It's cleared whenever the uCode changes, so there's no reason to clear it in a destructor or during initialization.
I've also renamed it to ClearPending.
The # option means that 0x is prepended already, so the old code resulted in 0x0xDEADBEEF instead of the intended 0xDEADBEEF. WriteMailboxLow was already correct.
Before, both 1441 and 147f would disassemble as `lsr $acc0, #1`, when the second should be `lsr $acc0, #-1`, and both 14c1 and 14ff would be `asr $acc0, #1` when the second should be `asr $acc0, #-1`. I'm not entirely sure whether the minus signs actually make sense here, but this change is consistent with the assembler so that's an improvement at least.
devkitPro previously changed the formatting to not require negative signs for lsr and asr; this is probably something we should do in the future: 8a65c85c9b
This fixes the HermesText and HermesBinary tests (HermesText already wrote `lsr $ACC0, #-5`, so this is consistent with what it used before.)
For instance, ending with 0x009e (which you can do with CW 0x009e) indicates a LRI $ac0.m instruction, but there is no immediate value to load, so before whatever garbage in memory existed after the end of the file was used.
The bounds-checking also previously assumed that IRAM or IROM was being used, both of which were exactly 0x1000 long.
Spirv-cross's MSL codegen makes the amazing choice of compiling calls to inout functions as `State temp = s; call_function(temp); s = temp`. Not all Metal backends handle this mess well. In particular, it causes register spills on Intel, losing about 5% in performance.
X30 is used in fewer situations than the comment was claiming.
(I think that when I wrote the comment I was counting the use of X30
as a temp variable in the slowmem code as clobbering X30, but that
happens after pushing X30, so it doesn't actually get clobbered.)
This is used when fastmem isn't available. Instead of always falling
back to the C++ code in MMU.cpp, the JIT translates addresses on its
own by looking them up in a table that Dolphin constructs. This is
slower than fastmem, but faster than the old non-fastmem code.
This is primarily useful for iOS, since that's the only major platform
nowadays where you can't reliably get fastmem. I think it would make
sense to merge this feature to master despite this, since there's
nothing actually iOS-specific about the feature. It would be of use
for me when I have to disable fastmem to stop Android Studio from
constantly breaking on segfaults, for instance.
Co-authored-by: OatmealDome <julian@oatmealdome.me>