The STL has everything we need nowadays.
I have tried to not alter any behavior or semantics with this
change wherever possible. In particular, WriteLow and WriteHigh
in CommandProcessor retain the ability to accidentally undo
another thread's write to the upper half or lower half
respectively. If that should be fixed, it should be done in a
separate commit for clarity. One thing did change: The places
where we were using += on a volatile variable (not an atomic
operation) are now using fetch_add (actually an atomic operation).
Tested with single core and dual core on x86-64 and AArch64.
NumericSettings support a max, so let's use it.
It might not do much now, but the max and min values will be used to give visual feeback
in the UI in one of my upcoming input PRs
If the number of objects varied, this would result in either missing objects on some frames, or too many objects on some frames; the latter case could cause crashes. Since it used the current frame to get the count, if the FIFO is started before the FIFO analyzer is opened, then the current frame is effectively random, making it hard to reproduce consistently.
This issue has existed since the FIFO analyzer was implemented for Qt.
The 'zero frames in the range' check can be removed because now there is always at least 1 frame; of course that might be the same frame over and over again, but that's still useful for e.g. Free Look (and the 1 frame repeating effect already occurred when frame count was exclusive).
A single object can be selected instead of 2 (it was already inclusive internally), and the maximum value is the highest number of objects in any frame (minus 1) to reduce jank when multiple frames are being played back.
By taking advantage of three-operand IMUL, we can eliminate a MOV
instruction. This is a small code size win. However, due to IMUL sign
extending the immediate value to 64 bits, we can only apply this when
the magic number's most significant bit is zero.
To ensure this can actually happen, we also minimize the magic number by
checking for trailing zeroes.
Example (Unsigned division by 18)
Before:
41 BE E4 38 8E E3 mov r14d,0E38E38E4h
4D 0F AF F5 imul r14,r13
49 C1 EE 24 shr r14,24h
After:
4D 69 F5 39 8E E3 38 imul r14,r13,38E38E39h
49 C1 EE 22 shr r14,22h
This isn't entirely necessary, as they are interpreted as barewords expressions,
but it's still nicer to have by default. And my upcoming input changes will
always put `` around single letter inputs.
-Add pause state to FPSCounter.
-Add ability to have more than one "OnStateChanged" callback in core.
-Add GetActualEmulationSpeed() to Core. Returns 1 by default. It's used by my input PRs.
The SaveToSYSCONF call in BootManager.cpp was unintentionally
overriding the temporary NAND set by the preceding
InitializeWiiRoot call. Fixes
https://bugs.dolphin-emu.org/issues/12500.
I haven't observed this breaking any game, but it didn't match
the behavior of the interpreter as far as I could tell from
reading the code, in that denormals weren't being flushed.
If we can prove that FCVT will provide a correct conversion,
we can use FCVT. This makes the common case a bit faster
and the less likely cases (unfortunately including zero,
which FCVT actually can convert correctly) a bit slower.
Preparation for following commits.
This commit intentionally doesn't touch paired stores,
since paired stores are supposed to flush to zero.
(Consistent with Jit64.)
This simplifies some of the following commits. It does require
an extra register, but hey, we have 32 of them.
Something I think would be nice to add to the register cache
in the future is the ability to keep both the single and double
version of a guest register in two different host registers
when that is useful. That way, the extra register we write to
here can be read by a later instruction, saving us from
having to perform the same conversion again.
When the interpreter writes to a discarded register, its type
must be changed so that it is no longer considered discarded.
Fixes a 62ce1c7 regression.
We normally check for division by zero to know if we should set the
destination register to zero with a XOR. However, when the divisor and
destination registers are the same the explicit zeroing can be omitted.
In addition, some of the surrounding branching can be simplified as
well.
Before:
45 85 FF test r15d,r15d
75 05 jne normal_path
45 33 FF xor r15d,r15d
EB 0C jmp done
normal_path:
B8 5A 00 00 00 mov eax,5Ah
99 cdq
41 F7 FF idiv eax,r15d
44 8B F8 mov r15d,eax
done:
After:
45 85 FF test r15d,r15d
74 0C je done
B8 5A 00 00 00 mov eax,5Ah
99 cdq
41 F7 FF idiv eax,r15d
44 8B F8 mov r15d,eax
done:
Division by a power of two can be slightly improved when the
destination and dividend registers are the same.
Before:
8B C6 mov eax,esi
85 C0 test eax,eax
8D 70 03 lea esi,[rax+3]
0F 49 F0 cmovns esi,eax
C1 FE 02 sar esi,2
After:
85 F6 test esi,esi
8D 46 03 lea eax,[rsi+3]
0F 48 F0 cmovs esi,eax
C1 FE 02 sar esi,2
Repeated erase() + iteration on a std::multimap is extremely slow.
Slow enough that it causes a 7 second long stutter during some
transitions in F-Zero X (a N64 VC game that triggers many, many icache
invalidations).
And slow enough that JitBaseBlockCache::DestroyBlock shows up on a
flame graph as taking >50% of total CPU time on the CPU-GPU thread:
https://i.imgur.com/vvqiFL6.png
This commit optimises those block link queries by replacing the
std::multimap (which is typically implemented with red-black trees)
with hash tables.
Master: https://i.imgur.com/vvqiFL6.png / 7s stutters
(starting from 5.0-2021 and with branch following disabled)
This commit: https://i.imgur.com/hAO74fy.png / ~0.7s stutters, which
is pretty close to 5.0 stable. (5.0-2021 introduced the performance
regression and it is especially noticeable when branch following
is disabled, which is the case for all N64 VC games since 5.0-8377.)