356 lines
10 KiB
C++
Raw Normal View History

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include <vector>
#include <string>
#include "../../../Core/InputCommon/Src/SDL.h" // Core
#include "../../../Core/InputCommon/Src/XInput.h"
#include "Common.h" // Common
#include "MathUtil.h"
#include "StringUtil.h" // for ArrayToString()
#include "IniFile.h"
#include "pluginspecs_wiimote.h"
#include "EmuDefinitions.h" // Local
#include "main.h"
#include "wiimote_hid.h"
#include "EmuSubroutines.h"
#include "EmuMain.h"
#include "Encryption.h" // for extension encryption
#include "Config.h" // for g_Config
namespace WiiMoteEmu
{
//******************************************************************************
// Accelerometer functions
//******************************************************************************
// Test the calculations
void TiltTest(u8 x, u8 y, u8 z)
{
int Roll, Pitch, RollAdj, PitchAdj;
PitchAccelerometerToDegree(x, y, z, Roll, Pitch, RollAdj, PitchAdj);
std::string From = StringFromFormat("From: X:%i Y:%i Z:%i Roll:%s Pitch:%s", x, y, z,
(Roll >= 0) ? StringFromFormat(" %03i", Roll).c_str() : StringFromFormat("%04i", Roll).c_str(),
(Pitch >= 0) ? StringFromFormat(" %03i", Pitch).c_str() : StringFromFormat("%04i", Pitch).c_str());
float _Roll = (float)Roll, _Pitch = (float)Pitch;
PitchDegreeToAccelerometer(_Roll, _Pitch, x, y, z);
std::string To = StringFromFormat("%s\nTo: X:%i Y:%i Z:%i Roll:%s Pitch:%s", From.c_str(), x, y, z,
(_Roll >= 0) ? StringFromFormat(" %03i", (int)_Roll).c_str() : StringFromFormat("%04i", (int)_Roll).c_str(),
(_Pitch >= 0) ? StringFromFormat(" %03i", (int)_Pitch).c_str() : StringFromFormat("%04i", (int)_Pitch).c_str());
INFO_LOG(CONSOLE, "%s\n", To.c_str());
}
/* Angles adjustment for the upside down state when both roll and pitch is
used. When the absolute values of the angles go over 90<EFBFBD> the Wiimote is
upside down and these adjustments are needed. */
void AdjustAngles(float &Roll, float &Pitch)
{
float OldPitch = Pitch;
if (abs(Roll) > 90)
{
if (Pitch >= 0)
Pitch = 180 - Pitch; // 15 to 165
else if (Pitch < 0)
Pitch = -180 - Pitch; // -15 to -165
}
if (abs(OldPitch) > 90)
{
if (Roll >= 0)
Roll = 180 - Roll; // 15 to 165
else if (Roll < 0)
Roll = -180 - Roll; // -15 to -165
}
}
// Angles to accelerometer values
void PitchDegreeToAccelerometer(float _Roll, float _Pitch, u8 &_x, u8 &_y, u8 &_z)
{
// We need radiands for the math functions
_Roll = InputCommon::Deg2Rad(_Roll);
_Pitch = InputCommon::Deg2Rad(_Pitch);
// We need decimal values
float x = (float)_x, y = (float)_y, z = (float)_z;
// In these cases we can use the simple and accurate formula
if(g_Config.Trigger.Range.Pitch == 0)
{
x = sin(_Roll);
z = cos(_Roll);
}
else if (g_Config.Trigger.Range.Roll == 0)
{
y = sin(_Pitch);
z = cos(_Pitch);
}
else
{
// ====================================================
/* This seems to always produce the exact same combination of x, y, z
and Roll and Pitch that the real Wiimote produce. There is an
unlimited amount of x, y, z combinations for any combination of Roll
