.depth)
{
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
code.Write(" tex_sample.x = 1.0 - tex_sample.x;\n");
code.Write(" uint depth = uint(tex_sample.x * 16777216.0);\n"
" return uint4((depth >> 16) & 255u, (depth >> 8) & 255u, depth & 255u, 255u);\n"
"}}\n");
}
else
{
code.Write(" return uint4(tex_sample * 255.0);\n"
"}}\n");
}
// The copy filter applies to both color and depth copies. This has been verified on hardware.
// The filter is only applied to the RGB channels, the alpha channel is left intact.
code.Write("float4 SampleEFB(float2 uv, float2 pixel_size, int x_offset)\n"
"{{\n");
if (params.all_copy_filter_coefs_needed)
{
code.Write(" uint4 prev_row = SampleEFB0(uv, pixel_size, float(x_offset), -1.0f);\n"
" uint4 current_row = SampleEFB0(uv, pixel_size, float(x_offset), 0.0f);\n"
" uint4 next_row = SampleEFB0(uv, pixel_size, float(x_offset), 1.0f);\n"
" uint3 combined_rows = prev_row.rgb * filter_coefficients[0] +\n"
" current_row.rgb * filter_coefficients[1] +\n"
" next_row.rgb * filter_coefficients[2];\n");
}
else
{
code.Write(" uint4 current_row = SampleEFB0(uv, pixel_size, float(x_offset), 0.0f);\n"
" uint3 combined_rows = current_row.rgb * filter_coefficients[1];\n");
}
code.Write(" // Shift right by 6 to divide by 64, as filter coefficients\n"
" // that sum to 64 result in no change in brightness\n"
" uint4 texcol_raw = uint4(combined_rows.rgb >> 6, current_row.a);\n");
if (params.copy_filter_can_overflow)
code.Write(" texcol_raw &= 0x1ffu;\n");
// Note that overflow occurs when the sum of values is >= 128, but this max situation can be hit
// on >= 64, so we always include it.
code.Write(" texcol_raw = min(texcol_raw, uint4(255, 255, 255, 255));\n");
if (params.apply_gamma)
{
code.Write(" texcol_raw = uint4(round(pow(float4(texcol_raw) / 255.0,\n"
" float4(gamma_rcp, gamma_rcp, gamma_rcp, 1.0)) * 255.0));\n");
}
if (params.yuv)
{
code.Write(" // Intensity/YUV format conversion constants determined by hardware testing\n"
" const float4 y_const = float4( 66, 129, 25, 16);\n"
" const float4 u_const = float4(-38, -74, 112, 128);\n"
" const float4 v_const = float4(112, -94, -18, 128);\n"
" // Intensity/YUV format conversion\n"
" texcol_raw.rgb = uint3(dot(y_const, float4(texcol_raw.rgb, 256)),\n"
" dot(u_const, float4(texcol_raw.rgb, 256)),\n"
" dot(v_const, float4(texcol_raw.rgb, 256)));\n"
" // Divide by 256 and round .5 and higher up\n"
" texcol_raw.rgb = (texcol_raw.rgb >> 8) + ((texcol_raw.rgb >> 7) & 1u);\n");
}
code.Write(" return float4(texcol_raw) / 255.0;\n");
code.Write("}}\n");
}
// Block dimensions : widthStride, heightStride
// Texture dimensions : width, height, x offset, y offset
static void WriteSwizzler(ShaderCode& code, const EFBCopyParams& params, APIType api_type)
{
code.Write("void main()\n"
"{{\n"
" int2 sampleUv;\n"
" int2 uv1 = int2(gl_FragCoord.xy);\n");
const int blkW = TexDecoder_GetEFBCopyBlockWidthInTexels(params.copy_format);
const int blkH = TexDecoder_GetEFBCopyBlockHeightInTexels(params.copy_format);
int samples = GetEncodedSampleCount(params.copy_format);
code.Write(" int x_block_position = (uv1.x >> {}) << {};\n", IntLog2(blkH * blkW / samples),
IntLog2(blkW));
code.Write(" int y_block_position = uv1.y << {};\n", IntLog2(blkH));
if (samples == 1)
{
// With samples == 1, we write out pairs of blocks; one A8R8, one G8B8.
