Before:
1. In theory there could be multiple, but in practice they were (manually) cleared before creating one
2. (Some of) the conditions to clear one were either to reach it, to create a new one (due to the point above), or to step. This created weird behavior: let's say you Step Over a `bl` (thus creating a temporary breakpoint on `pc+4`), and you reached a regular breakpoint inside the `bl`. The temporary one would still be there: if you resumed, the emulation would still stop there, as a sort of Step Out. But, if before resuming, you made a Step, then it wouldn't do that.
3. The breakpoint widget had no idea concept of them, and will treat them as regular breakpoints. Also, they'll be shown only when the widget is updated in some other way, leading to more confusion.
4. Because only one breakpoint could exist per address, the creation of a temporary breakpoint on a top of a regular one would delete it and inherit its properties (e.g. being log-only). This could happen, for instance, if you Stepped Over a `bl` specifically, and pc+4 had a regular breakpoint.
Now there can only be one temporary breakpoint, which is automatically cleared whenever emulation is paused. So, removing some manual clearing from 1., and removing the weird behavior of 2. As it is stored in a separate variable, it won't be seen at all depending on the function used (fixing 3., and removing some checks in other places), and it won't replace a regular breakpoint, instead simply having priority (fixing 4.).
Now it actually does what it says on the name, instead of creating a breapoint and doing nothing else (not even updating the widget).
Also, it now can't be selected if emulation isn't running.
Closes https://bugs.dolphin-emu.org/issues/13532
Core::GetState reads from four different pieces of state: s_is_stopping,
s_hardware_initialized, s_is_booting, and CPUManager::IsStepping.
I'm keeping that last one as is for now because there's code in Dolphin
that sets it directly, but we can unify the other three to make things
easier to reason about.
This commit also gets rid of s_is_started. This was previously used in
Core::IsRunningAndStarted to ensure true wouldn't be returned until the
CPU thread was started, but it wasn't used in Core::GetState, so
Core::GetState would happily return State::Running after we had
initialized the hardware but before we had initialized the CPU thread.
As far as I know, there are no callers that have any real need to know
whether the boot process is currently initializing the hardware or the
CPU thread. Perhaps once upon a time there was a desire to make the
apploader debuggable, but a long time has passed without anyone stepping
up to implement it, and the way CBoot::RunApploader is implemented makes
it rather difficult. So this commit makes all the functions in Core.cpp
consider the core to still be starting until the CPU thread is started.
This lets us reduce the number of USE_RETRO_ACHIEVEMENTS ifdefs in the
code base, reducing visual clutter. In particular, needing an ifdef for
each call to IsHardcodeModeActive was annoying to me. This also reduces
the risk that someone writes code that accidentally fails to compile
with USE_RETRO_ACHIEVEMENTS disabled.
We could cut down on ifdefs even further by making HardcodeWarningWidget
always exist, but that would result in non-trivial code ending up in the
binary even with USE_RETRO_ACHIEVEMENTS disabled, so I'm leaving it out
of this PR. It's not a lot of code though, so I might end up revisiting
it at some point.
Bugfix for hardcore-disabled items being disabled when hardcore was true but achievement integration was false, which should mean hardcore is effectively disabled. Now everything checks the IsHardcoreModeActive method in AchievementManager which processes the setting AND the game state to determine if hardcore mode is actually active.
std::set's lower_bound() is optimized better than the generic
implementation of std::lower_bound()
std::lower_bound() works best on random access iterators, where the
number of comparisons can be logarithmic. However, since std::set's
iterators are bidirectional iterators, the comparisons will actually be
linear in practice when using std::lower_bound().
So, we can use std::set's version which is guaranteed to be logarithmic.
Memory patches would be an easy way to manipulate the memory needed to calculate achievement logic, so they must be disabled. Riivolution patches that do not affect memory are allowed, as they will be hashed with the game file.
The base DebugInterface now depends on the Core's CPUThreadGuard, and
utilities in Common shouldn't be depending on Core facilities. So, we
can move this into the core library instead.
This fixes a problem I was having where using frame advance with the
debugger open would frequently cause panic alerts about invalid addresses
due to the CPU thread changing MSR.DR while the host thread was trying
to access memory.
To aid in tracking down all the places where we weren't properly locking
the CPU, I've created a new type (in Core.h) that you have to pass as a
reference or pointer to functions that require running as the CPU thread.
There are two reasons for this.
1. Using Dolphin's logging system lets the user decide whether
the printout should go to the terminal, the GUI, or a file.
fmt::print always prints to stdout... unless you're on Android, in
which case it does nothing at all, because Android disables stdout.
2. The Windows version of Dolphin crashes when you use fmt::print.
Yes, really. The crash happens because a call to std::fprint in
fmt::v7::detail::fwrite_fully returns that less characters were
written than requested, which fmt handles by throwing an exception.
(As always, Dolphin does not use exception handling.)
I'm not sure why std::fprint is doing this, but since switching
away from using fmt::print is a good idea due to the previous point
anyway, I'd say it's best to just switch.
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.