and Pitch. But if we select a Z from the smallest of the absolute
value of cos(Roll) and cos (Pitch) we get the right values. */
// ---------
if (abs(cos(_Roll)) < abs(cos(_Pitch))) z = cos(_Roll); else z = cos(_Pitch);
/* I got these from reversing the calculation in
PitchAccelerometerToDegree() in a math program I don't know if we
can derive these from some kind of matrix or something */
float x_num = 2 * tanf(0.5f * _Roll) * z;
float x_den = pow2f(tanf(0.5f * _Roll)) - 1;
x = - (x_num / x_den);
float y_num = 2 * tanf(0.5f * _Pitch) * z;
float y_den = pow2f(tanf(0.5f * _Pitch)) - 1;
y = - (y_num / y_den);
}
// Multiply with the neutral of z and its g
float xg = g_wm.cal_g.x;
float yg = g_wm.cal_g.y;
float zg = g_wm.cal_g.z;
float x_zero = g_wm.cal_zero.x;
float y_zero = g_wm.cal_zero.y;
float z_zero = g_wm.cal_zero.z;
int ix = (int) (x_zero + xg * x);
int iy = (int) (y_zero + yg * y);
int iz = (int) (z_zero + zg * z);
// Boundaries
if (ix < 0) ix = 0; if (ix > 255) ix = 255;
if (iy < 0) iy = 0; if (iy > 255) iy = 255;
if (iz < 0) iz = 0; if (iz > 255) iz = 255;
if(g_Config.Trigger.Range.Roll != 0) _x = ix;
if(g_Config.Trigger.Range.Pitch != 0) _y = iy;
_z = iz;
}
// Accelerometer to roll and pitch angles
float AccelerometerToG(float Current, float Neutral, float G)
{
float _G = (Current - Neutral) / G;
return _G;
}
void PitchAccelerometerToDegree(u8 _x, u8 _y, u8 _z, int &_Roll, int &_Pitch, int &_RollAdj, int &_PitchAdj)
{
// Definitions
float Roll = 0, Pitch = 0;
// Calculate how many g we are from the neutral
float x = AccelerometerToG((float)_x, (float)g_wm.cal_zero.x, (float)g_wm.cal_g.x);
float y = AccelerometerToG((float)_y, (float)g_wm.cal_zero.y, (float)g_wm.cal_g.y);
float z = AccelerometerToG((float)_z, (float)g_wm.cal_zero.z, (float)g_wm.cal_g.z);
// If it is over 1g then it is probably accelerating and may not reliable
//if (abs(accel->x - ac->cal_zero.x) <= ac->cal_g.x)
{
// Calculate the degree
Roll = InputCommon::Rad2Deg(atan2(x, z));
}
//if (abs(_y - g_wm.cal_zero.y) <= g_wm.cal_g.y)
{
// Calculate the degree
Pitch = InputCommon::Rad2Deg(atan2(y, z));
}
_Roll = (int)Roll;
_Pitch = (int)Pitch;
/* Don't allow forces bigger than 1g */
if (x < -1.0) x = -1.0; else if (x > 1.0) x = 1.0;
if (y < -1.0) y = -1.0; else if (y > 1.0) y = 1.0;
if (z < -1.0) z = -1.0; else if (z > 1.0) z = 1.0;
Roll = InputCommon::Rad2Deg(atan2(x, z));
Pitch = InputCommon::Rad2Deg(atan2(y, z));
_RollAdj = (int)Roll;
_PitchAdj = (int)Pitch;
}
//******************************************************************************
// IR data functions
//******************************************************************************
// Calculate dot positions from the basic 10 byte IR data
void IRData2DotsBasic(u8 *Data)
{
struct SDot* Dot = g_Wiimote_kbd.IR.Dot;
Dot[0].Rx = 1023 - (Data[0] | ((Data[2] & 0x30) << 4));
Dot[0].Ry = Data[1] | ((Data[2] & 0xc0) << 2);
Dot[1].Rx = 1023 - (Data[3] | ((Data[2] & 0x03) << 8));
Dot[1].Ry = Data[4] | ((Data[2] & 0x0c) << 6);
Dot[2].Rx = 1023 - (Data[5] | ((Data[7] & 0x30) << 4));
Dot[2].Ry = Data[6] | ((Data[7] & 0xc0) << 2);