code.Write(" bool first = (uv1.x & {}) == 0;\n", blkH * blkW / 2);
samples = 2;
}
code.Write(" int offset_in_block = uv1.x & {};\n", (blkH * blkW / samples) - 1);
code.Write(" int y_offset_in_block = offset_in_block >> {};\n", IntLog2(blkW / samples));
code.Write(" int x_offset_in_block = (offset_in_block & {}) << {};\n", (blkW / samples) - 1,
IntLog2(samples));
code.Write(" sampleUv.x = x_block_position + x_offset_in_block;\n"
" sampleUv.y = y_block_position + y_offset_in_block;\n");
// sampleUv is the sample position in (int)gx_coords
code.Write(" float2 uv0 = float2(sampleUv);\n");
// Move to center of pixel
code.Write(" uv0 += float2(0.5, 0.5);\n");
// Scale by two if needed (also move to pixel borders
// so that linear filtering will average adjacent
// pixel)
code.Write(" uv0 *= float(position.w);\n");
// Move to copied rect
code.Write(" uv0 += float2(position.xy);\n");
// Normalize to [0:1]
code.Write(" uv0 /= float2({}, {});\n", EFB_WIDTH, EFB_HEIGHT);
// Apply the y scaling
code.Write(" uv0 /= float2(1, y_scale);\n");
// OGL has to flip up and down
if (api_type == APIType::OpenGL)
{
code.Write(" uv0.y = 1.0-uv0.y;\n");
}
code.Write(" float2 pixel_size = float2(position.w, position.w) / float2({}, {});\n", EFB_WIDTH,
EFB_HEIGHT);
}
static void WriteSampleColor(ShaderCode& code, std::string_view color_comp, std::string_view dest,
int x_offset, APIType api_type, const EFBCopyParams& params)
{
code.Write(" {} = SampleEFB(uv0, pixel_size, {}).{};\n", dest, x_offset, color_comp);
}
static void WriteToBitDepth(ShaderCode& code, u8 depth, std::string_view src, std::string_view dest)
{
code.Write(" {} = floor({} * 255.0 / exp2(8.0 - {}.0));\n", dest, src, depth);
}
static void WriteRGB565Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
code.Write(" float3 texSample0;\n"
" float3 texSample1;\n");
WriteSampleColor(code, "rgb", "texSample0", 0, api_type, params);
WriteSampleColor(code, "rgb", "texSample1", 1, api_type, params);
code.Write(" float2 texRs = float2(texSample0.r, texSample1.r);\n"
" float2 texGs = float2(texSample0.g, texSample1.g);\n"
" float2 texBs = float2(texSample0.b, texSample1.b);\n");
WriteToBitDepth(code, 6, "texGs", "float2 gInt");
code.Write(" float2 gUpper = floor(gInt / 8.0);\n"
" float2 gLower = gInt - gUpper * 8.0;\n");
WriteToBitDepth(code, 5, "texRs", "ocol0.br");
code.Write(" ocol0.br = ocol0.br * 8.0 + gUpper;\n");
WriteToBitDepth(code, 5, "texBs", "ocol0.ga");
code.Write(" ocol0.ga = ocol0.ga + gLower * 32.0;\n");
code.Write(" ocol0 = ocol0 / 255.0;\n");
}
static void WriteRGB5A3Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
code.Write(" float4 texSample;\n"
" float color0;\n"
" float gUpper;\n"
" float gLower;\n");
WriteSampleColor(code, "rgba", "texSample", 0, api_type, params);
// 0.8784 = 224 / 255 which is the maximum alpha value that can be represented in 3 bits
code.Write("if(texSample.a > 0.878f) {{\n");
WriteToBitDepth(code, 5, "texSample.g", "color0");
code.Write(" gUpper = floor(color0 / 8.0);\n"
" gLower = color0 - gUpper * 8.0;\n");
WriteToBitDepth(code, 5, "texSample.r", "ocol0.b");
code.Write(" ocol0.b = ocol0.b * 4.0 + gUpper + 128.0;\n");
WriteToBitDepth(code, 5, "texSample.b", "ocol0.g");
code.Write(" ocol0.g = ocol0.g + gLower * 32.0;\n");
code.Write("}} else {{\n");
WriteToBitDepth(code, 4, "texSample.r", "ocol0.b");
WriteToBitDepth(code, 4, "texSample.b", "ocol0.g");
WriteToBitDepth(code, 3, "texSample.a", "color0");
code.Write("ocol0.b = ocol0.b + color0 * 16.0;\n");
WriteToBitDepth(code, 4, "texSample.g", "color0");
code.Write("ocol0.g = ocol0.g + color0 * 16.0;\n");
code.Write("}}\n");
WriteSampleColor(code, "rgba", "texSample", 1, api_type, params);
code.Write("if(texSample.a > 0.878f) {{\n");
WriteToBitDepth(code, 5, "texSample.g", "color0");
code.Write(" gUpper = floor(color0 / 8.0);\n"
" gLower = color0 - gUpper * 8.0;\n");
