Yet another story of games loading weird shit into registers.
For some reason, Burnout 2 would (in rare situations) load invalid
addresses into cp_state.array_bases. What would the real hardware
do in this situation? Who knows, Burnout 2 doesn't actually enable
the vertex array with the invalid address so nothing kinky happens.
But dolphin tries to optimise things and starts using the address
as soon as it is loaded into memory. This causes GetPointer (which is
now much more vocal) to throw an error.
The Fix: We don't call GetPointer until we are sure the vertex array
has been enabled.
- FileSearch is now just one function, and it converts the original glob
into a regex on all platforms rather than relying on native Windows
pattern matching on there and a complete hack elsewhere. It now
supports recursion out of the box rather than manually expanding
into a full list of directories in multiple call sites.
- This adds a GCC >= 4.9 dependency due to older versions having
outright broken <regex>. MSVC is fine with it.
- ScanDirectoryTree returns the parent entry rather than filling parts
of it in via reference. The count is now stored in the entry like it
was for subdirectories.
- .glsl file search is now done with DoFileSearch.
- IOCTLV_READ_DIR now uses ScanDirectoryTree directly and sorts the
results after replacements for better determinism.
Through just returning the last written value sounds better, this crashes Paper Mario.
In my opinion, gfx issues are fine on older GPUs, but crashes should not happen.
There is no nice way to correctly "detect" the "used" memory, so we just say
we're fine to use 50% of the physical memory for custom textures.
This will fix out-of-memory crashes, but we still might run into swapping issues.
This was causing a race condition where the "absurdly large aux buffer"
panic alert would be triggered in the last bit of fifo processing on the
CPU thread in deterministic mode (i.e. netplay). SyncGPU is supposed to
move the auxiliary queue data to the beginning of the containing buffer
so we don't have to deal with wraparound; if GpuRunningState is false,
however, it just returns, because it's set to false by another thread -
thus it doesn't know whether RunGpuLoop is still executing (in which
case it can't just reset the pointers, because it may still be using the
buffer) or not (in which case the condition variable it normally waits
for to avoid the previous problem will never be signaled). However,
SyncGPU's caller PushFifoAuxBuffer wasn't aware of this, so if the
buffer was filling at just the right time, it'd stay full and that
function would complain that it was about to overflow it. Similar
problem with ReadDataFromFifoOnCPU afaik. Fix this by returning early
from those as well; other callers of SyncGPU should be safe. A
*slightly* cleaner alternative would be giving the CPU thread a way to
tell when RunGpuLoop has actually exited, but whatever, this works.