Dot[3].Rx = 1023 - (Data[8] | ((Data[7] & 0x03) << 8));
Dot[3].Ry = Data[9] | ((Data[7] & 0x0c) << 6);
/* set each IR spot to visible if spot is in range */
for (int i = 0; i < 4; ++i)
{
if (Dot[i].Ry == 1023)
{
Dot[i].Visible = 0;
}
else
{
Dot[i].Visible = 1;
Dot[i].Size = 0; /* since we don't know the size, set it as 0 */
}
// For now we let our virtual resolution be the same as the default one
Dot[i].X = Dot[i].Rx; Dot[i].Y = Dot[i].Ry;
}
// Calculate the other values
ReorderIRDots();
IRData2Distance();
}
// Calculate dot positions from the extented 12 byte IR data
void IRData2Dots(u8 *Data)
{
struct SDot* Dot = g_Wiimote_kbd.IR.Dot;
for (int i = 0; i < 4; ++i)
{
//Console::Print("Rx: %i\n", Dot[i].Rx);
Dot[i].Rx = 1023 - (Data[3*i] | ((Data[(3*i)+2] & 0x30) << 4));
Dot[i].Ry = Data[(3*i)+1] | ((Data[(3*i)+2] & 0xc0) << 2);
Dot[i].Size = Data[(3*i)+2] & 0x0f;
/* if in range set to visible */
if (Dot[i].Ry == 1023)
Dot[i].Visible = false;
else
Dot[i].Visible = true;
//Console::Print("Rx: %i\n", Dot[i].Rx);
// For now we let our virtual resolution be the same as the default one
Dot[i].X = Dot[i].Rx; Dot[i].Y = Dot[i].Ry;
}
// Calculate the other values
ReorderIRDots();
IRData2Distance();
}
// Reorder the IR dots according to their x-axis value
void ReorderIRDots()
{
// Create a shortcut
struct SDot* Dot = g_Wiimote_kbd.IR.Dot;
// Variables
int i, j, order;
// Reset the dot ordering to zero
for (i = 0; i < 4; ++i)
Dot[i].Order = 0;
for (order = 1; order < 5; ++order)
{
i = 0;
//
for (; !Dot[i].Visible || Dot[i].Order; ++i)
if (i > 4) return;
//
for (j = 0; j < 4; ++j)
{
if (Dot[j].Visible && !Dot[j].Order && (Dot[j].X < Dot[i].X))
i = j;
}
Dot[i].Order = order;
}
}
// Calculate dot positions from the extented 12 byte IR data
void IRData2Distance()
{
// Create a shortcut
struct SDot* Dot = g_Wiimote_kbd.IR.Dot;
// Make these ones global
int i1, i2;
for (i1 = 0; i1 < 4; ++i1)
if (Dot[i1].Visible) break;
// Only one dot was visible, we can not calculate the distance
if (i1 == 4) { g_Wiimote_kbd.IR.Distance = 0; return; }
// Look at the next dot
for (i2 = i1 + 1; i2 < 4; ++i2)
if (Dot[i2].Visible) break;
// Only one dot was visible, we can not calculate the distance
if (i2 == 4) { g_Wiimote_kbd.IR.Distance = 0; return; }
/* For the emulated Wiimote the y distance is always zero so then the distance is the
simple distance between the x dots, i.e. the sensor bar width */
int xd = Dot[i2].X - Dot[i1].X;
int yd = Dot[i2].Y - Dot[i1].Y;
// Save the distance
g_Wiimote_kbd.IR.Distance = (int)sqrt((float)(xd*xd) + (float)(yd*yd));
}
//******************************************************************************
// Classic Controller functions
//******************************************************************************
std::string CCData2Values(u8 *Data)
{
return StringFromFormat(
"Tl:%03i Tr:%03i Lx:%03i Ly:%03i Rx:%03i Ry:%03i",
(((Data[2] & 0x60) >> 2) | ((Data[3] & 0xe0) >> 5)),
(Data[3] & 0x1f),
(Data[0] & 0x3f),
(Data[1] & 0x3f),
((Data[0] & 0xc0) >> 3) | ((Data[1] & 0xc0) >> 5) | ((Data[2] & 0x80) >> 7),
(Data[2] & 0x1f));
}
} // WiiMoteEmu