WriteToBitDepth(code, 5, "texSample.r", "ocol0.r");
code.Write(" ocol0.r = ocol0.r * 4.0 + gUpper + 128.0;\n");
WriteToBitDepth(code, 5, "texSample.b", "ocol0.a");
code.Write(" ocol0.a = ocol0.a + gLower * 32.0;\n");
code.Write("}} else {{\n");
WriteToBitDepth(code, 4, "texSample.r", "ocol0.r");
WriteToBitDepth(code, 4, "texSample.b", "ocol0.a");
WriteToBitDepth(code, 3, "texSample.a", "color0");
code.Write("ocol0.r = ocol0.r + color0 * 16.0;\n");
WriteToBitDepth(code, 4, "texSample.g", "color0");
code.Write("ocol0.a = ocol0.a + color0 * 16.0;\n");
code.Write("}}\n");
code.Write(" ocol0 = ocol0 / 255.0;\n");
}
static void WriteRGBA8Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
code.Write(" float4 texSample;\n"
" float4 color0;\n"
" float4 color1;\n");
WriteSampleColor(code, "rgba", "texSample", 0, api_type, params);
code.Write(" color0.b = texSample.a;\n"
" color0.g = texSample.r;\n"
" color1.b = texSample.g;\n"
" color1.g = texSample.b;\n");
WriteSampleColor(code, "rgba", "texSample", 1, api_type, params);
code.Write(" color0.r = texSample.a;\n"
" color0.a = texSample.r;\n"
" color1.r = texSample.g;\n"
" color1.a = texSample.b;\n");
code.Write(" ocol0 = first ? color0 : color1;\n");
}
static void WriteC4Encoder(ShaderCode& code, std::string_view comp, APIType api_type,
const EFBCopyParams& params)
{
code.Write(" float4 color0;\n"
" float4 color1;\n");
WriteSampleColor(code, comp, "color0.b", 0, api_type, params);
WriteSampleColor(code, comp, "color1.b", 1, api_type, params);
WriteSampleColor(code, comp, "color0.g", 2, api_type, params);
WriteSampleColor(code, comp, "color1.g", 3, api_type, params);
WriteSampleColor(code, comp, "color0.r", 4, api_type, params);
WriteSampleColor(code, comp, "color1.r", 5, api_type, params);
WriteSampleColor(code, comp, "color0.a", 6, api_type, params);
WriteSampleColor(code, comp, "color1.a", 7, api_type, params);
WriteToBitDepth(code, 4, "color0", "color0");
WriteToBitDepth(code, 4, "color1", "color1");
code.Write(" ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
}
static void WriteC8Encoder(ShaderCode& code, std::string_view comp, APIType api_type,
const EFBCopyParams& params)
{
WriteSampleColor(code, comp, "ocol0.b", 0, api_type, params);
WriteSampleColor(code, comp, "ocol0.g", 1, api_type, params);
WriteSampleColor(code, comp, "ocol0.r", 2, api_type, params);
WriteSampleColor(code, comp, "ocol0.a", 3, api_type, params);
}
static void WriteCC4Encoder(ShaderCode& code, std::string_view comp, APIType api_type,
const EFBCopyParams& params)
{
code.Write(" float2 texSample;\n"
" float4 color0;\n"
" float4 color1;\n");
WriteSampleColor(code, comp, "texSample", 0, api_type, params);
code.Write(" color0.b = texSample.x;\n"
" color1.b = texSample.y;\n");
WriteSampleColor(code, comp, "texSample", 1, api_type, params);
code.Write(" color0.g = texSample.x;\n"
" color1.g = texSample.y;\n");
WriteSampleColor(code, comp, "texSample", 2, api_type, params);
code.Write(" color0.r = texSample.x;\n"
" color1.r = texSample.y;\n");
WriteSampleColor(code, comp, "texSample", 3, api_type, params);
code.Write(" color0.a = texSample.x;\n"
" color1.a = texSample.y;\n");
WriteToBitDepth(code, 4, "color0", "color0");
WriteToBitDepth(code, 4, "color1", "color1");
code.Write(" ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
}
static void WriteCC8Encoder(ShaderCode& code, std::string_view comp, APIType api_type,
const EFBCopyParams& params)
{
WriteSampleColor(code, comp, "ocol0.bg", 0, api_type, params);
WriteSampleColor(code, comp, "ocol0.ra", 1, api_type, params);
}
static void WriteXFBEncoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
2017-05-29 17:02:09 -05:00
{
code.Write("float4 color0 = float4(0, 0, 0, 1), color1 = float4(0, 0, 0, 1);\n");
WriteSampleColor(code, "rgb", "color0.rgb", 0, api_type, params);
WriteSampleColor(code, "rgb", "color1.rgb", 1, api_type, params);
// Convert to YUV.
