We can just use a vector of a vector, which also has the benefit of
keeping the size accounted for as well, allowing us to get rid of a
count parameter for CodesToHeader().
Instead of using an out-reference, we can modernize these to return the
std::string directly. While we're at it, also remove the unused name
parameter.
Given we now use a base class for the interface, we can make all member
functions, types and constants that aren't directly related to
instructions private.
HID2.LSQE is the Load/store quantize enable bit for non-indexed format
instructions (which are psq_l, psq_lu, psq_st, and psq_stu). If this bit
is not set and any of these instructions are attempted to be executed,
then a program exception is supposed to occur.
This register is defined as "optional reserved" within the aarch64 ABI.
Linux doesn't use it, but we must not modify it on ios or windows.
As we have plenty of registers on aarch64, let's just always skip this one.
This function was duplicated across all the opcode tables: the main info
tables, the interpreter tables, and the x86-64 JIT tables. However, we
can just make the type of the std::array parameter a template type and
get rid of this duplication.
const on a parameter being passed by value in a prototype doesn't actually signify
anything, these are only applicable in the definition, where they make
the opcode parameter immutable.
inline has external linkage, which doesn't really make sense here, given
the function is only used within this translation unit. So we can
replace inline with static.
While we're at it, the code within the function can also be compressed
to a single return statement.
Previously these were required to be built into the executable so that
the JIT portion of the DSP code would build properly, as the
x86-64-specifics were tightly coupled to the DSP common code. As this is
no longer the case, this is no longer necessary.
This adds a base class that is used to replace the concrete instance of
the x64 JIT pointer within DSPCore. This fully removes the direct use
(read: non-ifdefed) usage of x86-64-specifics within the main DSP code.
Said base can also be used for creating JITs for other architectures,
such as AArch64, etc.
This is one of the last things that needed to be done in order to
finally separate the x86-64-specific code from the rest of the common
DSP code. This splits the tables up similar to how it's currently done
for the PowerPC CPU tables.
Now, the tables are split up and within their own relevant source files,
so the main table within the common DSP code acts as the "info" table
that provides specifics about a particular instruction, while the other
tables contain the actual instruction.
With this out of the way, all that's left is to make a general base for
the emitters and we can then replace the x64 JIT pointer in DSPCore with
it, getting all x64 out of the common code once and for all.
While shuffling all the code around, the removal of the DSPEmitter
includes in some places uncovered indirect inclusions, so this also
fixes those as well.
Despite both being documented as read-only registers, only one of them
is truly read-only. An mtspr to HID1 will steamroll bits 0-4 with
bits 0-4 of whatever value is currently in the source register, the rest
of the bits are not modified as bits 5-31 are considered reserved, so
these ignore writes to them.
PVR on the other hand, is truly a read-only register. Attempts to write
to it don't modify the value within it, so we model this behavior.