Dolphin has traditionally treated the SI IO buffer (128 bytes) as a set of
32 little endian u32s. This works out fine if you only ever read/write
using aligned 32bit accesses. Different sized accesses or misaligned reads
will mess it up. Byte swapping reads/writes will fix this up, but all the
SI devices that use the SI IO buffer need to be adjusted.
Several functions (and one variable) were being given external linkage.
Instead, relocate them all to anonymous namespaces to make them
internally linked.
Currently, each player buffers their own inputs and sends them to the
host. The host then relays those inputs to everyone else. Every player
waits on inputs from all players to be buffered before continuing. What
this means is all clients run in lockstep, and the total latency of
inputs cannot be lower than the sum of the 2 highest client ping times
in the game (in 3+ player sessions with people across the world, the
latency can be very high).
Host input authority mode changes it so players no longer buffer their
own inputs, and only send them to the host. The host stores only the
most recent input received from a player. The host then sends inputs
for all pads at the SI poll interval, similar to the existing code. If
a player sends inputs to slowly, their last received input is simply
sent again. If they send too quickly, inputs are dropped. This means
that the host has full control over what inputs are actually read by
the game, hence the name of the mode. Also, because the rate at which
inputs are received by SI is decoupled from the rate at which players
are sending inputs, clients are no longer dependent on each other. They
only care what the host is doing. This means that they can set their
buffer individually based on their latency to the host, rather than the
highest latency between any 2 players, allowing someone with lower ping
to the host to have less latency than someone else.
This is a catch to this: as a necessity of how the host's input sending
works, the host has 0 latency. There isn't a good way to fix this, as
input delay is now solely dependent on the real latency to the host's
server. Having differing latency between players would be considered
unfair for competitive play, but for casual play we don't really care.
For this reason though, combined with the potential for a few inputs to
be dropped on a bad connection, the old mode will remain and this new
mode is entirely optional.
Most settings which affect determinism will now be synced on NetPlay.
Additionally, there's a strict sync mode which will sync various
enhancements to prevent desync in games that use EFB reads.
This also adds a check for all players having the IPL.bin file, and
doesn't load it for anyone if someone is missing it. This prevents
desyncs caused by mismatched system fonts.
Additionally, the NetPlay window was getting too wide with checkboxes,
so FlowLayout has been introduced to make the checkboxes take up
multiple rows dynamically. However, there's some minor vertical
centering issues I haven't been able to solve, but it's better than a
ridiculously wide window.
This adds the functionality of sending the host's save data (raw memory
cards, as well as GCI files and Wii saves with a matching GameID) to
all other clients. The data is compressed using LZO1X to greatly reduce
its size while keeping compression/decompression fast. Save
synchronization is enabled by default, and toggleable with a checkbox
in the NetPlay dialog.
On clicking start, if the option is enabled, game boot will be delayed
until all players have received the save data sent by the host. If any
player fails to receive it properly, boot will be cancelled to prevent
desyncs.
Makes it less error-prone to get state data from analog sticks (no need
to pass any locals), and also allows direct assignment, letting the
retrieved data be const.
Makes it less error-prone to get state data from tilt controls (no need
to pass any pointers to locals), and also allows direct assignment,
letting the retrieved data be const.
Makes it less error-prone to get state data from sliders (no need
to pass any locals), and also allows direct assignment, letting the
retrieved data be const.
Makes it less error-prone to get state data from cursors (no need
to pass any pointers to locals), and also allows direct assignment,
letting the retrieved data be const.
Makes it less error-prone to get state data from analog sticks (no need
to pass any locals), and also allows direct assignment, letting the
retrieved data be const.
Ensures they match their naming within the definition of the function.
In EmulateSwing's case, one parameter was erroneously named tilt_group,
when it's actually supposed to be swing_group.
These aren't necessary in the prototype, however they do apply in the
definition of the function. This just cuts down on line noise within the
prototypes.
define how many frames constitute a high or a low swing/shake when the
button is down. Also configurable is the number of frames to execute
the swing/shake after the button is released.