code.Write(" // Intensity/YUV format conversion constants determined by hardware testing\n"
" const float4 y_const = float4( 66, 129, 25, 16);\n"
" const float4 u_const = float4(-38, -74, 112, 128);\n"
" const float4 v_const = float4(112, -94, -18, 128);\n"
" float4 average = (color0 + color1) * 0.5;\n"
" // TODO: check rounding\n"
" ocol0.b = round(dot(color0, y_const)) / 256.0;\n"
" ocol0.g = round(dot(average, u_const)) / 256.0;\n"
" ocol0.r = round(dot(color1, y_const)) / 256.0;\n"
" ocol0.a = round(dot(average, v_const)) / 256.0;\n");
2017-05-29 17:02:09 -05:00
}
std::string GenerateEncodingShader(const EFBCopyParams& params, APIType api_type)
{
ShaderCode code;
WriteHeader(code, api_type);
WriteSampleFunction(code, params, api_type);
WriteSwizzler(code, params, api_type);
switch (params.copy_format)
{
case EFBCopyFormat::R4:
WriteC4Encoder(code, "r", api_type, params);
break;
case EFBCopyFormat::RA4:
WriteCC4Encoder(code, "ar", api_type, params);
break;
case EFBCopyFormat::RA8:
WriteCC8Encoder(code, "ar", api_type, params);
break;
case EFBCopyFormat::RGB565:
WriteRGB565Encoder(code, api_type, params);
break;
case EFBCopyFormat::RGB5A3:
WriteRGB5A3Encoder(code, api_type, params);
break;
case EFBCopyFormat::RGBA8:
WriteRGBA8Encoder(code, api_type, params);
break;
case EFBCopyFormat::A8:
WriteC8Encoder(code, "a", api_type, params);
break;
case EFBCopyFormat::R8_0x1:
case EFBCopyFormat::R8:
WriteC8Encoder(code, "r", api_type, params);
break;
case EFBCopyFormat::G8:
WriteC8Encoder(code, "g", api_type, params);
break;
case EFBCopyFormat::B8:
WriteC8Encoder(code, "b", api_type, params);
break;
case EFBCopyFormat::RG8:
WriteCC8Encoder(code, "gr", api_type, params);
break;
case EFBCopyFormat::GB8:
WriteCC8Encoder(code, "bg", api_type, params);
break;
2017-05-29 17:02:09 -05:00
case EFBCopyFormat::XFB:
WriteXFBEncoder(code, api_type, params);
2017-05-29 17:02:09 -05:00
break;
default:
PanicAlertFmt("Invalid EFB Copy Format {}! (GenerateEncodingShader)", params.copy_format);
break;
}
code.Write("}}\n");
return code.GetBuffer();
}
// NOTE: In these uniforms, a row refers to a row of blocks, not texels.
static const char decoding_shader_header[] = R"(
#if defined(PALETTE_FORMAT_IA8) || defined(PALETTE_FORMAT_RGB565) || defined(PALETTE_FORMAT_RGB5A3)
#define HAS_PALETTE 1
#endif
UBO_BINDING(std140, 1) uniform UBO {
uint2 u_dst_size;
uint2 u_src_size;
uint u_src_offset;
uint u_src_row_stride;
uint u_palette_offset;
};
2022-06-01 04:58:13 -05:00
#if defined(API_METAL)
#if defined(TEXEL_BUFFER_FORMAT_R8)
SSBO_BINDING(0) readonly buffer Input { uint8_t s_input_buffer[]; };
#define FETCH(offset) uint(s_input_buffer[offset])
#elif defined(TEXEL_BUFFER_FORMAT_R16)
SSBO_BINDING(0) readonly buffer Input { uint16_t s_input_buffer[]; };
#define FETCH(offset) uint(s_input_buffer[offset])
#elif defined(TEXEL_BUFFER_FORMAT_RGBA8)
SSBO_BINDING(0) readonly buffer Input { u8vec4 s_input_buffer[]; };
#define FETCH(offset) uvec4(s_input_buffer[offset])
#elif defined(TEXEL_BUFFER_FORMAT_R32G32)
SSBO_BINDING(0) readonly buffer Input { uvec2 s_input_buffer[]; };
#define FETCH(offset) s_input_buffer[offset]
#else
#error No texel buffer?
#endif
#ifdef HAS_PALETTE
SSBO_BINDING(1) readonly buffer Palette { uint16_t s_palette_buffer[]; };
#define FETCH_PALETTE(offset) uint(s_palette_buffer[offset])
#endif
#else
TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer s_input_buffer;
2022-06-01 04:58:13 -05:00
#if defined(TEXEL_BUFFER_FORMAT_R8) || defined(TEXEL_BUFFER_FORMAT_R16)
#define FETCH(offset) texelFetch(s_input_buffer, int((offset) + u_src_offset)).r
#elif defined(TEXEL_BUFFER_FORMAT_RGBA8)
#define FETCH(offset) texelFetch(s_input_buffer, int((offset) + u_src_offset))
#elif defined(TEXEL_BUFFER_FORMAT_R32G32)
#define FETCH(offset) texelFetch(s_input_buffer, int((offset) + u_src_offset)).rg
#else
#error No texel buffer?
#endif
#ifdef HAS_PALETTE
2022-06-01 04:58:13 -05:00
TEXEL_BUFFER_BINDING(1) uniform usamplerBuffer s_palette_buffer;
#define FETCH_PALETTE(offset) texelFetch(s_palette_buffer, int((offset) + u_palette_offset)).r
#endif
2022-06-01 04:58:13 -05:00
#endif // defined(API_METAL)
IMAGE_BINDING(rgba8, 0) uniform writeonly image2DArray output_image;
#define GROUP_MEMORY_BARRIER_WITH_SYNC memoryBarrierShared(); barrier();
#define GROUP_SHARED shared
#define DEFINE_MAIN(lx, ly) \
layout(local_size_x = lx, local_size_y = ly) in; \
void main()
uint Swap16(uint v)
{
// Convert BE to LE.
return ((v >> 8) | (v << 8)) & 0xFFFFu;
}
uint Convert3To8(uint v)
{
// Swizzle bits: 00000123 -> 12312312
return (v << 5) | (v << 2) | (v >> 1);
}
uint Convert4To8(uint v)
{
// Swizzle bits: 00001234 -> 12341234
return (v << 4) | v;
}
uint Convert5To8(uint v)
{
// Swizzle bits: 00012345 -> 12345123
return (v << 3) | (v >> 2);
}
uint Convert6To8(uint v)
{
// Swizzle bits: 00123456 -> 12345612
return (v << 2) | (v >> 4);
}
uint GetTiledTexelOffset(uint2 block_size, uint2 coords)
{
uint2 block = coords / block_size;
uint2 offset = coords % block_size;
2022-06-01 04:58:13 -05:00
uint buffer_pos = 0;
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * (block_size.x * block_size.y);
buffer_pos += offset.y * block_size.x;
buffer_pos += offset.x;
return buffer_pos;
}
#if defined(HAS_PALETTE)
uint4 GetPaletteColor(uint index)
{
// Fetch and swap BE to LE.
2022-06-01 04:58:13 -05:00
uint val = Swap16(FETCH_PALETTE(index));
uint4 color;
#if defined(PALETTE_FORMAT_IA8)
uint a = bitfieldExtract(val, 8, 8);
uint i = bitfieldExtract(val, 0, 8);
color = uint4(i, i, i, a);
#elif defined(PALETTE_FORMAT_RGB565)
color.x = Convert5To8(bitfieldExtract(val, 11, 5));
color.y = Convert6To8(bitfieldExtract(val, 5, 6));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
#elif defined(PALETTE_FORMAT_RGB5A3)
if ((val & 0x8000u) != 0u)
{
color.x = Convert5To8(bitfieldExtract(val, 10, 5));
color.y = Convert5To8(bitfieldExtract(val, 5, 5));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
}
else
{
color.a = Convert3To8(bitfieldExtract(val, 12, 3));
color.r = Convert4To8(bitfieldExtract(val, 8, 4));
color.g = Convert4To8(bitfieldExtract(val, 4, 4));
color.b = Convert4To8(bitfieldExtract(val, 0, 4));
}
#else
// Not used.
color = uint4(0, 0, 0, 0);
#endif
return color;
}
float4 GetPaletteColorNormalized(uint index)
{
uint4 color = GetPaletteColor(index);
return float4(color) / 255.0;
}
#endif // defined(HAS_PALETTE)
)";
static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
{TextureFormat::I4,
{TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x8 blocks, 4 bits per pixel
// We need to do the tiling manually here because the texel size is smaller than
// the size of the buffer elements.
uint2 block = coords.xy / 8u;
uint2 offset = coords.xy % 8u;
2022-06-01 04:58:13 -05:00
uint buffer_pos = 0;
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * 32u;
buffer_pos += offset.y * 4u;
buffer_pos += offset.x / 2u;
// Select high nibble for odd texels, low for even.
2022-06-01 04:58:13 -05:00
uint val = FETCH(buffer_pos);
uint i;
if ((coords.x & 1u) == 0u)
i = Convert4To8((val >> 4));
else
i = Convert4To8((val & 0x0Fu));
uint4 color = uint4(i, i, i, i);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::IA4,
{TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords);
2022-06-01 04:58:13 -05:00
uint val = FETCH(buffer_pos);
uint i = Convert4To8((val & 0x0Fu));
uint a = Convert4To8((val >> 4));
uint4 color = uint4(i, i, i, a);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::I8,
{TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords);
2022-06-01 04:58:13 -05:00
uint i = FETCH(buffer_pos);
uint4 color = uint4(i, i, i, i);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::IA8,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks, 16 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
2022-06-01 04:58:13 -05:00
uint val = FETCH(buffer_pos);
uint a = (val & 0xFFu);
uint i = (val >> 8);
uint4 color = uint4(i, i, i, a);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGB565,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
2022-06-01 04:58:13 -05:00
uint val = Swap16(FETCH(buffer_pos));
uint4 color;
color.x = Convert5To8(bitfieldExtract(val, 11, 5));
color.y = Convert6To8(bitfieldExtract(val, 5, 6));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGB5A3,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
2022-06-01 04:58:13 -05:00
uint val = Swap16(FETCH(buffer_pos));
uint4 color;
if ((val & 0x8000u) != 0u)
{
color.x = Convert5To8(bitfieldExtract(val, 10, 5));
color.y = Convert5To8(bitfieldExtract(val, 5, 5));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
}
else
{
color.a = Convert3To8(bitfieldExtract(val, 12, 3));
color.r = Convert4To8(bitfieldExtract(val, 8, 4));
color.g = Convert4To8(bitfieldExtract(val, 4, 4));
color.b = Convert4To8(bitfieldExtract(val, 0, 4));
}
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGBA8,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
// We can't use the normal calculation function, as these are packed as the AR channels
// for the entire block, then the GB channels afterwards.
uint2 block = coords.xy / 4u;
uint2 offset = coords.xy % 4u;
2022-06-01 04:58:13 -05:00
uint buffer_pos = 0;
// Our buffer has 16-bit elements, so the offsets here are half what they would be in bytes.
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * 32u;
buffer_pos += offset.y * 4u;
buffer_pos += offset.x;
// The two GB channels follow after the block's AR channels.
2022-06-01 04:58:13 -05:00
uint val1 = FETCH(buffer_pos + 0u);
uint val2 = FETCH(buffer_pos + 16u);
uint4 color;
color.a = (val1 & 0xFFu);
color.r = (val1 >> 8);
color.g = (val2 & 0xFFu);
color.b = (val2 >> 8);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::CMPR,
{TEXEL_BUFFER_FORMAT_R32G32_UINT, 0, 64, 1, true,
R"(
// In the compute version of this decoder, we flatten the blocks to a one-dimension array.
// Each group is subdivided into 16, and the first thread in each group fetches the DXT data.
// All threads then calculate the possible colors for the block and write to the output image.
#define GROUP_SIZE 64u
#define BLOCK_SIZE_X 4u
#define BLOCK_SIZE_Y 4u
#define BLOCK_SIZE (BLOCK_SIZE_X * BLOCK_SIZE_Y)
#define BLOCKS_PER_GROUP (GROUP_SIZE / BLOCK_SIZE)
uint DXTBlend(uint v1, uint v2)
{
// 3/8 blend, which is close to 1/3
return ((v1 * 3u + v2 * 5u) >> 3);
}
GROUP_SHARED uint2 shared_temp[BLOCKS_PER_GROUP];
DEFINE_MAIN(GROUP_SIZE, 1)
{
uint local_thread_id = gl_LocalInvocationID.x;
uint block_in_group = local_thread_id / BLOCK_SIZE;
uint thread_in_block = local_thread_id % BLOCK_SIZE;
uint block_index = gl_WorkGroupID.x * BLOCKS_PER_GROUP + block_in_group;
// Annoyingly, we can't precalculate this as a uniform because the DXT block size differs
// from the block size of the overall texture (4 vs 8). We can however use a multiply and
// subtraction to avoid the modulo for calculating the block's X coordinate.
uint blocks_wide = u_src_size.x / BLOCK_SIZE_X;
uint2 block_coords;
block_coords.y = block_index / blocks_wide;
block_coords.x = block_index - (block_coords.y * blocks_wide);
// Only the first thread for each block reads from the texel buffer.
if (thread_in_block == 0u)
{
// Calculate tiled block coordinates.
uint2 tile_block_coords = block_coords / 2u;
uint2 subtile_block_coords = block_coords % 2u;
2022-06-01 04:58:13 -05:00
uint buffer_pos = 0;
buffer_pos += tile_block_coords.y * u_src_row_stride;
buffer_pos += tile_block_coords.x * 4u;
buffer_pos += subtile_block_coords.y * 2u;
buffer_pos += subtile_block_coords.x;
// Read the entire DXT block to shared memory.
2022-06-01 04:58:13 -05:00
uint2 raw_data = FETCH(buffer_pos);
shared_temp[block_in_group] = raw_data;
}
// Ensure store is completed before the remaining threads in the block continue.
GROUP_MEMORY_BARRIER_WITH_SYNC;
// Unpack colors and swap BE to LE.
uint2 raw_data = shared_temp[block_in_group];
uint swapped = ((raw_data.x & 0xFF00FF00u) >> 8) | ((raw_data.x & 0x00FF00FFu) << 8);
uint c1 = swapped & 0xFFFFu;
uint c2 = swapped >> 16;
// Expand 5/6 bit channels to 8-bits per channel.
uint blue1 = Convert5To8(bitfieldExtract(c1, 0, 5));
uint blue2 = Convert5To8(bitfieldExtract(c2, 0, 5));
uint green1 = Convert6To8(bitfieldExtract(c1, 5, 6));
uint green2 = Convert6To8(bitfieldExtract(c2, 5, 6));
uint red1 = Convert5To8(bitfieldExtract(c1, 11, 5));
uint red2 = Convert5To8(bitfieldExtract(c2, 11, 5));
// Determine the four colors the block can use.
// It's quicker to just precalculate all four colors rather than branching on the index.
// NOTE: These must be masked with 0xFF. This is done at the normalization stage below.
uint4 color0, color1, color2, color3;
color0 = uint4(red1, green1, blue1, 255u);
color1 = uint4(red2, green2, blue2, 255u);
if (c1 > c2)
{
color2 = uint4(DXTBlend(red2, red1), DXTBlend(green2, green1), DXTBlend(blue2, blue1), 255u);
color3 = uint4(DXTBlend(red1, red2), DXTBlend(green1, green2), DXTBlend(blue1, blue2), 255u);
}
else
{
color2 = uint4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 255u);
color3 = uint4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 0u);
}
// Calculate the texel coordinates that we will write to.
// The divides/modulo here should be turned into a shift/binary AND.
uint local_y = thread_in_block / BLOCK_SIZE_X;
uint local_x = thread_in_block % BLOCK_SIZE_X;
uint global_x = block_coords.x * BLOCK_SIZE_X + local_x;
uint global_y = block_coords.y * BLOCK_SIZE_Y + local_y;
// Use the coordinates within the block to shift the 32-bit value containing
// all 16 indices to a single 2-bit index.
uint index = bitfieldExtract(raw_data.y, int((local_y * 8u) + (6u - local_x * 2u)), 2);
// Select the un-normalized color from the precalculated color array.
// Using a switch statement here removes the need for dynamic indexing of an array.
uint4 color;
switch (index)
{
case 0u: color = color0; break;
case 1u: color = color1; break;
case 2u: color = color2; break;
case 3u: color = color3; break;
default: color = color0; break;
}
// Normalize and write to the output image.
float4 norm_color = float4(color & 0xFFu) / 255.0;
imageStore(output_image, int3(int2(uint2(global_x, global_y)), 0), norm_color);
}
)"}},
{TextureFormat::C4,
{TEXEL_BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C4)),
8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x8 blocks, 4 bits per pixel
// We need to do the tiling manually here because the texel size is smaller than
// the size of the buffer elements.
uint2 block = coords.xy / 8u;
uint2 offset = coords.xy % 8u;
2022-06-01 04:58:13 -05:00
uint buffer_pos = 0;
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * 32u;
buffer_pos += offset.y * 4u;
buffer_pos += offset.x / 2u;
// Select high nibble for odd texels, low for even.
2022-06-01 04:58:13 -05:00
uint val = FETCH(buffer_pos);
uint index = ((coords.x & 1u) == 0u) ? (val >> 4) : (val & 0x0Fu);
float4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::C8,
{TEXEL_BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C8)),
8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords);
2022-06-01 04:58:13 -05:00
uint index = FETCH(buffer_pos);
float4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::C14X2,
{TEXEL_BUFFER_FORMAT_R16_UINT,
static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C14X2)), 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks, 16 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
2022-06-01 04:58:13 -05:00
uint index = Swap16(FETCH(buffer_pos)) & 0x3FFFu;
float4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
2017-09-02 21:30:34 -05:00
// We do the inverse BT.601 conversion for YCbCr to RGB
// http://www.equasys.de/colorconversion.html#YCbCr-RGBColorFormatConversion
// TODO: Use more precise numbers for this conversion (although on real hardware, the XFB isn't
// in a real texture format, so does this conversion actually ever happen?)
2017-09-02 21:30:34 -05:00
{TextureFormat::XFB,
{TEXEL_BUFFER_FORMAT_RGBA8_UINT, 0, 8, 8, false,
2017-09-02 21:30:34 -05:00
R"(
DEFINE_MAIN(8, 8)
{
uint2 uv = gl_GlobalInvocationID.xy;
2022-06-01 04:58:13 -05:00
uint buffer_pos = (uv.y * u_src_row_stride) + (uv.x / 2u);
float4 yuyv = float4(FETCH(buffer_pos));
float y = (uv.x & 1u) != 0u ? yuyv.b : yuyv.r;
float yComp = 1.164 * (y - 16.0);
float uComp = yuyv.g - 128.0;
float vComp = yuyv.a - 128.0;
float4 rgb = float4(yComp + (1.596 * vComp),
yComp - (0.813 * vComp) - (0.391 * uComp),
yComp + (2.018 * uComp),
255.0);
float4 rgba_norm = rgb / 255.0;
imageStore(output_image, int3(int2(uv), 0), rgba_norm);
}
)"}}};
const DecodingShaderInfo* GetDecodingShaderInfo(TextureFormat format)
{
auto iter = s_decoding_shader_info.find(format);
return iter != s_decoding_shader_info.end() ? &iter->second : nullptr;
}
std::pair<u32, u32> GetDispatchCount(const DecodingShaderInfo* info, u32 width, u32 height)
{
// Flatten to a single dimension?
if (info->group_flatten)
return {(width * height + (info->group_size_x - 1)) / info->group_size_x, 1};
return {(width + (info->group_size_x - 1)) / info->group_size_x,
(height + (info->group_size_y - 1)) / info->group_size_y};
}
std::string GenerateDecodingShader(TextureFormat format, std::optional<TLUTFormat> palette_format,
APIType api_type)
{
const DecodingShaderInfo* info = GetDecodingShaderInfo(format);
if (!info)
return "";
std::ostringstream ss;
if (palette_format.has_value())
{
switch (*palette_format)
{
case TLUTFormat::IA8:
ss << "#define PALETTE_FORMAT_IA8 1\n";
break;
case TLUTFormat::RGB565:
ss << "#define PALETTE_FORMAT_RGB565 1\n";
break;
case TLUTFormat::RGB5A3:
ss << "#define PALETTE_FORMAT_RGB5A3 1\n";
break;
}
}
2022-06-01 04:58:13 -05:00
switch (info->buffer_format)
{
case TEXEL_BUFFER_FORMAT_R8_UINT:
ss << "#define TEXEL_BUFFER_FORMAT_R8 1\n";
break;
case TEXEL_BUFFER_FORMAT_R16_UINT:
ss << "#define TEXEL_BUFFER_FORMAT_R16 1\n";
break;
case TEXEL_BUFFER_FORMAT_RGBA8_UINT:
ss << "#define TEXEL_BUFFER_FORMAT_RGBA8 1\n";
break;
case TEXEL_BUFFER_FORMAT_R32G32_UINT:
ss << "#define TEXEL_BUFFER_FORMAT_R32G32 1\n";
break;
case NUM_TEXEL_BUFFER_FORMATS:
ASSERT(0);
break;
}
ss << decoding_shader_header;
ss << info->shader_body;
return ss.str();
}
std::string GeneratePaletteConversionShader(TLUTFormat palette_format, APIType api_type)
{
std::ostringstream ss;
ss << R"(
int Convert3To8(int v)
{
// Swizzle bits: 00000123 -> 12312312
return (v << 5) | (v << 2) | (v >> 1);
}
int Convert4To8(int v)
{
// Swizzle bits: 00001234 -> 12341234
return (v << 4) | v;
}
int Convert5To8(int v)
{
// Swizzle bits: 00012345 -> 12345123
return (v << 3) | (v >> 2);
}
int Convert6To8(int v)
{
// Swizzle bits: 00123456 -> 12345612
return (v << 2) | (v >> 4);
})";
switch (palette_format)
{
case TLUTFormat::IA8:
ss << R"(
float4 DecodePixel(int val)
{
int i = val & 0xFF;
int a = val >> 8;
return float4(i, i, i, a) / 255.0;
})";
break;
case TLUTFormat::RGB565:
ss << R"(
float4 DecodePixel(int val)
{
int r, g, b, a;
r = Convert5To8((val >> 11) & 0x1f);
g = Convert6To8((val >> 5) & 0x3f);
b = Convert5To8((val) & 0x1f);
a = 0xFF;
return float4(r, g, b, a) / 255.0;
})";
break;
case TLUTFormat::RGB5A3:
ss << R"(
float4 DecodePixel(int val)
{
int r,g,b,a;
if ((val&0x8000) > 0)
{
r=Convert5To8((val>>10) & 0x1f);
g=Convert5To8((val>>5 ) & 0x1f);
b=Convert5To8((val ) & 0x1f);
a=0xFF;
}
else
{
a=Convert3To8((val>>12) & 0x7);
r=Convert4To8((val>>8 ) & 0xf);
g=Convert4To8((val>>4 ) & 0xf);
b=Convert4To8((val ) & 0xf);
}
return float4(r, g, b, a) / 255.0;
})";
break;
default:
PanicAlertFmt("Unknown format");
break;
}
ss << "\n";
2022-06-01 04:58:13 -05:00
if (api_type == APIType::Metal)
ss << "SSBO_BINDING(0) readonly buffer Palette { uint16_t palette[]; };\n";
else
ss << "TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer samp0;\n";
ss << "SAMPLER_BINDING(1) uniform sampler2DArray samp1;\n";
ss << "UBO_BINDING(std140, 1) uniform PSBlock {\n";
ss << " float multiplier;\n";
ss << " int texel_buffer_offset;\n";
ss << "};\n";
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
ss << "VARYING_LOCATION(0) in VertexData {\n";
ss << " float3 v_tex0;\n";
ss << "};\n";
}
else
{
ss << "VARYING_LOCATION(0) in float3 v_tex0;\n";
}
ss << "FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n";
ss << "void main() {\n";
ss << " float3 coords = v_tex0;\n";
ss << " int src = int(round(texture(samp1, coords).r * multiplier));\n";
2022-06-01 04:58:13 -05:00
if (api_type == APIType::Metal)
ss << " src = int(palette[uint(src)]);\n";
else
ss << " src = int(texelFetch(samp0, src + texel_buffer_offset).r);\n";
2022-06-01 04:58:13 -05:00
ss << " src = ((src << 8) | (src >> 8)) & 0xFFFF;\n";
ss << " ocol0 = DecodePixel(src);\n";
ss << "}\n";
return ss.str();
}
} // namespace TextureConversionShaderTiled